## Mining Human Proofs from Machine Proofs

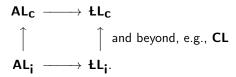
Rob Arthan & Paulo Oliva

Queen Mary University of London

http://www.lemma-one.com/papers/papers.html

### Overview

Studying logics in or near the space between Intuitionistic Affine Logic AL<sub>i</sub> and Classical Łukasiewicz logic ŁL<sub>C</sub>:



- Using Mace4 to find semantic data (finite models)
- ▶ Using Prover9 to find proof-theoretic data (i.e. proofs!), e.g.,
  - To study translations of classical systems into intuitionistic ones.
- ▶ Making proofs readable and meaningful by an iterative process:
  - Use human insight to look for abstractions and decompose proofs into smaller steps.
  - If the smaller steps are still too complex, use Prover9 to prove them, and re-analyse the results.

### Outline

The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

### The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

## Affine Logic: Language

- Intuitionistic affine logic AL; has formulas built using:
  - ightharpoonup Variables:  $P, Q, R \dots$
  - ► Falsehood: ⊥
  - ▶ Conjunction:  $A \otimes B$
  - Implication: A → B.
- ▶ Negation:  $A^{\perp}$  abbreviates  $A \multimap \bot$ .
- ▶ Sequents:  $\Gamma \vdash A$  where  $\Gamma$  is a *multiset* of formulas.
- No disjunction:
  - For simplicity . . .
  - ...and it is definable in ŁLc.

## Affine Logic: Deductive System

Axiom schemata:

$$\frac{}{\Gamma, A \vdash A}$$
 [ASM]  $\frac{}{\Gamma, \bot \vdash A}$  [EFQ].

▶ Introduction and elimination for — and ⊗:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \left[ \multimap I \right] \qquad \frac{\Gamma \vdash A \quad \Delta \vdash A \multimap B}{\Gamma, \Delta \vdash B} \left[ \multimap E \right]$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \left[ \otimes I \right] \qquad \frac{\Gamma \vdash A \otimes B \quad \Delta, A, B \vdash C}{\Gamma, \Delta \vdash C} \left[ \otimes E \right].$$

- ▶ Weakening is admissible:  $\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$  [WK].
- ▶ Contraction is not admissible:  $P \vdash P \otimes P$  is unprovable.

## The Other Three Logics

Classical Affine Logic AL<sub>C</sub> = AL<sub>i</sub> + [DNE]:

$$\Gamma, A^{\perp \perp} \vdash A.$$
 [DNE]

▶ Intuitionistic Łukasiewicz Logic ŁL<sub>i</sub> = AL<sub>i</sub> + [CWC]:

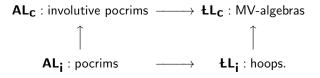
$$\Gamma, A \otimes (A \multimap B) \vdash B \otimes (B \multimap A).$$
 [CWC]

▶ Classical Łukasiewicz Logic ŁL<sub>c</sub> = AL<sub>c</sub> + [CWC] = ŁL<sub>i</sub> + [DNE]:

$$\begin{array}{ccc} \textbf{AL}_{\textbf{C}} & \longrightarrow & \textbf{tL}_{\textbf{C}} \\ \uparrow & & \uparrow \\ \textbf{AL}_{\textbf{i}} & \longrightarrow & \textbf{tL}_{\textbf{i}}. \end{array}$$

### Semantics

- ▶ Algebraic semantics over algebras with signature  $(0,1,+,\rightarrow)$  called *(dual) pocrims*:
  - Order by:  $x \ge y \equiv x \rightarrow y = 0$ ;
  - $(0,+,\geq)$  becomes an ordered commutative monoid;
  - ▶ 0 is least element:  $x \ge 0$ , i.e.,  $x \rightarrow x = 0$ ;
  - ▶ 1 is an annihilator: 1 + x = 1;
  - ▶ implication is residuated:  $x + y \rightarrow z = x \rightarrow y \rightarrow z$ .
- The logics are sound and complete for subclasses of pocrims as follows:



### where:

- involutive pocrims satisfy  $\neg \neg x = x$ , where  $\neg x = x \rightarrow 1$ ;
- ▶ hoops satisfy  $x + (x \rightarrow y) = y + (y \rightarrow x)$ ;
- MV-algebra = involutive hoop.

