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1 Introduction

1.1 Background

Tools and methods for the specification and design of computer systems are increasing in sophistica-
tion. Much current research and development is attempting to exploit this sophistication to improve
the effectiveness of systems development practices. It is becoming feasible to offer much higher as-
surance than hitherto that systems meet critical requirements, e.g. concerning safety or security.
Standards such as [7] are evolving to demand the use of formal specification and verification of de-
signs (and, one day, perhaps implementations). Thus, tools giving cost-effective means for providing
formal proofs of critical requirements are of increasing importance. ICL Secure Systems, as part of
its role as lead partner in the DTI-sponsored FST project, is attempting to improve the technology
base for formal verification.

The main enabling technology with which ICL is concerned is the HOL theorem proving system,
[1, 8]. A public domain version of HOL has been distributed by Cambridge University and has been
used with some success both in academia and in industry. ICL plans to offer an industrial quality
implementation of HOL and to use it to provide proof support for other formalisms such as Z. An
experimental Z proof tool based on a prototype reimplementation of HOL has recently been produced
for use by ICL and its collaborators.

This paper gives a simplified case study, in Z, illustrating some of the techniques being used. The
case study is concerned with two main themes. The first theme is concerned with the integrity of
the proof tool, the second is concerned with the consistency of the specifications about which we
wish to reason and with the extension mechanisms which the logics used should support. The work
on integrity is fairly recent work carried out within the FST project. The treatment of consistency
is based on much earlier work of ICL on using HOL to reason about Z specifications which was
first described in an ICL internal document, [6] and which resulted in the inclusion of a new facility
supporting loose specifications in the Cambridge HOL system.

1.2 Integrity

One issue in industrialising HOL which is felt to be of particular importance is its integrity, i.e.,
the level of confidence that users and their customers can have in the correctness of the proof tool
itself. While research continues to ameliorate the problem, the production of fully formal proofs is a
difficult and time-consuming activity. The expense of producing such proofs is not justifiable unless
one can be confident that they are correct. Commercial proofs involve millions of primitive inference
steps (mostly automatically performed, one hopes!); human checking of each step is inconceivable.

The basic approach to the integrity problem is to specify formally the logic used in the tool and
to give an abstract specification of the critical requirements for the tool. The proof tools we are
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concerned with follow the LCF paradigm, described in [2], which encapsulates all critical code inside
an abstract data type. In our approach the implementation of this critical kernel is based on a formal
design which, we assert, meets the critical requirements. This assertion may be rigorously formalised
and so is susceptible both to informal analysis and to fully formal proof. Finding the proofs is eased
by constructing the design to facilitate a top-down decomposition of the critical requirements into
requirements on its subsystems. The main goal of all of this is to minimise the amount of proof
work which must be carried out. The critical requirements deliberately fall short of a fully formal
functional specification (the design is much closer to that), since what we wish to prove is not that
the tool does everything the user wants correctly, but that it cannot be used to prove ‘false’. A proof
of full functional correctness would be both unnecessary and unfeasible. We believe that this method
of reducing the complexity of a high-assurance problem by concentrating effort on what is critical is
a very important part of making formal verification possible in real situations.

An important aspect of the LCF paradigm is that, once we have the kernel of the proof tool,
development of facilities to make the tool effective to use can be produced freely without prejudicing
the integrity of the system. So, for example, an automatic proof procedure may be transferred from
a research and development environment into actual industrial use without requiring more extensive
verification of its correctness than would be required for any other software engineering tool —
infelicitous behaviour of the proof procedure cannot compromise the integrity of the system. The
construction of these higher level facilities is outside the scope of this paper.

1.3 Consistency of Specifications

We wish to use the proof tool to reason about specifications written in languages such as Z. Such
specification languages include features which at first sight may compromise the integrity of the proof
tool. In this paper we describe a practical solution to one such problem which arises with Z.

Informal proof work with Z usually treats the specification as a collection of axioms. This approach
has the inherent disadvantage that one may prove anything on the basis of an inconsistent set of
axioms. It is therefore necessary to relate proof to specification in such a way that an incorrect
specification does not give rise to this problem.

One reason for allowing what are apparently arbitrary axiomatic extensions in Z, is to allow the user
to make loose specifications. A variable can be defined by stating a property which does not have to
define the variable uniquely. This feature helps us to avoid cluttering specifications with irrelevant
details and to make our specifications more general.

