
HOL Constant Definition Done Right

Rob Arthan

Lemma 1 Ltd./ School of Electronic Engineering and Computer Science, Queen Mary,
University of London, UK

Abstract. This note gives a proposal for a simpler and more powerful
replacement for the mechanisms currently provided in the various HOL
implementations for defining new constants.

1 Introduction

The design of the HOL logic and of its definitional principles [7] evolved in the
late 80s and early 90s. Some form of this design has been implemented in HOL4
[8], HOL Light [3], HOL Zero [1], Isabelle/HOL [6] and ProofPower [2]. While the
definitional principles have stood the test of time in many practical applications,
we believe there is still some room for improvement. This note discusses issues
with the mechanisms for introducing new constants and proposes a new and
more general mechanism that addresses these issues.

2 The Problem

The original Classic HOL provided a mechanism for defining new constants
known as new definition. This worked as follows: given a possibly empty list
of variables x1, . . . , xn and a term t whose free variables are contained in the xi,
it introduced a new constant1 c of the appropriate type and the axiom:

` ∀x1 . . . xn· c x1 . . . xn = t.

This simple mechanism is remarkably powerful but suffered from two significant
shortcomings, both pointed out by Roger Jones2:

RJ1 The mechanism does not support implicit definitions. As one example, it
is pleasant to define the destructors of a data type as the left inverses of the
constructors. Thus one wants to define Pre in terms of Suc by:

Pre(Suc(n)) = n.

1 The details of the mechanism for specifying the names of new constants are not
important for present purposes.

2 At various places in this note, I sketch observations made by other people. The
wording used is mine and not theirs and any misrepresentation is my responsibility.



As another example, the exponential function is naturally defined by a dif-
ferential equation:

exp(0) = 1

(Dexp)(x) = exp(x).

In such cases, the mechanism can be used to define constants having the
desired properties, but one has to use the Hilbert choice operator to give
witnesses and then derive the implicit definitions as theorems. This results in
a loss of abstraction and unintended identities, e.g., the naive way of defining
two constants c1 and c2 both with the loose defining property ci ≤ 10 will
result in an extension in which c1 = c2 is provable.

RJ2 The mechanism is unsound. The condition on the free variables of t is
certainly necessary. Without it, we could take t to be a variable, y : N, and
define a new constant c satisfying ` ∀y : N· c = y. Specialising this in two
different ways, we could prove both c = 1 and c = 2. However, the condition
is not sufficient. If # is a polymorphic function such that #X is the size
of X when X is a finite set, then we can use the mechanism to define a
constant c : N satisfying the axiom c = #{x : α | x = x}, where α is
a type variable. But then if 1 and 2 denote types with 1 and 2 members
respectively, we can instantiate α to prove both c = #{x : 1 | x = x} = 1
and c = #{x : 2 | x = x} = 2.

The fix for RJ2 was to change new definition so as to check that all type
variables appearing anywhere in the term t also appear in the type of the constant
c that is being defined. HOL Light, HOL Zero, Isabelle/HOL and ProofPower
were all implemented after the problem was known, so they incorporated this
solution from scratch. The fix in Classic HOL was carried forward into HOL4.

A new mechanism, new specification, was introduced to address RJ1.
new specification takes as input a theorem of the form ` ∃v1 . . . vn· p and
introduces a list of new constants c1, . . . , cn and the axiom

` p[c1/v1, . . . , cn/vn].

new specification requires that the free variables of p be contained in the vi
and that every type variable appearing anywhere in p also appear in the type
of each new constant ci, thus avoiding reintroducing the problem of RJ2 under
a different guise. The result is conservative and hence sound. It also supports
a very useful range of implicit definitions. However, there are two issues that I
noted during the ProofPower implementation:

RA1 Given new specification, new definition is redundant: what it does
can easily be realised by a derived mechanism that given the list of variables
x1, . . . , xn and the term t, automatically proves:

` ∃y· ∀x1 . . . xn· y x1 . . . xn = t



and then applies new specification. Unfortunately, in order to prove ex-
istentially quantified statements, one needs a definition of the existential
quantifier, and so new definition seems necessary to avoid a bootstrap-
ping problem. (Since it is only required for bootstrapping, the ProofPower
implementation of new definition only covers the simple case where the
axiom has the form ` c = t.)

RA2 The condition on type variables imposed by new specification is stronger
than one would like. It is natural for certain “concrete” structures to be char-
acterized by more “abstract” properties such as universal mapping proper-
ties. For example, data types can be characterized as initial algebras:

∀(z : α)(s : α→ α)· ∃!f : N→ α· f(0) = z ∧ ∀n· f(Suc(n)) = s(f(n)).