# Remarks on Hoops and ŁLi

- ▶ Hoops and ŁL; have been studied from various points of view.
- ▶ Hoops were first studied by Büchi and Owens.
- Bosbach gave an equational axiomatisation of hoops.
- Ferreirim studied hoops from the point of view of universal algebra.
- ► Can usefully view [CWC] as a weak form of contraction.
- ŁL; may be viewed as Hajek's Basic Logic without the intuitionistically unacceptable axiom of arrow prelinearity:

$$(A \multimap B) \multimap C, (B \multimap A) \multimap C \vdash C.$$
 [PREL]

### **Exploiting the Semantics**

- Semantics give a powerful handle on the theories.
- ▶ Finite counter-examples are important for many results.
- Checking associativity is tedious and error-prone.
- Had a lot of success with Mace4.
  - ► E.g., classify pocrims with 4 elements:
    - 2 MV-algebras
    - 5 hoops
    - 3 involutive pocrims
    - 7 pocrims
  - Mace4 finds the examples in a few minutes.
  - Proving the classification is a short "homework" exercise.
- Combined with some POFM, get some nice general results.
- We found a heuristic test which allows us to test many simple formulas.
- But no data to satisfy a hungry proof-theorist.

The Logics and their Algebraic Semantics

### Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

# Decision Problem in AL<sub>i</sub>, AL<sub>c</sub>, ŁL<sub>i</sub> and ŁL<sub>c</sub>

- ► AL<sub>i</sub> and AL<sub>C</sub> admit cut-elimination.
  - Resulting decision procedure is EXPTIME
  - ▶ NP-complete?
- ▶ **ŁL**<sub>C</sub> is equivalent to the equational theory of MV-algebras:
  - Known to be decidable by a reduction to (linear) real arithmetic.
  - NP-complete
- ▶ **ŁL**; was shown to be decidable by Ferreirm & Blok.
  - Bova & Montagna's work on GBL-algebras imply decision problem is PSPACE-complete.
    - ▶ Their algorithm is justified by abstract algebra, and
    - doesn't produce proofs
  - We have a heuristic which works well on simple formulas.
    - Our heuristic is justified by abstract algebra, and
    - doesn't produce proofs

### Aside: Continuous Logic

- ► The continuous logic **CL** of Ben Yaacov et al. is classical Łukasiewicz logic **ŁL**<sub>C</sub> extended with
  - $\triangleright$  a unary logical connective called *halving* and written A/2.
  - the axiom schemata:

$$A/2 \multimap A \vdash A/2$$
$$A/2 \vdash A/2 \multimap A.$$

- Algebraic semantics: continuous hoops, aka coops (see http://arxiv.org/abs/1212.2887)
- ▶ We had already decomposed **ŁLc** as the combination of:
  - the classical principle axiomatizing ALc:

$$A^{\perp\perp}\vdash A$$

▶ and the intuitionistic principle axiomatizing ŁLi:

$$A, A \otimes (A \multimap B) \vdash B \otimes (B \multimap A).$$

► Wanted to understand halving in ŁL; alone

# Putting Prover9 to work in **ŁL**i

This led us to ask if the following rule is admissible in ŁLi:

$$\frac{H \multimap A \vdash H \quad H \vdash H \multimap A \quad H' \multimap A \vdash H' \quad H' \vdash H' \multimap A}{H \vdash H'}$$

- ▶ I.e., does every model of ŁL; admit at most one halving operator?
- ► Answer: Yes!
  - Proof found (in about 3 minutes) using Prover9.
  - Subsequently massaged into human-readable form by us.
  - Less than 2 pages, but involves subtle applications of [CWC].
  - ► The de Bruijn factor is 1.09 after compression . . . and about the same on paper . . .