The underlying logical mechanism we propose to solve this problem for the axiomatic and generic
boxes in Z is a rule of conservative extension allowing new objects to be defined provided an ap-
propriate consistency proposition has been proved. The apparent disadvantage with this is that we
must interleave our specification activity with proof work to supply the necessary consistency propo-
sitions. Fortunately some fairly straightforward automated proof techniques allows us to defer the
proof obligations (essentially by approximating a loose specification by one which can automatically
be proved consistent and which is equivalent to the original one if it can be proved consistent).

In fact, to ease this problem further, ICL have developed machinery for HOL which can automatically
discharge the consistency proof obligations for quite a useful class of specification idioms. Work is
in progress on extending this machinery to the prototype Z proof tool.

1.4 Overview of the Case Study

The bulk of the sequel comprises a formal specification in Z of the following:

1. the language and deductive system of a simple logic (section 2);

2. an abstract model of a proof tool for the logic and a statement of its critical properties (section
3);

2



3. a design for the kernel of a proof tool for the logic, believed to satisfy the critical properties
(section 4).

Section 5.1 discusses how one might informally or formally verify the “belief” mentioned in item 3
above; Sections 5.2 and 5.3 consider how such a kernel might be implemented and discuss its use to
support specification activities.

The Z specification is presented in definition-before-use order. Those who prefer to read top-down
are invited to read section 2.1 first, to set the scene, and then sections 3 and 4, in that order, skipping
back to section 2 when necessary. An index to the specification may be found at the end of the paper.

Our use of the Z notation is intended to follow [5]. The forms of Z paragraph such as free type
definitions which do not come in boxes are high-lighted by a bar in the left margin. Defining
occurrences of global variables are shown in bold type.

The source text of this document is in fact a script from which the Z paragraphs can be extracted for
machine processing. The type-correctness of the specification has been checked using the prototype
Z proof support tool referred to in section 1.1 above. No formal proof work has been carried out on
the material in this document, however proof work has begun on the HOL specification of the proof
tool for HOL on which this paper has been based.

2 The Logic

The logic used in our example will be classical first order logic. The treatment is fairly close to that
which may be found in [3], the main departure being that we envisage variable names and the like
being character strings rather than single letters with superscripts and subscripts. Also since we are
interested in tools which help a user to build particular theories of interest, later on we are very
explicit about mechanisms with which axioms are introduced.

2.1 Language

Names The language with which we shall work contains names whose structure we do not wish
to specify here. In an implementation these might be character strings. For the specification, we
introduce the set of names as a given set.
Z

[name]

Terms The terms of our language are variables or are formed from simpler terms by function
application. It is technically convenient to treat constants as functions with no arguments.
Z

term ::= var 〈〈 name 〉〉
| app 〈〈 name × seq term 〉〉

Formulae A formula is either an application of an atomic predicate to a list of formulae or is
formed from other formulae via negation, implication or universal quantification.
Z

form ::= prd 〈〈 name × seq term 〉〉
| neg 〈〈 form 〉〉
| imp 〈〈 form × form 〉〉
| all 〈〈 name × form 〉〉
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Theories A theory is just a set of formulae. We will think of the theory as specifying the functions
and predicates which appear in it.
Z

theory == P form

Well-Formedness of Terms We will say that a formula is well-formed with respect to a theory if
all the functions and predicates it contains appear in the theory. Note that this is a rather different
use of terminology from [3], where the idea of a wff just corresponds to our representation of the
syntax as a free type.

If a function (or predicate) name appears in two places in a formula or a theory with differing
numbers of arguments we think of the different instances as being distinct functions (or predicates).
(We might expect a proof tool to protect the user from getting into this situation, lest it be confusing
in practice).