However, the above characterization cannot be used as a defining property
for the successor function with new specification. Characterizing objects
by universal properties is endemic in modern mathematics and computer
science, so it is irritating to be compelled to resort to circumlocutions.

In HOL4, ProofPower and HOL Zero, new specification is implemented as
a primitive operation. However, in HOL Light, it is derived. I believe this was
primarily a consequence of the following design goal for HOL Light:

JH1 The primitive inference system for HOL Light should be defined in terms
of language primitives and equality alone and should not depend on the
axiomatization of the logical connectives.

A form of new specification that does not involve existential quantifica-
tion was implemented in early versions of HOL Light. This took as input a
theorem of the form ` p t. Later, to simplify the correctness argument for the
system, new specification was re-implemented as a derived operation that
uses the Hilbert choice operator to translate its inputs into a form suitable for
new definition, applies new definition, then derives the desired axiom to be
passed back to the user from the stronger axiom returned by new definition.
Thus HOL Light bypasses RA1, but at the price of a certain inelegance, since we
have to trust the derived rule to discard the axiom returned by new definition.
This became worse when HOL Light was enhanced to address the following ob-
servation of Mark Adams:

MA1 If an LCF style system does not record all the axioms and definitions
that have been introduced, the correctness claim for the system has to be
defined in terms of a state and the sequence of operations which produced
that state. This makes it impossible to implement a proof auditing procedure
that works by analysing the current state of the system.

As a result of MA1 axioms and definitions in HOL Light are now recorded.
The current HOL Light implementation uses a trick to prevent two constants
with the same loose defining property being provably equal. The trick is based
on the following idea: to define c1 and c2 such that c1, c2 ≤ 10, say, define



c1 = (εf · ∀n· f(n) ≤ 10) 1 and c2 = (εf · ∀n· f(n) ≤ 10) 2; then c1 and c2 have
the desired property, but c1 = c2 is not provable. Nonetheless some unintended
identities are still provable that would not be provable if new specification

were implemented as a primitive as in HOL4 or ProofPower.
The equivalent of new specification in Isabelle/HOL is its specification

command. This is implemented using an equational definition and the choice
function, but that definition only exists in a private namespace. Some aspects of
the abstraction offered by new specification are provided by the very popular
locale mechanism in Isabelle.

Quantification over type variables as implemented in HOL-Omega [4] obvi-
ates many of the problems discussed here. However, our present concern is with
improvements that preserve the delightful simplicity of the Classic HOL logic.

3 Proposed Alternative

The proposed alternative is to discard new definition and to adapt and gen-
eralise new specification so that it does not depend on the meaning of the
existential quantifier. The generalised new specification, which we will call
gen new specification, takes as input a theorem of the following form

v1 = t1, . . . , vn = tn ` p

where the vi are variables. If all is well, gen new specification will introduce
new constants c1, . . . , cn and the following axiom:

` p[c1/v1, . . . , cn/vn].

gen new specification imposes the following restrictions:

– the vi must be pairwise distinct;
– the terms ti must have no free variables;
– the free variables of p must be contained in the vi;
– any type variable occurring in the type of any subterm of a ti must occur in

the type of the corresponding vi.

There is no restriction on the type variables appearing in p.

Claim 1 gen new specification is conservative and hence sound.

Proof: Assume that a sequent Γ ` q containing no instances of the ci is provable
using the axiom ` p[c1/v1, . . . , cn/vn] introduced using gen new specification.
We will show how to transform a proof tree with conclusion Γ ` q into a proof
tree with the same conclusion that does not use the new axiom. First, by simple
equality reasoning, derive from the theorem v1 = t1, . . . , vn = tn ` p that was
passed to new specification, the theorem ` p[t1/v1, . . . , tn/vn]. Now replace
each type instance of a ci in the proof tree with the corresponding type instance
of ti and wherever a type instance of the axiom ` p[c1/v1, . . . , cn/vn] is used in



the proof tree, replace it with the corresponding type instance of a proof tree for
` p[t1/v1, . . . , tn/vn]. By inspection of the primitive inference rules in [3], if one
replaces instances of constants in a correct inference by closed terms of the same
type in such a way that assumptions or conclusions of the sequents involved
that were syntactically identical before the replacement remain syntactically
identical, then the result is also a correct inference. As the condition on type
variables imposed by gen new specification guarantees that two instances of a
ci are syntactically identical iff the corresponding instances of ti are syntactically
identical, we have constructed a correct proof tree whose conclusion is Γ ` q.

Claim 2 gen new specification subsumes new definition.

Proof: In the simplest case, to define c with axiom ` c = t, where t has no free
variables and contains no type variables that do not appear in its type, apply
gen new specification to the axiom v = t ` v = t. This is all we need to define
the logical connectives [3].