### The Machine Proof

#### Appendix Formal proof of Theorem 3 as output by Prover9: 1 x >= y & y >= x -> x >= x # label(non clause). [assumption]. 2 x >= y & y >= x -> x = y # label(non\_clause). [assumption] 3 x + x >= y <-> x >= x ==> y # label(non clause). [assumption] 4 x >= y -> x + x >= y + x # label(non\_claume). [assumption]. 5 x >= y -> y ==> x >= x ==> x # label(non clause). [assumption] 6 x >= y -> z ==> x >= z ==> v # label(non clause). [assumption] 7 y = y ==> x & z = z ==> x -> y = z # label(non clause) # label(goal). [goal] 8 (x + y) + z = x + (y + z). [assusption]. 9 x + y = y + x. [assumption]. 10 x + 0 = x. [assumption]. ii x >= x. [assumption]. 12 -(x >= y) | -(y >= z) | x >= z. [clausify(t)]. 14 -(x + y >= x) | y >= x => x. [classify(3)] 16 x >= 0. [assumption]. 17 -(x >= y) | x + z >= y + z. [classify(4)]. iB -(x >= y) | y ==> z >= x ==> z. [clausify(5)]. 20 x + (x => y) = y + (y => x). [assumption]. 21 c1 => c2 = c1. [denv(7)]. 22 cl => c2 = cl. [demy(7)]. 23 c3 != c1. [depr(7)]. $24 \times + (v + z) = v + (z + z)$ , [para(9(a,1),8(a,1,1)),rewrite(f8(2))]27 0 + x = x. [para(10(a,1),9(a,1)),flip(a)]. 28 x >= y ==> (y + x). [hyper(i4,a,ii,a)]. 20 -(x + y >= x) | x >= y ==> x. [para(9(a,1),14(a,1))]. 31 -(x >= y) | 0 >= x ==> y. [para(10(a,1),14(a,1))]. 32 x + (x ==> y) >= y. [hyper(i5,b,ii,a)]. 23 x >= y ==> 0. [hyper(14,a,16,a)]. 26 x + v >= v. | Dyper(17.a,16.a).regrite([27(3)])]. 25 0 --> x >- y --> x. [hyper(10,a,16,a)]. 26 x + ((x => y) + z) = y + ((y => z) + z). [para(20(a,1),0(a,1,1)),rewrite([0(3)])]. 41 c3 + x >= c2 | -(x >= c3), [para(22(a,1),15(b,2))]. 43 -(x + (y + x) >= u) | x + x >= y ==> u. [para(24(a,1).14(a,1))]. 46 0 --> x = x + (x --> 0). [para(27(a,1),20(a,1))]. 52 x => 0 = 0. [hyper(13,a,16,a,b,33,a),flip(a)]. 53 0 => x = x. [back\_rewrite(46),rewrite(52(4),10(4)])]. 54 x >= x ==> x. | [back rewrite(35).rewrite(53(2)])] 55 x ==> (v + z) >= x ==> z. [hyper(19,a,34,a)]. 70 x >= y ==> (x + y). [para(9(a,1),20(a,2,2))]. 81 c2 >= c1. [para(21(a,1),54(a,2))] 82 c2 >= c3. [para(22(a,1),54(a,2))] 86 x + c2 >= c1. [hyper(12.a.34.a.b.81.a)]

```
89 x => c2 >= x => c3. [hyper(19,a,82,a)].
       127 x >= c2 ==> c1. | Dyper(30.a.86.a)1
   171 c2 => c1 = 0. [hyper(13,a,16,a,b,127,a),flip(a)]
   100 ct + ct = c2
   180 c1 + c1 = c2.
[para(f7i(a,1),20(a,1,2)),resrite([9(3),27(3),21(5))),flip(a)].
205 c1 + (x + c1) = x + c2. [para(180(a,1),8(a,2,2)),resrite([9(4)])].
   271 x + ((x => y) + ((y => x) => x)) = y + (x + (x => (y => x)))
                                                                                                                                                                                                                               [para(20(a,1),36(a,1,2)),flip(a)]
   275 (x ==> y) + z >= x ==> (y + ((y ==> z) + z)). [paga(36(a,1),28(a,2,2))].
   418 ci >= ci ==> cl. [para(21(a,1).89(a,1))]
   419 0 >= c1 ==> (c1 ==> c3). [hyper(31,a,418,a)]
   609 c3 + (x + (x \Longrightarrow c3)) \gg c2. [hyper(41, b, 22, a)].

805 c3 \Longrightarrow (x + c2) \gg c3. [para(22(a, 1), 55(a, 2))].

906 c1 \Longrightarrow (c1 \Longrightarrow c3) = 0. [hyper(13, a, 16, a, b, 419, a), flip(a)].
   5220 c3 => (c1 + (x + c1)) >= c3. [para(305(a,2),895(a,1,2))]
10398 c3 + (x => c3) >= x => c2. [byper(43,a,609,a)].
   16712 c2 + ((c2 ==> c1) + ((c1 => c2) => c1)) = c2.
                                                                     [para(996(a,1),271(a,2,2,2)),rewrite([9(15),27(15),180(14)])]
 \begin{array}{lll} & & & & & & & & & \\ ||\mathbf{part}(|\mathbf{part}_{i}|, \mathbf{part}_{i}, \mathbf{
   20614 \text{ c3} \implies \text{c1 = c1 \implies c3.} \quad \text{[hyper(13,a,20066,a,b,20570,a),flip(a)]}.
   20625 c1 + c3 = c2.
                  Dack reprincising reprincipations (4) ontion easier of a crist of the contract of the contract
   pack_restrictionin_restrict(20014(4)_20(10)_884(7)_8(4))_1
20034 c3 >= c1. [para(20025(a,1)_70(a,2,2))_restrict((21(4)))]_1
20037 c1 >= c3. [para(20025(a,1)_70(a,2,2))_restrict((22(4)))]_1
   20793 -(c1 >= c3), [ur(13.b.20634.a.c.23.a)].
   20794 SF. [resolve(20793.a.20637.a)]
```