We use the following auxiliary definitions to define well-formedness:
Z

term funcs : term → F (name × N);

form funcs : form → F (name × N);

form preds : form → F (name × N)

∀n:name; ts:seq term; p, q :form•
term funcs (var n) = {}

∧ term funcs (app(n, ts)) = {(n, # ts)} ∪ ⋃(ran (term funcs o ts))

∧
form funcs (prd(n, ts)) =

⋃
(ran (term funcs o ts))

∧ form funcs (neg p) = form funcs p

∧ form funcs (imp(p, q)) = form funcs p ∪ form funcs q

∧ form funcs (all(n, p)) = form funcs p

∧
form preds(prd(n, ts)) = {(n, # ts)}

∧ form preds (neg p) = form preds p

∧ form preds (imp(p, q)) = form preds p ∪ form preds q

∧ form preds (all(n, p)) = form preds p

Now we can define wff , the function which assigns to a theory the set of formulae which are well-
formed with respect to it.
Z

wff : theory → P form

∀thy :theory ; p:form•
p ∈ wff thy

⇔ ( form funcs p ⊆ ⋃
(form funcs(|thy |))

∧ form preds p ⊆ ⋃
(form preds(|thy |)))

2.2 Operations on Syntax

This section contains the definitions of certain operations on syntax which we shall need. The
operations are extraction of free variables, substitution of terms for variables and some derived
formula constructors. We define substitution in terms of a matching operation. This section contains
the definitions of these operations.
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Free Variables The functions which extract the free variables of terms and formulae are defined
as follows:
Z

term frees : term → F name;

form frees : form → F name

∀n:name; ts:seq term; p, q :form•
term frees (var n) = {n}

∧ term frees(app(n, ts)) =
⋃

(ran (term frees o ts))

∧
form frees(prd(n, ts)) =

⋃
(ran (term frees o ts))

∧ form frees (neg p) = form frees p

∧ form frees (imp(p, q)) = form frees p ∪ form frees q

∧ form frees (all(n, p)) = form frees p \ {n}

Matching We will need to define the notion of substituting a term for a variable in a formula. This
is an idea which is frequently defined vaguely or incorrectly and so it is worth specifying formally.
To do this in a reasonably abstract way, we first of all define a notion of matching. The definition is
quite technical and readers are invited to skip this section, if they wish.

We wish to define a partial function form match. Given two formulae, p1 and p2 , say, such that p2

is a substitution instance of p1 under some assignment, match, of terms to the free variables of p1 ,
form match should return match. Here we wish to allow renaming of bound variables in order to
avoid variable capture problems. So for example, under the assignment which sends y to x + 1 , we
wish ∀x•x = y to match ∀x ′•x ′ = x + 1 (but not ∀x•x = x + 1 ).

First of all we define matching for terms and sequences of terms. It turns out that matching is easiest
to specify if we introduce an auxiliary argument which records the correspondence between bound
variables in the two terms.
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Z

term match : (term × term × (name 7 7→ term)) 7→ (name 7 7→ term);

seq term match :(seq term × seq term × (name 7 7→ term)) 7→ (name 7 7→ term)

(∀t1 , t2 : term; env , match:name 7 7→ term•
(t1 , t2 , env) 7→ match ∈ term match ⇔

(∃n:name•t1 = var n

∧ (env n = t2 ∨ n 6∈ dom env)

∧ match = {n 7→ t2})

∨ (∃n:name; ts1 , ts2 :seq term•t1 = app(n, ts1 ) ∧ t2 = app(n, ts2 )

∧ (ts1 , ts2 , env) 7→ match ∈ seq term match))

∧
(∀ts1 , ts2 :seq term; env , match:name 7 7→ term•

(ts1 , ts2 , env) 7→ match ∈ seq term match ⇔
dom ts1 = dom ts2

∧ (∃matches : seq(name 7 7→ term)•
∀i : dom ts1•

(ts1 i , ts2 i , env) 7→ matches i ∈ term match

∧ disjoint matches ∧ match =
⋃

(ran matches)))

form match is now defined as follows:
Z

form match : (form × form × (name 7 7→ term)) 7→ (name 7 7→ term)

∀p1 , p2 : form; env , match:name 7 7→ term•
(p1 , p2 , env) 7→ match ∈ form match

⇔
(∃n:name; ts1 , ts2 :seq term; matches : seq (name 7 7→ term)•

p1 = prd(n, ts1 ) ∧ p2 = prd(n, ts2 )

∧ (ts1 , ts2 , env) 7→ match ∈ seq term match)

∨ (∃q1 , q2 :form•
p1 = neg q1 ∧ p2 = neg q2

∧ (q1 , q2 , env) 7→ match ∈ form match)

∨ (∃q1 , r1 , q2 , r2 :form; matchq , matchr :name 7 7→ term•
p1 = imp(q1 , r1 ) ∧ p2 = imp(q2 , r2 )