For the general case, to define c with axiom ` ∀x1 . . . xn·c x1 . . . xn = t, take
the axiom v = (λx1 . . . xn· t) ` v = (λx1 . . . xn· t), derive v = (λx1 . . . xn· t) `
∀x1 . . . xn· v x1 . . . xn = t from it and then apply gen new specification.

Claim 3 gen new specification subsumes new specification.

Proof: Given the theorem ` ∃v1 . . . vn· p, we can derive from it the theorem
v1 = εv1·∃v2 . . . vn·p ` ∃v2 . . . vn·p and apply gen new specification to define
a constant c1 with defining axiom ` ∃v2 . . . vn·p[c1/v1]. Iterating this process we
can define c2, . . . , cn such that the defining axiom of cn is ` p[c1/v1, . . . , cn/vn].
Thus we can achieve the same effect as new specification at the expense of
additional intermediate definitions. This is sufficient to define the constructor
and destructors for binary products.

Once we have binary products, we can simulate n-tuples by iterated pairing.
This means that given the theorem ` ∃v1 . . . vn· p, we can derive the theorem
` ∃z· p[π1(z)/v1, . . . , πn(z)/vn] in which the n bound variables v1, . . . , vn have
been collected into a single n-tuple denoted by the fresh variable z (here πi
denotes the projection onto the i-th factor). Now we can derive from that the
theorem v1 = t1, . . . , vn = tn ` p where ti is πi(εz· p[π1(z)/v1, . . . , πn(z)/vn]).
Given this theorem as input, gen new specification has exactly the same effect
as new specification given the input theorem ` ∃v1 . . . , vn· p.

4 Conclusion

Let me assess the proposed new definitional mechanism gen new specification

against the observations that led to it:

RJ1 By claim 3, the support for implicit definitions is at least as good with
gen new specification as with new specification. In fact it is better:
new specification cannot define new constants f : α→ N and n : N with
defining property ∀x· ¬f x = n, but gen new specification can.



RJ2 By claim 1, the proposed alternative is sound. What is more, this proof
has been formalised in HOL4: Ramana Kumar, Scott Owens and Magnus
Myreen have recently completed a formal proof of soundness for the HOL
logic and its definitional principles including gen new specification [5].

RA1 By claim 2, new definition is no longer required. (As seen in the proof
of this claim, the special case needed to define the logical connectives does
not involve any reasoning about them, so there is no bootstrapping issue.)

RA2 The restriction on type variables now applies only to the equations that
give the witnesses to the consistency of the definition. Defining properties
such as initial algebra conditions are supported.

JH1 gen new specification is defined solely in terms of equality and primitive
language constructs.

MA1 The unintended identities arising as a result of recording definitions in
HOL Light will not occur if gen new specification is adopted as the prim-
itive mechanism for defining constants.

My conclusion when I wrote the first draft of this note was that the proposal
was well worth adopting. It has recently been implemented in HOL4 and Proof-
Power. In both cases it is a replacement for new definition and the existing
new specification has been retained for pragmatic reasons. The ProofPower
implementation includes an implementation of the proof of claim 3 above and
this completely replaces new specification in the development of many of the
theories supplied with the system, including all the “pervasive” theories such as
the theories of pairs and natural numbers that form part of the logical kernel.

Acknowledgments: I would like to thank the ITP 2014 Programme Chairs, the
referees, Mark Adams, John Harrison, Roger Jones, Ramana Kumar, Magnus
Myreen, Scott Owens, Konrad Slind and Makarius Wenzel for their kind assis-
tance in divers ways in the preparation and publication of this note.

References

1. Adams, M.: HOL Zero, http://www.proof-technologies.com/holzero/
2. Arthan, R., Jones, R.B.: Z in HOL in ProofPower. BCS FACS FACTS (2005-1),

http://www.lemma-one.com/ProofPower/index/
3. Harrison, J.: HOL Light: an overview. In: TPHOLs. LNCS, vol. 5674. Springer

(2009), http://www.cl.cam.ac.uk/~jrh13/hol-light/
4. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,

Wenzel, M. (eds.) TPHOLs. LNCS, vol. 5674, pp. 244–259. Springer (2009)
5. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: semantics,

soundness, and a verified implementation. In: Interactive Theorem Proving. These
proceedings, Springer (2014)

6. Makarius Wenzel and many others: The Isabelle/Isar Reference Manual,
http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/isar-ref.pdf

7. Michael Norrish and many others: The HOL System: Logic, 3rd edn.,
http://hol.sourceforge.net/documentation.html

8. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in Higher
Order Logics (TPHOLs). LNCS, vol. 5170. Springer (2008)