17

### The Human Proof

a --> b - a.

(5) We have

```
c ==> b = c.
                                                  % assumption 2
end_of_list.
end of list.
    To our surprise Prover9 took just a few seconds to produce the proof shown
in the appendix. The proof that Prover9 found seems perplexingly intricate at
first glance, but after studying it for a little while, we found we could edit it
into a form fit for human consumption. From a human perspective, the proof
proved, we will see that the desired result is an easy consequence of claim (9).
Lemma 2 Let M = (M, 0, +, \rightarrow; \geq) be a hoop and let a, b, c, x, y \in M. Assume
that, (i), a \rightarrow b = a and, (ii), c \rightarrow b = c. Then the following hold:

 b ≥ a and b ≥ c.

                     (2) a + a = b.
                     (3) a \rightarrow (a \rightarrow c) = 0,
                     (4) (x \rightarrow y) + z \ge x \rightarrow (y + (y \rightarrow x) + z).
                     (5) c \rightarrow (a + a + x) \ge c,
                     (6) c \rightarrow a \ge a \rightarrow c,
                     (7) c \rightarrow a = a \rightarrow c,
                     (8) c + (c \rightarrow a) + ((a \rightarrow c) \rightarrow a) = b.
                     (9) a + c = b.
Proof: In the proof below (in)equalities which are not labelled as following
from one of the assumptions (i) and (ii) or an earlier part of the lemma follow
immediately from the axioms of a pocrim.
(1) We have b \geq a \rightarrow b and, by (i), a \rightarrow b = a). So b \geq a and similarly b \geq c using
(2) By (1) we have b \rightarrow a = 0. Therefore
                                   a + a = a + (a \rightarrow b)
(3) By (i) and (1) we have a = a \rightarrow b \ge a \rightarrow c and hence 0 \ge a \rightarrow (a \rightarrow c), which
(4) By |\text{cwc}| x + (x \rightarrow y) + z = y + (y \rightarrow x) + z, whence (4) follows.
```

 $c \rightarrow (b+x) \ge c \rightarrow b$ 

% assumption 1

and then using (2) we obtain (5). (6) By (5), as  $(c-a)+a\geq c-\epsilon(a+a)$ , we have  $(c\rightarrow a)+a\geq c$  and hence (6). (7) Our assumptions are symmetric in a and c. Hence, (6) helds with a and c interchanged, i.e.,  $a\rightarrow c\geq c\rightarrow a$ , which taken with (6) gives (7).

This completes the proof of the lemma.

It is interesting to note the complexity of the proof in terms of uses of [cwc] (used 6 timed) and the important sub-lemma (2) (used twice) as depicted in the outline most free shown in Firure 5.



Fig. 5: Outline of the Proof of Lemma 2

Finally, from part (9) of Lemma 2 we have the theorem that the equation  $a \rightarrow b = a$  uniquely determines a in terms of b:

**Theorem 3** In any hoop, if  $a \rightarrow b = a$  and  $c \rightarrow b = c$  then a = c.

**Proof:** Since the assumptions are symmetric in a and c it is enough to show  $c \geq a$ , from which we can immediately conclude  $a \geq c$  and hence a = c. By Lemma 2 (9) we have  $c \geq a \rightarrow b$  and hence  $c \geq a$ .