∧ (q1 , q2 , env) 7→ matchq ∈ form match

∧ (r1 , r2 , env) 7→ matchr ∈ form match

∧ disjoint〈matchq , matchr〉
∧ match = matchq ∪ matchr)

∨ (∃n1 , n2 :name; q1 , q2 :form•
p1 = all(n1 , q1 ) ∧ p2 = all(n2 , q2 )

∧ (q1 , q2 , env ⊕ {n1 7→ var n2}) 7→ match ∈ form match)

Substitution This is now easy to specify in terms of matching. Note that the fact that we make
it a total function implies that the given set name must be infinite (so that the supply of names for

6



use in renaming bound variables is never exhausted).
Z

subst : (name 7 7→ term) × form → form

∀subs: name 7 7→ term; p:form•form match(p, subst(subs, p), ∅) = subs

Derived Formula Constructors To define our rule of conservative extension, we require two
derived formula constructors (‘derived’ as opposed to the ‘primitive’ constructors, prd , neg , imp and
all).
Z

exists : (name × form) → form

∀n:name; p:form•exists(n, p) = neg(all(n, neg p))

We also need a function to form the universal quantification of a formula over a list of variables:
Z

list all : seq name × form → form

∀p:form; n:name; ns: seq name•
list all(〈〉, p) = p

∧ list all(〈n〉 a ns, p) = all(n, list all(ns, p))

2.3 Inference

The two inference rules are exactly as in [3]. They are the rule of modus ponens, and the rule of
generalisation. We formalise these and the axioms of first order logic in this section and also define
the notion of derivability.

Modus Ponens This rule says that from p⇒q and p we may infer q :
Z

mp : (form × form) 7→ form

dom mp = {p, q :form|true •(imp(p, q), p)}
∧ (∀p, q :form•mp(imp(p, q), p) = q)

Generalisation This rule says that from p we may infer ∀x•p for any variable x .
Z

gen : (name × form) → form

∀n:name; p:form•gen(n, p) = all(n, p)

Logical Axioms We also need the logical axioms for first order logic with equality1 . See [3] for
a description of these. Since their formalisation is not particularly illuminating we omit the details
here.

1 Building in the equality axioms makes it easier to pretend that the proof tool we are presenting would be of practical
use, since we do not supply a mechanism by which the user could introduce an infinite set of axioms. In a proof system
such as HOL, polymorphism and the ability to define higher order functions allow most, if not all, theories of practical
interest to be finitely axiomatised and the introduction of infinite axiom schemes is not required.
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Z

logical axioms : P form

.. ..

Direct Derivability We now wish to say formally how the inference rules and the logical axioms
are used to construct the consequences of a set of formulae. This notion is defined using the following
idea of a direct consequence.
Z

direct consequences : P form → P form

∀hyps:P form; p:form•p ∈ direct consequences hyps ⇔
p ∈ logical axioms

∨ p ∈ hyps

∨ (∃q , r :hyps•p = mp(q , r))

∨ (∃n:name; q : hyps•p = gen(n, q))

Derivability The consequences of a set, hyps say, of formulae comprise the smallest set containing
hyps which is closed under taking direct consequences.
Z

consequences : P form → P form

∀hyps:P form•
consequences hyps =
⋂{ps : P form| hyps ⊆ ps ∧ direct consequences ps ⊆ ps}

We shall often use the term theorem to describe a formula which is a consequence of a particular
theory under discussion.

2.4 Extending Theories

In this section we define two mechanisms for extending a theory. The first mechanism, called
new axiom, supports addition of an arbitrary formula as an axiom. The second mechanism, called
new specification, is parameterised by a formula of a particular form, which must be a theorem of
the theory we are extending. This theorem constitutes a proof of the consistency of an implicit
specification of a new function. Given such a theorem, new specification adds a defining axiom for
the new function which, in fact, constitutes a conservative extension of the theory.

Examples of definitions in actual use are very frequently conservative. For example, all of the
definitions in this document are intended to be conservative over the sort of axiom system one
imagines should be provided for Z (allowing Z to be viewed as a many-sorted variant of Zermelo set
theory).

