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Abstract. This paper gives an overview of three case studies in develop-
ing pure mathematical theory using ProofPower-HOL. The case studies
cover real analysis, group theory and topology and expose some inter-
esting issues for formalising mathematics.

1 Introduction

Apart from basic mathematical structures such as sets, functions, lists and num-
bers, applying an automated theorem-proving system to hardware and software
engineering problems tends to involve mathematical theories of a rather different
nature from the traditional subject matter of pure mathematics. However, it is
natural to try to formalise pure mathematical theories. Research into this goes
back to the earliest days of automated theorem-proving.

In a recent survey, Carlos Simpson [12] has identified numerous reasons why
computer-assisted formalised mathematics should be of benefit to the mathemat-
ical community. Simpson gives many references to earlier work in this area as
does John Harrison in his thesis [7] and his paper [6]. The Flyspeck project [5] is
applying computer-assisted theorem proving to increase confidence in Thomas
Hales’ proof of the Kepler sphere-packing conjecture, a difficult proof involv-
ing a considerable element of computation which has caused problems for the
traditional peer review process.

In 2001, the opportunity arose to develop a theory of real arithmetic for the
ProofPower specification and proof system to support verification of programs
using floating and fixed point arithmetic. It was a natural experiment to use
this as the basis of a theory of real analysis and I spent some time late in 2001
working on that. In 2003, since the Jordan curve theorem12 was felt to be a
suitable challenge problem in some automated theorem-proving circles, I used
1 Apparently, much progress has been made on the Jordan curve theorem using the

Mizar system, but it is unclear to me whether the proof of the general case in two
dimensions is complete (see http://mizar.uwb.edu.pl/).

2 Added 2nd January 2006: The previous footnote dates from early 2004. Auto-
mated proofs of the Jordan Curve Theorem have now been done in HOL Light (by
Thomas Hales, 2004) and in Mizar (Artur Kornilowicz, 2005).



ProofPower-HOL to prove what Henle [8] calls the fundamental lemma in one of
the classical proofs of this results. In retrospect, I view this as a highly instruc-
tive mistake: Henle’s book is a very accessible account of elementary algebraic
topology for beginning students. His fundamental lemma is essentially a calcu-
lation of the mod 2 homology groups of the plane and so I formulated it as a
combinatorial result about discrete gratings and proved it, the proof being fairly
easy.

Unfortunately, connecting the fundamental lemma expressed as a combina-
torial fact with the geometry involves several topological results, most notably
Alexander’s lemma. I quickly realised that I was going to have to cover quite a
bit of geometry and topology to prove them. Now Henle’s proofs are very care-
fully designed for the beginner; they appeal to geometric intuitions as much as
to formal reasoning. Henle sets up topology as the topology of subsets of the
plane and to follow his proofs as they stand would involve doing special cases of
general results whose proofs are no harder formally than the special cases.

Moral 1: if you ask someone “have you proved the XYZ theorem?” and
receive the reply that they have proved the “fundamental lemma” or the “main
result” or similar, it is wise to scrutinise their formal account closely to find out
what they have actually proved3.

Moral 2: theorem-provers don’t need spoon-feeding; it makes sense to prove
things at the “right” level of generality and that will often be more general than
in an account intended for beginners.

Moral 3: while there is no royal road to proving theorems, there are short-
cuts; however, you have to choose your shortcuts very carefully to make sure you
don’t get lost.

I subsequently began some case studies in pure mathematics, trying to cover
the material along the lines that it might be covered in a typical undergraduate
or beginning graduate course. Carried far enough, this programme would have
the Jordan curve theorem drop out as the two dimensional case of the Jordan-
Brouwer separation theorem proved via the calculation of the homology groups
of spheres, but that is a long way off. To date this work has covered the following
topics.

– A more complete treatment of real analysis including the definitions and
basic properties of exponential and trigonometric functions and of π.

– Some group theory including the definitions and elementary properties up
to the three isomorphism theorems and the Cayley representation theorem

– Enough abstract and metric space topology to define the notions of homotopy
and the fundamental groupoid (and to prove that it is a groupoid).