We already have the part of Theorem 1 that gives soundness and completeness of ELs for bounded hoors. Theorem 3 now gives us that the continuous loric

# Fun with Prover9 and **ŁL**i

- ► Tried the Prover9 approach on range of conjectures
- Still had conjectures that we could prove with the heuristic but not with Prover9
  - More on this later in the talk
- With the kind assistance of Geoff Sutcliffe contributed a batch of problems to TPTP
  - ► LCL882+1.p to LCL903+1.p
  - Mix of counter-example generation and proof problems

See (Dual) Hoops have Unique Halving Essays in Memory of Bill McCune. LNCS 7788 or http://arxiv.org/abs/1203.0436

## Prover9 Performance on TPTP Proof Problems

| TPTP Name  | Problem Statement                                 | Seconds   |
|------------|---------------------------------------------------|-----------|
| LCL888+1.p | Halving is unique: rule for $a = b/2$             | 3.38      |
| LCL889+1.p | Halving is unique: rule for $a \ge b/2$           | 229.13    |
| LCL890+1.p | Halving is unique: rule for $a \le b/2$ (i)       | 1,216.69  |
| LCL891+1.p | Halving is unique: rule for $a \le b/2$ (ii)      | 12,724.08 |
| LCL892+1.p | Halving is unique: rule for $a \le b/2$ (iii)     | 51,876.82 |
| LCL893+1.p | x/2 = x implies $x = 0$                           | 0.01      |
| LCL894+1.p | Weak conjunction is I.u.b. in a hoop (Horn)       | 1.90      |
| LCL895+1.p | Weak conjunction is l.u.b. in a hoop (Equational) | 14.41     |
| LCL896+1.p | Associativity of weak conjunction implies CWC     | 5.95      |
| LCL897+1.p | Weak conjunction is associative in a hoop         | 0.10      |
| LCL898+1.p | An involutive hoop has CSD                        | 66.30     |
| LCL899+1.p | A bounded pocrim with CSD is involutive           | 0.01      |
| LCL900+1.p | A bounded pocrim with CSD is a hoop               | 7.21      |
| LCL901+1.p | An idempotent pocrim with CSD is boolean          | 0.74      |
| LCL902+1.p | A boolean pocrim is involutive                    | 0.02      |
| LCL903+1.p | A boolean pocrim is idempotent                    | 1.42      |

The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

### **Double Negation Translations**

- Schemes for encoding L + [DNE] in L for some extension L of AL<sub>i</sub>.
- ► Kolmogorov: double negate every subformula. E.g.,

$$P\otimes (P\multimap Q)\longmapsto (P^{\perp\perp}\otimes (P^{\perp\perp}\multimap Q^{\perp\perp})^{\perp\perp})^{\perp\perp}.$$

► **Gentzen:** double negate variables. E.g.,

$$P \otimes (P \multimap Q) \longmapsto P^{\perp \perp} \otimes (P^{\perp \perp} \multimap Q^{\perp \perp}).$$

Gödel: rewrite implication using conjunction and negation. E.g.,

$$P \otimes (P \multimap Q) \longmapsto P \otimes (P \otimes Q^{\perp})^{\perp}.$$

Glivenko: double negate outermost formula only. E.g.,

$$P \otimes (P \multimap Q) \longmapsto (P \otimes (P \multimap Q))^{\perp \perp}.$$

## Double Negation Translations (continued)

- L will typically be an intuitionistic extension of AL<sub>i</sub>.
- ▶ Want encoding to reflect in **L** the proof theory of "classical **L**", i.e.,  $\mathbf{L_c} = \mathbf{L} + [\mathsf{DNE}].$
- ▶ Following Troelstra, we say an encoding  $A \mapsto A^{\dagger}$  is a *correct double negation translation* if:

```
(DNS1) \mathbf{L_c} proves A^{\dagger} \vdash A and A \vdash A^{\dagger},

(DNS2) if \mathbf{L_c} proves \vdash A then \mathbf{L} proves \vdash A^{\dagger},

(DNS3) \mathbf{L} proves (A^{\dagger})^{\perp \perp} \vdash A^{\dagger}.
```

- ► For short, we just say the encoding "works" in L.
- E.g., Kolmogorov and Gödel encodings work in AL<sub>i</sub> and in ŁL<sub>i</sub>.
   (The proofs are fairly routine exercises in induction over derivations.)

# Double Negation is a Homomorphism in ŁLi

- We had proved using semantic methods (with some help from Mace4) that there are extensions of AL<sub>i</sub> where Gentzen works and Glivenko doesn't and vice versa.
- Do Gentzen and Glivenko encodings work in ŁL;?
- ▶ We conjectured two homomorphism properties:

$$(A \otimes B)^{\perp \perp} \simeq A^{\perp \perp} \otimes B^{\perp \perp}$$
$$(A \multimap B)^{\perp \perp} \simeq A^{\perp \perp} \multimap B^{\perp \perp}$$

(where  $X \simeq Y$  means  $\mathbf{LL}_i$  proves  $X \vdash Y$  and  $Y \vdash X$ ).