2.4.1 Axiomatic Extension

An arbitrary formula may be introduced into a theory by the function new axiom:
Z

new axiom : theory → form → theory

∀thy :theory ; p:form•new axiom thy p = thy ∪ {p}
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We take the view that, in practice, the user will wish to work within a fixed set of axioms, and part
of the critical properties we identify for the kernel of the proof system asserts that axioms introduced
with new axiom are clearly distinguished from the axioms introduced by new specification.

2.4.2 Conservative Extension

Our conservative extension mechanism allows us to introduce a new function satisfying a specified
property. Assume, for example, that we were working in the theory of real numbers and that we
wished to define the ceiling functions. That is to say we wish to define a function, ceil , say, with one
parameter satisfying the property
Example

∀x•(ceil x ∈ Z ∧ ceil x ≥ x ∧ (∀m•(m < ceil x ∧ m ∈ Z) ⇒ m < x ))

To introduce such a function we must first demonstrate that the above definition is conservative (and
hence, a fortiori consistent). To do this we would first prove the theorem:
Example

∀x•∃ceil•(ceil ∈ Z ∧ ceil ≥ x ∧ (∀m•(m < ceil ∧ m ∈ Z) ⇒ m < x ))

It is fairly easy to see that the theoremhood, and hence the truth, of the above assertion implies that
for any element, x , of any model of the theory, there is an element, ceil , such that the above holds.
It follows that in any model we can find an interpretation for the desired new function symbol ceil
(provided the set theory in which we do the model theory has the axiom of choice). Note that the
argument relies on the fact that the assertion contains no free variables.

Thus, in essence, our rule says that given a theorem of the form:
Example

∀x1•∀x2• ... ∀xk•∃c•P

where the xi are distinct variables, we may introduce a new function, f say, of k arguments, with
the defining axiom
Example

∀x1•∀x2• ... ∀xk•P [f (x1 , x2 , ..., xk)/c]

where the notation in the square brackets denotes substitution.

Our principle of definition is then given by the following function, new specification, in which we
assume, for simplicity that the name of the new function is the same as the existentially quantified
variable in the theorem:
Z

new specification : theory → form 7→ theory

∀thy :theory• dom (new specification thy)

= { xs: seq name; c:name; p:wff thy

| form frees p ⊆ {c} ∪ ran xs

∧ xs ∈ N 7 7� name

∧ (c, #xs) 6∈ ⋃(form funcs(|thy |))
∧ list all(xs, exists(c, p)) ∈ consequences thy

• list all(xs, exists(c, p)) }
∧ (∀ xs: seq name; c:name; p:wff thy

| list all(xs, exists(c, p)) ∈ dom (new specification thy)

• new specification thy (list all(xs, exists(c, p)))

= thy ∪ {subst({c 7→ app(c, var o xs)}, p)})
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3 Critical Properties of the Proof Tool

We envisage a tool which assists the user in building theories and proving theorems. We now give
a rather abstract model of such a tool. It is intended to make visible only those features which
are necessary to state the critical requirements on such a tool. For simplicity, we assume that the
tool works with a single theory. Extending the present specification to cater for a tool managing a
collection of named theories is straightforward.

States The state of the proof tool is a triple, (thy , defs, thms) say. thy gives the set of non-logical
axioms which have been introduced using one of the two extension mechanisms. defs gives the subset
of thy comprising the axioms introduced using new specification. thms records the theorems which
have been proved by the user. The following defines the allowable states of the abstract proof tool,
which we sometimes refer to as ‘abstract states’:
Z

STATE

thy : theory ;

defs : F form;

thms : F form

defs ⊆ thy ∧ thms ⊆ wff thy

The Kernel Let us say that a ‘kernel’ is a transition function equipped with an interpretation
function allowing us to view its state space as an abstract state. We formalise this property by the
following definition (which is generic in the state space, ST , inputs, IP , and outputs, OP , of the
transition function):
Z

KERNEL[ST , IP ,OP ]

tr f : (IP × ST ) → (OP × ST );

int : ST → STATE

We may now formulate two critical properties which we would like the proof system to have.