3 As a simpler example, I have still not seen a proof of the mutilated chess-board
theorem as a theorem about dominoes and chess-board as geometrical objects, which
is what they surely are. Just as in my problem with the Jordan curve theorem, the
combinatorics is fairly easy, but the geometric realisation requires more work.
Added 2nd January 2006: For further discussion, see “The Mutilated Chessboard
Theorem in Z” (at http://www.lemma-one.com/ProofPower/examples/wrk071.pdf)
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My objectives in this enterprise were somewhat vague: essentially, I just
wanted to see how this material turns out and to compare notes with other
systems (Mizar, PVS, HOL Light, etc.). I was also specifically interested in
developing the theory to the points where the main mathematical subjects of
algebra, analysis, geometry and topology begin to interact and inform one an-
other, e.g., in algebraic topology and differential geometry. During the course of
the work, some definite themes have emerged:

– I have tried to provide natural and readable specifications of the mathemati-
cal concepts formalised. For example, I use differential equations rather than
power series as the definitions of the trigonometric functions, since I consider
that approach to have a more intuitive, geometrical appeal.

– I have tried to follow the development of pure mathematics both in fitting
abstract notions to more concrete ones after the event and in using abstract
notions that have not yet been formalised to inform more concrete work. For
example, you don’t need to develop abstract group theory to define the real
numbers and show that they are a group under addition. You can even use
group-theoretical thinking while you’re developing the theory. However, once
you have some abstract group theory, you should be able to apply that to
the real numbers and other specific constructions you may make with them
(e.g., real vector spaces4).

– I have attempted to develop the theory at the “right” level of generality
or abstraction: this often involves a compromise between making the task
at hand feasible and making the results general enough to be useful. On
the other hand, being more abstract is sometimes both more powerful in
applications and easier! E.g., the fundamental groupoid of a topological space
is technically often easier to work with than the fundamental group.

There is no new mathematics of any significance in any of this: just as there
is no significant new mathematics in an undergraduate textbook. However, in-
teresting details arise en passant and you do learn something as you go (for
example, that integration is not needed to develop the theory of power series
one needs to introduce the exponential and transcendental functions).

This paper gives an overview of what has been done at the time of writing
(May 2004) and discusses some of the issues for formalising mathematics that
have been highlighted. Full details are given in the papers [1–3]. The structure
of the sequel is as follows: section 2 introduces the ProofPower-HOL logic and
system by means of a simple example which also illustrates, in microcosm, some
of the formalisation issues encountered (a theory listing for this example is given
as an appendix); section 3 gives an outline on what has been done in the three
case studies; section 4 discusses how the approach of the case studies might scale
to more complex problem domains; section 5 gives some concluding remarks.

4 Roger Jones and I have an embryonic theory of normed real vector spaces based on
the group theory case study and including a coordinate-free definition of the Frechet
derivative.
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2 An Example

ProofPower is a system supporting specification and proof in HOL and Z. It is
founded on an LCF-style implementation in Standard ML5 of the same polymor-
phic simple type theory as the other systems in the HOL family. ProofPower-HOL
supports a syntax for specification adapted from the Z notation [13] intended
to encourage well-documented formal specifications using familiar logical and
mathematical notations. This document is written in that syntax, Its source
form is a mixture of LATEX and input for the ProofPower-HOL parser. The input
for the parser is displayed on screen using a special font and a (mostly) single-
character mark-up for the mathematical symbols, so that, for example, when
you see ‘∀’ in this paper, what I saw on my screen was an upside-down ‘A’ too.

To illustrate the ProofPower-HOL style of specification adopted in the case
studies, let us develop a simple algebraic theory. If G is a group, a G-action on
a set X is a correspondence between elements of G and 1-1 mappings of X onto
itself such that multiplication in the group corresponds to composition of the
mappings. A set X equipped with a G-action is called a G-set. G-sets arise, for
example, by considering groups of symmetries of geometrical objects. To give a
concrete example of a group action before defining the concept of a group, let us
consider the particular case when G is Z, the group of integers under addition.

So a Z-set will comprise a pair comprising a set (called the carrier set of the
action) together with an assignment to each integer of a function from the set to
itself. To represent this abstract concept in HOL, let us consider the polymorphic
class of all pairs comprising a set of elements of some type ′a together with a
function mapping integers to total functions from ′a to itself. We can capture
this in the following type abbreviation6

SML

declare type abbrev("Z SET", ["′a"], p:′a SET × (Z → ′a → ′a)q);

The type ′a here is a polymorphic type parameter. It can be instantiated to
any type we please, for example, an element of the type7 R Z SET is the type
that includes all Z-actions on sets of real numbers. We will think of the above
type as providing a signature for a class of structures which are candidates to
be Z-sets. If X is such a structure (i.e., a member of an instance of the above
type), we will write Car X for the carrier set and (x ∗ ∗ i)X for the action
of an integer i on an element x. Note that the action operation is ternary not
binary: in informal mathematics, it is normal to let the reader infer from the

5 ML stands for “metalanguage”. Standard ML is a functional programming language
which serves as both the implementation language and the interactive command
language for ProofPower.