- Follows easily from these that all four translations are equivalent in ŁL; and hence that Gentzen and Glivenko encodings work in ŁL;.
- ▶ A key intermediate result for the homomorphism properties is:

$$(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp} \tag{*}$$

▶ After a two hour search, Prover9 found a proof of (\*).

The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

## Understanding the Proofs

- ▶ The first proofs of the homomorphism properties were long.
- But patterns emerge. E.g., certain derived connectives keep appearing:

$$A \wedge B \equiv A \otimes (A \multimap B)$$
 weak conjunction  $A \vee B \equiv (B \multimap A) \multimap A$  strong disjunction  $A \Rightarrow B \equiv A \multimap A \otimes B$  strong implication  $A \downarrow B \equiv A^{\perp} \otimes (B \multimap A)$ . NOR, Peirce's ampheck

- ► Analysed the Prover9 proofs by identifying key lemmas and feeding them back in first as conjectures and then as axioms.
- Resulting account for humans is about 7 pages containing 17 lemmas and theorems.

On Affine Logic and Łukasiewicz Logic http://arXiv.org/abs/1404.0570

The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

### Demo

▶ Let's get Prover9 to prove that **ŁL**; proves:

$$\vdash (A^{\perp \perp} \multimap A)^{\perp \perp}.$$

# Improving a Prover9 Proof

|     | Theorem                                                              | Length     | Depth | Time    |
|-----|----------------------------------------------------------------------|------------|-------|---------|
| (1) | $(A^{\perp\perp} \multimap A)^{\perp\perp}$                          | 109 steps  | 9     | 1 min   |
| (2) | $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$ | 412 steps  | 22    | 133 min |
| (3) | $(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$                | 147 steps  | 13    | 86 min  |
| (2) | $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$ | 140 steps* | 10    | 43 sec  |

(\*) using (3)

## Further Properties of the Connectives

Have De Morgan properties for the various connectives:

$$\begin{array}{cccc} (A \otimes B)^{\perp} & \simeq & A \multimap B^{\perp} \\ (A \multimap B)^{\perp} & \simeq & A^{\perp \perp} \otimes B^{\perp} \\ (A \wedge B)^{\perp} & \simeq & A \Rightarrow B^{\perp} \\ (A \Rightarrow B)^{\perp} & \simeq & A^{\perp \perp} \wedge B^{\perp} \\ (A \wedge B)^{\perp} & \simeq & A^{\perp} \vee B^{\perp} \\ (A \vee B)^{\perp} & \simeq & A^{\perp} \wedge B^{\perp}. \end{array}$$

- ▶ The conjunctions  $\otimes$  and  $\wedge$  and the implications  $\multimap$  and  $\Rightarrow$  become the usual intuitionistic connectives given contraction  $(A \vdash A \otimes A)$ .
- ightharpoonup N.b.,  $\lor$  is not the usual intuitionistic disjunction.
- ▶  $\downarrow$  is definable in terms of  $\land$  and  $^{\perp}$ :

$$A \downarrow B \simeq A^{\perp} \wedge B^{\perp}$$
.

## A Challenge Problem

▶ A conjecture about the weak conjunction and the strong implication:

$$A \wedge B \Rightarrow C \simeq A \Rightarrow B \Rightarrow C$$

- Prover9 proofs:
  - Bob Veroff (242 lines with Horn aziomatization)
     Found using Veroff's method of proof sketches
  - Michael Kinyon (214 lines with equational axiomatization)
     Found using Waldmeister first
- Have not yet teased out a human readable proof

See http://www.cs.unm.edu/~veroff/HOOPS/ for Prover9 proofs

The Logics and their Algebraic Semantics

Finding Proofs

Case Study: Double Negation Translations

Understanding the Machine Proofs

Prover9 in Action

## Concluding Remarks

- ▶ Successfully mined human-readable proofs from machine proofs.
- Results have informed research outside ATP.
- ▶ Human input is identifying the "right" abstractions;
  - Find useful derived concepts;
  - Recover an intuitive proof plan.
- Useful to have interactive support for proof factoring.
- ▶ Interesting AI challenge to automate human aspects.
- Engineering applications?
  - "OK, your system has proved it works . . . "
  - "But what does the proof mean?"
- ▶ The late Bill McCune was the real star:
  - Mace4 provided quick returns and good value for a very low entry cost, and then
  - Prover9 found constructive proofs that we would never have found without it.

### Thank you!