Critical Property 1 The first critical property is intended to ensure that the tool contains a
correct implementation of the rules of inference and to place some constraints on the mechanisms
which modify the theory (e.g. it would prevent an operation which deleted an arbitrary axiom). It
says that states in which all the alleged theorems are indeed consequences of the axioms are mapped
to states with the same property:
Z

[ST , IP ,OP ]

derivability preserving : P KERNEL[ST , IP , OP ]

∀ ker :KERNEL[ST , IP , OP ]•
ker ∈ derivability preserving

⇔ (∀st1 , st2 : ST ; ip: IP ; op:OP | (op, st2 ) = ker .tr f (ip, st1 )•
(ker .int st1 ).thms ⊆ consequences((ker .int st1 ).thy)

⇒ (ker .int st2 ).thms ⊆ consequences((ker .int st2 ).thy))
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Critical Property 2 The second critical property demands that the tool makes a proper distinc-
tion between conservative and axiomatic extensions. It asks that every transition of the tool which
changes the definitions component of the abstract state does so via new specification. For the want
of a better word, we use the term standard for this property.
Z

[ST , IP ,OP ]

standard : P KERNEL[ST , IP , OP ]

∀ ker :KERNEL[ST , IP , OP ]•
ker ∈ standard

⇔ (∀st1 , st2 : ST ; ip: IP ; op:OP | (op, st2 ) = ker .tr f (ip, st1 )•
(ker .int st2 ).defs 6= (ker .int st1 ).defs

⇒ (∃p:form•
(ker .int st2 ).thy = new specification ((ker .int st1 ).thy) p

∧ (ker .int st2 ).defs

= (ker .int st1 ).defs ∪ ((ker .int st2 ).thy \ (ker .int st1 ).thy)))

4 Design of the Kernel

In this section we give the design of the critical kernel for a very simple proof tool, which, we believe,
satisfies the specification we have given. The design deliberately underspecifies certain aspects, and
in section 5.2 below we consider how a simple program could be implemented which realises it and
also discuss some shortcomings arising from our simplification of the actual work done for HOL.

States In the design we use finite functions over names to represent the sets which appear in
the abstract state. We also decide to hold the ‘conservative axioms’ and the ‘axiomatic axioms’
separately.

Thus, the state in the design will range over the following set:
Z

C STATE

axs, defs, thms : name 7 7→ form

ran thms ⊆ wff (ran axs ∪ ran defs)

(Here C and, later, c stand for ‘concrete’.)

Interpretation Function This is very straightforward:
Z

int c state : C STATE → STATE

∀c st :C STATE•
(int c state c st).thy = ran (c st .axs) ∪ ran (c st .defs)

∧ (int c state c st).defs = ran (c st .defs)

∧ (int c state c st).thms = ran (c st .thms)
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Inputs and Outputs Since our specification is defined purely in terms of the state of the system,
we do not wish to specify the inputs or outputs in detail. We represent them both as given sets:
Z

[C IP, C OP]

Inference rules The function infer maps inputs to state transitions which correspond to various
forms of proof activity. None of the transitions computed by infer change the axioms and definitions
components of the state. To allow infer to reject input which is invalid, it may also fail to change
the theorems component. Otherwise it adds a new entry in the theorems component associating a
formula with some name. The formula is either a logical axiom, or an axiom or definition of the
theory, or is obtained by applying modus ponens or generalisation to some arguments in which any
formulae occur in the theorems component.
Z

infer : C IP → C STATE → C STATE

∀ip:C IP ; st1 , st2 : C STATE | st2 = infer ip st1•
st2 .axs = st1 .axs

∧ st2 .defs = st1 .defs

∧ ( st2 .thms = st1 .thms

∨ (∃p:logical axioms; pn:name•
pn 6∈ dom(st1 .thms) ∧ st2 .thms = st1 .thms ∪ {pn 7→ p})

∨ (∃p:ran(st1 .axs) ∪ ran(st1 .defs); pn:name•
pn 6∈ dom(st1 .thms) ∧ st2 .thms = st1 .thms ∪ {pn 7→ p})

∨ (∃p, q :form; rn:name | {p, q} ⊆ ran(st1 .thms)•
rn 6∈ dom(st1 .thms) ∧ st2 .thms = st1 .thms ∪ {rn 7→ mp(p, q)})

∨ (∃p:form; n, qn:name | p ∈ ran(st1 .thms)•
qn 6∈ dom(st1 .thms) ∧ st2 .thms = st1 .thms ∪ {qn 7→ gen(n, p)}))

Note that there is a close correspondence between the definition of infer and the definition of
direct consequence in section 2.3 above.