6 Here the “specification” comprises an ML command to achieve the desired effect,
since the ProofPower-HOL parser does not provide a concrete syntax for this form
of definition.

7 HOL type constructors are postfix operators, for example ‘Z LIST’ denotes the type
of lists of integers.

4



context which mathematical structures are being deployed, but formally we must
be explicit about this.

To achieve the above syntax, we first declare the string ‘∗∗’ to act as an infix
symbol with the same numerical precedence (310) as arithmetic exponentiation.
SML

declare infix (310 , "∗∗");

We now give a constant specification to introduce the new constants ‘Car’
and ‘∗∗’. A constant specification in ProofPower-HOL comprises two parts: the
part above the line gives a type ascription for the new constant or constants and
the part below the line gives a predicate which is to be their defining property.
In this case the defining property comprises two universally quantified equations
defining the values of applications of the functions ‘Car’ and ‘∗∗’ Parsing the
constant specification maps onto a call of the primitive definitional principle
const spec. This principle requires an existence proof for the constants being
introduced. The ProofPower-HOL infrastructure includes a range of procedures
for discharging the existence proofs and these will automatically discharge the
proof obligations for all of the definitions in this example.
HOL Constant

Car : ′a Z SET → ′a SET ;
$∗∗ : ′a → Z → ′a Z SET → ′a

∀ (set , action)•
Car (set , action) = set

∧ (∀x i• (x ∗∗ i) (set , action) =action i x )

The above definition serves to provide a convenient syntax for the operations
on the structures of interest. We can see this in the following definition which
captures the laws that a candidate Z-set must satisfy to be worthy of the name.
The laws specify that: (i), the carrier set is closed under the Z-action; (ii),
addition of integers corresponds to composition of the corresponding actions;
and, (iii), 0 corresponds to the identity function.
HOL Constant

Z Set : ′a Z SET SET

∀ X •
X ∈ Z Set

⇔(∀x i• x ∈ Car X ⇒ (x ∗∗ i) X ∈ Car X )
∧ (∀x i j• x ∈ Car X ⇒ (x ∗∗ (i + j )) X = ((x ∗∗ i) X ∗∗ j ) X )
∧ (∀x• x ∈ Car X ⇒ (x ∗∗ NZ 0 ) X = x )

In addition to the specifications, the source of this document also contains the
statements and proofs of a small selection of theorems about Z-sets. ML proof
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scripts are not particularly informative even to the expert eye, except when they
are brought alive by replaying them interactively, so they have been suppressed
from the printed form of this document. There is a listing of the theory in the
appendix. The reader is invited to refer to the appendix for the statements of
the following two theorems which are both elementary consequences of the above
definition. The first theorem says that acting by i and then by −i results in the
identity function on the carrier set and the second gives a cancellation law.

Z set minus thm Z set cancel thm

We complete the example by defining the orbit of an element x of a Z-set X.
The orbit comprises the set of all elements y that can be reached from x under
the Z-action.
HOL Constant

Orbit : ′a Z SET → ′a → ′a SET

∀ X x• Orbit X x = {y | ∃i• y = (x ∗∗ i) X }

The reader may again consult the appendix for the statements of the following
two theorems. The first says that any element of a Z-set belongs to its own orbit
and the second says that any two orbits are either equal or disjoint. I.e., the
orbits are the equivalence classes of an equivalence relation: “co-orbital”.

orbit refl thm orbit disjoint thm

In this example, we have formalised a very elementary mathematical theory
and developed some very elementary theorems about it. The proofs would serve
almost as they stand to prove the same facts about G-sets for arbitrary groups
G given the theory of groups developed in [2]. This could then provide the basis
of some much more interesting mathematics. For present purposes, the example
serves to illustrate ProofPower in action and to introduce the style of presentation
of analysis, topology and group theory in [1–3].

3 The Case Studies

3.1 Basic Analysis

The case study on analysis is presented in [1]. It builds on the ProofPower-HOL
theory that introduces the real numbers as a complete ordered field and covers
the following ground.

– polynomial functions on the real numbers
– limits of sequences
– continuity of functions
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– differentiation
– limits of function values
– uniform convergence of limits of functions
– series and power series
– special functions: exponential function, natural logarithm, sine and cosine.

Broadly similar subject matter has been formalised before in HOL Light by
John Harrison [7] and by Hanne Gottliebsen [4] in PVS. There are also devel-
opments of analysis in Mizar and Coq and several other systems. In addition to
proofs of theorems, the ProofPower treatment includes automated proof proce-
dures for continuity-checking and calculating derivatives (as do the treatments
of Harrison and Gottliebsen).

While I make no claim for novelty in the material covered, I would claim that
the specifications are readable and natural and that the material that is covered
is done comprehensively. For example, here are the definitions of the sin and cos
functions and of Archimedes’ constant, π.

Sin Cos : R → R

Sin(NR 0 ) = NR 0 ∧ Cos(NR 0 ) = NR 1
∧ (∀x• (Sin Deriv Cos x ) x ) ∧ (∀x• (Cos Deriv ∼(Sin x )) x )

ArchimedesConstant : R

NR 0 < ArchimedesConstant
∧ Sin(ArchimedesConstant) = NR 0
∧ (∀x• Sin x = NR 0
⇒ (∃m• x = NR m ∗ ArchimedesConstant)
∨ (∃m• x = ∼(NR m ∗ArchimedesConstant)))

declare alias("π", pArchimedesConstantq);

Here the notation (f Deriv c) x means that function f has derivative c at
x and the function NR is the injection of the natural numbers into the reals.
The alias declaration introduces the traditional name “π” as an alternative to
“ArchimedesConstant”.

The specifications of the trigonometric functions and of π clearly require non-
trivial consistency proofs. This comprises a development of the theory of power
series, including the general result on differentiating power series term-by-term
(which avoids the need for introducing integration at this stage). The elementary
properties of the exponential, logarithmic and trigonometric functions and π are
then developed “axiomatically” from the differential equations.

Following John Harrison, I make much use Carathéodory’s characterisation
of the derivative in terms of the existence of a continuous function satisfying
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certain conditions. As observed in [7], several notions of limit arise and it is
desirable to have common ways of dealing with them. Harrison’s approach is
via the general notion of convergence nets. I use the more homely device of
reducing the notions in question to sequential convergence. For example, it is
an easy consequence of the standard definition of continuity that a function f is
continuous at x iff. f maps any sequence converging to x to a sequence converging
to f(x). Using this fact, statements about continuity reduce to statements about
sequential convergence, and, by and large, this turns the ∀∃∀ quantifier structure
of the usual ε-δ arguments into simple universally quantified statements about
sequential convergence. Proponents of non-standard analysis both in education
and in theorem-proving sometimes advocate the simple quantifier structure of
the definition of continuity in non-standard analysis as an advantage. Using
sequential convergence achieves much the same effect in standard analysis. The
text books tend not to stress this method of working if they mention it at all,
probably because it fails to generalise to arbitrary topological spaces.

Moral 4: when you are using a theorem-prover, you do not need to adopt
methods for their pedagogical value: unlike a student, the prover cannot develop
bad habits, so you can freely use any method that works.

3.2 Group Theory

The case study on analysis deals with a single specific HOL type: the type R of
real numbers. The case study [2] on group theory puts the polymorphism in HOL
to work along much the same lines as the Z-set example presented in section 2
above.

The case study begins with a treatment of equivalence relations, equivalence
classes and the construction of quotient sets along the lines proposed by Larry
Paulson [10]. This material comprises a lemma library which provides templates
for working with equivalence relations, in particular, for defining functions on
quotient sets. This supports the proof of the first isomorphism theorem in group
theory, which is all about defining homomorphisms on quotient groups. It would
serve a similar purpose in any of the common algebraic concrete categories (rings,
modules over a ring, vector spaces over a field etc.) and in dealing with quotient
spaces in topology.

The group theory itself begins with a definition of the signature of a group
along similar lines to the signature for Z-sets in the example above. The poly-
morphic notion of a group is then defined to be the set of all structures with this
signature that satisfy the group laws.