Extending Theories The function extend maps inputs to state transitions which introduce new
axioms or definitions. Such transitions do not change the theorems component of the state. One
or other of new axiom or new specification is used to compute an updated axioms or definitions
component. Note that the defining predicate for C STATE ensures that the formula passed to
new specification is indeed a consequence of the axioms and definitions of the theory.
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Z

extend : C IP → C STATE → C STATE

∀ip:C IP ; st1 , st2 : C STATE | st2 = extend ip st1•
st2 .thms = st1 .thms

∧ ( (∃p:form•
ran(st2 .axs) = new axiom (ran(st1 .axs) ∪ ran(st1 .defs)) p

\ ran(st1 .defs)

∧ st2 .defs = st1 .defs)

∨ (∃p:ran(st1 .thms)•
ran(st2 .defs) = new specification(ran(st1 .axs) ∪ ran(st1 .defs)) p

\ ran(st1 .axs)

∧ st2 .axs = st1 .axs))

Transition Function This is very straightforward:
Z

c trans fun : C IP × C STATE → C OP × C STATE

∀ip:C IP ; op:C OP ; st1 , st2 : C STATE | (op, st2 ) = c trans fun (ip, st1 )•
st2 = infer ip st1 ∨ st2 = extend ip st1

Kernel Construction The design of our proof tool is completed by combining the transition and
interpretation functions to give an instance of the type KERNEL:
Z

c ker : KERNEL[C STATE , C IP , C OP ]

c ker .tr f = c trans fun ∧ c ker .int = int c state

5 Discussion

5.1 Verification Issues

Now we have given a design as an instance of the type KERNEL, we can state the critical requirements
for it formally. Thus, the overall correctness proposition for the design is the conjecture:

1 . ?` c ker ∈ derivability preserving ∩ standard

We would like to reduce this to conjectures about the inference and extension subsystems. The proof
of this reduction of the problem would precede along the following lines:

We would expand conjecture 1 using the definitions of derivability preserving , standard , c ker ,
int c state and trans fun and then observe that inference and new axiom transitions must be stan-
dard (because they do not change the definitions) and that extension transitions preserve derivability
(because they do not change the theorems component and do not remove any axioms or definitions).
Thus the conjecture reduces to the following conjectures, which, in effect, assert that inference tran-
sitions preserve derivability and that new specification transitions are standard.
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2 . ?` ∀ip:C IP ; st1 , st2 : C STATE | st2 = infer ip st1•
ran(st1 .thms) ⊆ consequences(ran(st1 .axs) ∪ ran(st1 .defs))

⇒ ran(st2 .thms) ⊆ consequences(ran(st2 .axs) ∪ ran(st2 .defs))

3 . ?`∀ip:C IP ; st1 , st2 : C STATE | st2 = extend ip st1•
ran(st2 .defs) 6= ran(st2 .defs)

⇒ (∃p:form• ran(st2 .axs ∪ st2 .defs)

= new specification (ran(st1 .axs) ∪ ran(st1 .defs)) p

∧ ran(st2 .defs)

= ran(st1 .defs) ∪ (ran(st2 .axs ∪ st2 .defs)

\ (ran(st1 .axs) ∪ ran(st1 .defs))))

Thus, we have reduced the correctness proposition for the complete system to properties of its
subsystems taken separately. Continuing this decomposition process would lead fairly quickly to an
informal proof of correctness for the system in an example of this kind (probably after one or more
rounds of corrections to the design, and perhaps the specification, where the proof attempt revealed
flaws). Although the sketch given in the previous paragraph deliberately omits many details (e.g.
the justification of the definitions of infer and extend against the defining property of C STATE ),
a fully formal proof using a real-life proof development system such as HOL would be quite feasible.