Substructures and quotient structures in algebra are very important, so it
is vital to deal smoothly with subgroups and quotient groups. Taken verbatim,
the traditional explication of these concepts in set theory leads to significant
notational and semantic difficulties. The problem is this: in doing the general
theory, an expression like x.y denoting the product of two elements of a group
G actually contains three variables: the group elements ‘x’, ‘y’, and the multi-
plication operator ‘.’. Syntactic tricks allow one to preserve something like the
traditional infix notation for such expressions. But there is a semantic problem
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when one needs to deal with subgroups: according to the traditional account,
the ‘.’, in x.y will denote a different set-theoretic function in a subgroup H from
what it does in the containing group G. Coercing operations from subgroup to
containing group or from one subgroup to another becomes an excessive burden.

My solution to this problem is to formulate all definitions relative to some
carrier set of interest in such a way that the behaviour of operators or properties
outside the carrier set is irrelevant. I advocate this approach in general for dealing
with algebraic structures. The apparent extra complication actually achieves an
economy, because when one is working with substructures, the operators and
properties can all be those of the containing structure: you have no need to
restrict them to the substructures or to worry about coercing the operations of
one substructure into the operations of another.

As an example, I define the operations on a group G to be total functions on
the universe of the type of its elements whose behaviour outside the carrier set of
G is immaterial. I require the operations on a subgroup H of G to be represented
by the same total functions. This involves no loss of generality and removes a
great deal of complexity in both specifications and proofs. It may be objected
that this approach results in the wrong notion of equality between groups (since
the same group can be represented using two different ways of totalising the
operations). However, in normal algebraic practice, one almost never needs to
assert equality between two groups that are not known to be subgroups of some
other group, and in that case equality has the usual meaning.

Using this approach, the three isomorphism theorems and the Cayley rep-
resentation theorem are very straightforward to prove once one has derived the
usual laws of equational reasoning in a group from the defining properties (and
developed proof procedures to automate the application of these laws). Once the
formalisation details were settled, it was routine and quick to prove these results
(which constitute the first chapter of any good text on group theory).

In fact, I feel that the treatment in this case study demonstrates that poly-
morphic simple type theory is actually more natural than set theory for carrying
out much of mathematics. For example, one can give the following very conve-
nient definition of the symmetric group on a set X (i.e., the group comprising
all permutations of the set).

SymGroup : ′a SET → (′a → ′a) GROUP

∀ X • SymGroup X =(
{f | OneOne f ∧ Onto f ∧ ∀y• ¬y ∈ X ⇒ f y = y}, (∗ Carrier set ∗)
(λf g•λx•f (g x )), (∗ multiplication ∗)
(λx• x ), (∗ unit element ∗)
Inverse (∗ inverse ∗)

)

Here the quadruple giving the structure has components as indicated by the
comments and Inverse is the function that maps a 1-1 onto function to its inverse
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function. This definition has numerous advantages over the untyped set-theoretic
version. In particular if X is a subset of Y , then the symmetric group on X is
a subgroup of the symmetric group of Y as it stands, whereas this is only true
“up to an isomorphism” in the standard set-theoretic account. Moreover, we can
think of SymGroup {x | x = x} as denoting the group of all permutations of
the universe, sitting naturally inside the monoid of all self-mappings of the uni-
verse. This works very pleasantly: as the Cayley representation theorem states,
any group is isomorphic to a group of permutations and so composition of 1-1
onto functions provides a universal prototype for the multiplication in a group,
a fact which cannot even be stated properly in first-order set theory.

Moral 5: Pace Quine [11, article on “Mathematosis”], in a typed theory it
is counter-productive to define the concept of a group so that the carrier set can
be recovered from the set that represents the multiplication.

3.3 Topology

The case study in topology is perhaps the most advanced of the three in educa-
tional terms, but it really only prvoides the beginnings of the subjects it deals
with. The subjects covered are:

– abstract topology: topologies; construction of new topologies from old as
(binary) product spaces or subspaces; continuity, Hausdorff spaces; connect-
edness; compactness.

– metric spaces: the definitions of metrics and product metrics and the re-
sult that product metrics induce product topologies; existence of Lebesgue
numbers for open coverings of compact metric spaces.

– topology of the line and the plane: characterisation of connected subspaces of
the line; continuity of addition and multiplication as functions on the plane.

– elementary homotopy theory: definitions of path-connectedness, the homo-
topy relation and the fundamental groupoid; proof that the homotopy re-
lation is an equivalence relation and that the fundamental groupoid is a
groupoid8

The definition of a topology is the usual one: a topology is a family of sets
(referred to as open sets) that is closed under arbitrary unions and binary inter-
sections.