5.2 Implementation Issues

The actual implementation of the system would follow the LCF paradigm. The kernel would be
implemented as an abstract data type in an interactive functional programming language such as
Standard ML (see [4]). Implementing the types and functions defined in sections 2.1 and 2.2 is very
straightforward in such a language. Assuming this to have been done, and also assuming a type
′a dict implementing string-indexed lookup tables for items of type ′a with operations empty , enter
etc., the abstract data type might start as follows:
Standard ML Example

abstype theorem = mk theorem of form

with local val c state:

{axs:form dict ref , defs:form dict ref , thms:form dict ref }
= {axs = ref empty , defs = ref empty , thms = ref empty};

in fun new axiom (n:string , p:form) : theorem = (

#axs c state := enter (n, p)(!(#axs c state));

mk theorem p

);

(∗ .... ∗)
end ;

end ;

The user interacts with the system using ML as a command language (usually referred to as the
metalanguage in this context). Thus from the point of view of our design the input to the system
would be the metalanguage commands, and the outputs might be taken as the values printed by the
ML system. Note that there is no explicit implementation of the functions infer and extend , which
were introduced in the design just to identify a decomposition of the kernel into subsystems. In a
fully formal treatment of the implementation, one would have to display an interpretation function
describing how the implementation realised the design

One very naive aspect of our design is that it stores the result of every inference in the theory. In
practice, the design should allow the inference rules to be coded as functions returning values of type
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theorem and theorems would only be saved when the user made an explicit request for the system to
do so. For this reason, it is arguable that the design does not really capture the “essence of LCF”. To
do this properly the design needs to model the metalanguage store in which the results of inferences
reside. Our actual work on HOL addresses this issue as well as others which arise in supporting the
features we wish for in a real system (e.g. management of a hierarchy of named theories allowing
deletion of theories, and of definitions and axioms within them).

5.3 Supporting Specification

In section 1.3, we mentioned that the conservative extension mechanism was intended to help in
treating specifications without prejudicing logical consistency. In this section we sketch how this
works in practice and how we arrange to defer the proof obligations until specification work is
completed.

The idea is to have (non-critical) code which does a certain amount of automatic proof while the
specification is loaded into the system to build the corresponding theory. In our example, one might
consider processing Z-like implicit, possibly loose, definitions of the form:
Example

c

P

where c is the name of a new function to be introduced and P is its desired defining property (in
which x1 , . . . , xk occur free, say). This would be handled by a procedure which automatically proved
the following trivial theorem:
Example

` ∀x1•...∀xk•∃c•((∀x1•...∀xk•∃c ′•P [c′/c]) ⇒ P)

Passing this to new specification gives the defining axiom:
Example

` ∀x1•...∀xk•∃c•((∀x1•...∀xk•∃c ′•P [c′/c]) ⇒ P [c(x1 , ... xk)/c])

where the second last c is the new function symbol rather than a variable. This defining axiom is
clearly equivalent to P [c(x1 , ...xk)/c] if we can prove the consistency proposition for the definition,
namely the conjecture:
Example

?`∀x1•...∀xk•∃c ′•P [c′/c]

Thus a specification may be used to construct a theory by means of conservative extensions each of
which introduces a defining axiom which is logically equivalent to the desired axiom provided the
corresponding consistency proposition is provable.

In fact, the ideas we have outlined would not be of much use in first order logic, in general. However
in Z or in a higher-order system like HOL, it becomes quite powerful. In many useful cases it is
possible to automate the proof of the consistency proposition. For example, definitions by recursion
over a free type or definitions of a set like the definition of wff in section 2.1 above may usefully be
handled in this way.

6 Conclusions

Work in progress within ICL to construct a high integrity proof tool is beginning to get a good grip
on the problem using methods which we have illustrated in this paper in a much-simplified example.
A key aspect of the approach is explicit specification of a formal object modelling the kernel of the
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system of which one can postulate formally the desired critical properties. A formal verification of the
design for the kernel against these critical properties seems feasible and work on this is in progress.
In the future, it may be possible to bridge the gap between the design and the implementation by
means of a formalisation of the implementation language semantics.

A major part of the problem of how specifications are handled in the proof tool has been solved
using the conservative extension mechanism which we have discussed. While this technique caters
well for implicit definitions of values, we do not yet have a usable, elegant and effective analogue for
implicitly defining types in typed systems such as Z or HOL. Moreover, Z has a facility for a user to
introduce an arbitrary predicate as a constraint. It is not yet clear how in practice one can handle
all of Z in a conservative way. Work on these topics is in progress.
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ERRATUM

I am grateful to Ceri Rees for pointing out an error in the definition of matching for sequences of
terms. The condition disjoint matches should not be imposed on the last line of the definition: the
condition that match is a function and that it is the union of the range of matches is sufficient. The
definition as it stands will, incorrectly, disallow matching of any free variable appearing more than
once in a term.
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