Topology : ′a SET SET SET

Topology =
{τ | (∀V • V ⊆ τ ⇒

⋃
V ∈ τ) ∧ (∀A B•A ∈ τ ∧ B ∈ τ ⇒ A ∩ B ∈ τ)}

8 In fact, at the time of writing, all the theorems needed to justify the construction
of the fundamental groupoid as a quotient of the path space have been proved, but
these need to be brought in line with the theory of equivalence relations in [2] to
complete the construction.
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Since the carrier set of a topological space can readily be recovered as the
union of all its open sets, the complications with signatures that arise in algebra
do not arise.

The central notion of continuity takes the following form (defining an op-
erator Continuous which is written postfix). Here σ and τ are intended to be
topologies (and will be in the statements of all theorems that use this definition).
As in the group theory case study, we work throughout with ordinary HOL to-
tal functions, taking care to make the definitions of concepts such as continuity
ignore the behaviour of the functions outside some carrier set of interest, in
this case the Space of the topologies, defined as the union of their open sets as
discussed above.

$Continuous : (′a SET SET × ′b SET SET ) → (′a → ′b) SET

∀σ τ• (σ, τ) Continuous =
{f
| (∀x• x ∈ Space σ ⇒ f x ∈ Space τ)
∧ (∀A• A ∈ τ ⇒ {x | x ∈ Space σ ∧ f x ∈ A} ∈ σ)}

Again, as in the group theory, this approach has the merit of localising com-
plexity in the definitions which would otherwise spread to other definitions and
to the statements and proofs of theorems. If you try to mimic the representation
of functions in set theory, functions have constantly to be restricted to subspaces,
whereas this is unnecessary with the total function approach.

Space does not allow an extended discussion of the methods of proof in this
case study. However, there is one open problem that is worth mentioning. There
is a constant need in topological reasoning to prove that various functions are
continuous. In algebraic topology, functions are often constructed by patching
together functions defined on subspaces of the domain. For example, in proving
that addition of paths in the fundamental groupoid is associative, the following
result is needed, where OpenR denotes the usual topology on the real line.

∀k• (∀t• k t =
if t ≤ 1/4 then NR 2∗t
else if t ≤ 1/2 then t + 1/4
else (1/2 )∗t + 1/2 )

⇒ k ∈ (OpenR, OpenR) Continuous

The proofs of such facts are very mechanical and reminiscent of what the au-
tomated proof procedures for continuity of algebraic combinations of continuous
functions in the analysis case study do. However, there are two slight complica-
tions: (i), you need to apply a simple “patching” lemma to justify the continuity
of a function defined by cases and (ii), in the general case some small amount
of intelligence is needed to pick the right topologies on intermediate sets. For
example, to show that a composite f ◦g is continuous with respect to a topology
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σ on the domain of g and a topology τ on the range of f , you need to pick some
topology on the range of g that makes both f and g continuous. An algorithm
to automate these proofs would be a great boon, but I do not yet have one. Joe
Hurd’s work on predicate subtyping [9] looks like a promising source of ideas.

4 Will it scale?

An important question to ask of any case study in applying formal methods and
theorem-proving in engineering applications is “will the proposed technique scale
to real-life applications?”. I believe the same applies to mathematical applica-
tions as well. Simpson [12] identifies what is probably one of the most important
problems for more advanced pure mathematics: much use is made of structure
which share a combination of algebraic and topological or geometrical proper-
ties. For example, the rich and important theory of Lie groups is an abstraction
of the algebraic and geometric theory of groups of real or complex matrices. A
Lie group is simultaneously a group and a smooth manifold, a smooth manifold
being something that has a particular topological structure combined with a
differential structure allowing analytic methods to be used. The issue then is,
how to deal rigorously with the kind of reasoning that is endemic in mathemat-
ics where one just says something like ”let G be a Lie group” and then freely
appeals to the notations and theory of whichever of the underlying structures
provides the facts one needs.

I believe the approach to modelling mathematical structures exemplified by
the case study on groups and also by the Z-set example in section 2 above will
scale, subject to some slight modifications to the details, ideally supported by
some extensions to the syntax offered by the parser (see [2] for more details on
the latter).

The main change to the approach addresses the issue highlighted by Simpson
in his example of Lie groups. To get things to scale, I would propose using
labelled products rather than unlabelled products for the signatures of algebraic
structures9. To see how this would work, consider the notion of a field: Given
our treatment of groups, a field can conveniently be thought of as two group
structures on elements of the same type obeying certain laws10.

Using labelled products, the signature for groups would be given by the
following ProofPower-HOL labelled product type definition which defines a new
polymorphic labelled product type ’a GROUP with four components with the
indicated labels and types. The component labels become the names of the
functions that project the product type onto its component types.

9 Added 2nd January 2006: the group theory case study has been reworked to use
labelled products, and the results are promising.

10 This does not work in the traditional set-theoretic account, since the multiplicative
structure of a field does not comprise a group unless it is restricted to the non-zero
elements.
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HOL Labelled Product

GROUP
CarG : ′a SET ;
TimesG : ′a → ′a → ′a;
UnitG : ′a;
InverseG : ′a → ′a

Now we can define the signature for a field as a labelled product. Note that
in both these labelled product definitions, in the interests of scalability to com-
plex situations, we are decorating the component labels with subscripts to avoid
clashes with other algebraic structures, e.g., rings would also have an additive
group.
HOL Labelled Product

FIELD
AdditiveGroupF : ′a GROUP ;
MultiplicativeGroupF : ′a GROUP

This captures the desired semantics, but creates some syntactic problems.
For example, the expression 1 + x.y in a field K would have to be written.

TimesG (AdditiveGroupF K )
(UnitG(MultiplicativeGroupF K ) )
(TimesG(MultiplicativeGroupF K ) x y)

This syntactic problem can be overcome either by explicitly defining accessor
functions as we did for Z-sets and groups, or by extending the parser and type-
checker to allow aliases for non-constant expressions, or perhaps, specifically for
composite functions, so one could define + and . to be aliases allowing something
like 1 + Kx.Ky to be written for the above term.

Simpson proposes a solution in dependent type theory to this problem in
which mathematical structures are represented by functions from strings to com-
ponent structures. This is not available to us in HOL, but I can think of no
examples in mathematics where the statically typed approach sketched above
would be semantically insufficient.

5 Conclusions

I have given an overview of three case studies in the use of the ProofPower-HOL
theorem-prover on pure mathematical problem domains. This has highlighted
some problems in giving a smooth formalisation. Solutions or partial solutions
to these problems have been proposed. In particular, I have outlined a method for
scaling the approach to the compound mathematical structures that predominate
in modern century mathematics.
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A THE THEORY Z set

A.1 Parents

Z

A.2 Constants

$∗∗ ′a → Z → ′a SET × (Z → ′a → ′a) → ′a
Car ′a SET × (Z → ′a → ′a) → ′a SET
Z Set (′a SET × (Z → ′a → ′a)) SET
Orbit ′a SET × (Z → ′a → ′a) → ′a → ′a SET

A.3 Type Abbreviations

′a Z SET ′a SET × (Z → ′a → ′a)

A.4 Fixity

Infix 310 : ∗∗

A.5 Definitions

Car
∗∗ ` ∀ (set , action)

• Car (set , action) = set
∧ (∀ x i• (x ∗∗ i) (set , action) = action i x )

Z Set ` ∀ X
• X ∈ Z Set

⇔ (∀ x i• x ∈ Car X ⇒ (x ∗∗ i) X ∈ Car X )
∧ (∀ x i j
• x ∈ Car X

⇒ (x ∗∗ (i + j )) X = ((x ∗∗ i) X ∗∗ j ) X )
∧ (∀ x• x ∈ Car X ⇒ (x ∗∗ NZ 0 ) X = x )

Orbit ` ∀ X x• Orbit X x = {y |∃ i• y = (x ∗∗ i) X }
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A.6 Theorems

Z set minus thm
` ∀ X
• X ∈ Z Set

⇒ (∀ x i• x ∈ Car X ⇒ ((x ∗∗ i) X ∗∗ ∼ i) X = x )
Z set cancel thm

` ∀ X x y i
• X ∈ Z Set ∧ x ∈ Car X ∧ y ∈ Car X

⇒ ((x ∗∗ i) X = (y ∗∗ i) X ⇔ x = y)
orbit refl thm

` ∀ X • X ∈ Z Set ⇒ (∀ x• x ∈ Car X ⇒ x ∈ Orbit X x )
orbit disjoint thm

` ∀ X
• X ∈ Z Set

⇒ (∀ x y
• x ∈ Car X ∧ y ∈ Car X

⇒ Orbit X x ∩ Orbit X y = {}
∨ Orbit X x = Orbit X y)
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