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Overview

» Studying logics in or near the space between Intuitionistic Affine
Logic AL; and Classical tukasiewicz logic tL¢:

ALC E— ‘|’.Lc
T T and beyond, e.g., CL

> Using Mace4 to find semantic data (finite models)
» Using Prover9 to find proof-theoretic data (i.e. proofs!), e.g.,

> To study translations of classical systems into intuitionistic ones.
» Making proofs readable and meaningful by an iterative process:

> Use human insight to look for abstractions and decompose proofs
into smaller steps.

> |If the smaller steps are still too complex, use Prover9 to prove them,
and re-analyse the results.
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The Logics and their Algebraic Semantics



Affine Logic: Language

v

Intuitionistic affine logic AL; has formulas built using:
Variables: P,Q,R...

Falsehood: L

Conjunction: A® B

Implication: A — B.

Negation: Al abbreviates A —o L.

v
vy vy vy

v

Sequents: I = A where I is a multiset of formulas.

v

No disjunction:
> For simplicity . ..
> ...and it is definable in tLc.



Affine Logic: Deductive System

v

Axiom schemata:

[ASM] —— [EFQ].
LAFA LLFA

Introduction and elimination for —o and ®:

v

rAFB [FA AFA—-B
——[l| [—E]
[FA—B Al B

A AFB rFA®B AABFC

— o] [E].
AFA®B AR C

v

N8B
Weakening is admissible: ——— [WK].
rAEB

» Contraction is not admissible: P+ P ® P is unprovable.



The Other Three Logics

» Classical Affine Logic AL¢ = AL; + [DNE]:
At A [DNE]
> Intuitionistic Lukasiewicz Logic tL; = AL; + [CWC]:
MNA®(A—B)FB® (B —A). [cw(]
» Classical tukasiewicz Logic tL¢ = ALc + [CWC] = tL; + [DNE]:

ALc — tlc

I I

ALi e l’.Li.



Semantics

> Algebraic semantics over algebras with signature (0,1, 4+, —) called
(dual) pocrims:
> Orderby: x>y=x—y=0;
(0,+,>) becomes an ordered commutative monoid;
0 is least element: x > 0, i.e., x> x =0;
1 is an annihilator: 1+ x = 1;
implication is residuated: x+y—>z=x—>y—z.

vy vy vy

» The logics are sound and complete for subclasses of pocrims as

follows:
AlLc : involutive pocrims —— tL¢ : MV-algebras
AL; : pocrims  — tL; : hoops.
where:

> involutive pocrims satisfy -—x = x, where -x = x —1;
> hoops satisfy x + (x = y) =y + (y — x);
> MV-algebra = involutive hoop.



Remarks on Hoops and tL;

Hoops and tL; have been studied from various points of view.
Hoops were first studied by Biichi and Owens.

Bosbach gave an equational axiomatisation of hoops.

Ferreirim studied hoops from the point of view of universal algebra.

Can usefully view [CWC] as a weak form of contraction.

vV v v. v v Yy

tL; may be viewed as Hajek’s Basic Logic without the
intuitionistically unacceptable axiom of arrow prelinearity:

(A—B) —o C,(B— A) — CF C. [PREL]



Exploiting the Semantics

vV Yy vy

Semantics give a powerful handle on the theories.
Finite counter-examples are important for many results.
Checking associativity is tedious and error-prone.

Had a lot of success with Mace4.
» E.g., classify pocrims with 4 elements:
2 MV-algebras
> 5 hoops
> 3 involutive pocrims
> 7 pocrims

v

> Mace4 finds the examples in a few minutes.
> Proving the classification is a short “homework” exercise.

Combined with some POFM, get some nice general results.

We found a heuristic test which allows us to test many simple
formulas.

But no data to satisfy a hungry proof-theorist.



Finding Proofs



Decision Problem in AL;, ALc,tL; and tLc

» AL; and ALc admit cut-elimination.
> Resulting decision procedure is EXPTIME
> NP-complete?
» tLc is equivalent to the equational theory of MV-algebras:
» Known to be decidable by a reduction to (linear) real arithmetic.
> NP-complete
» tL; was shown to be decidable by Ferreirm & Blok.

> Bova & Montagna's work on GBL-algebras imply decision problem is
PSPACE-complete.

> Their algorithm is justified by abstract algebra, and
> doesn't produce proofs

> We have a heuristic which works well on simple formulas.

> Qur heuristic is justified by abstract algebra, and
> doesn't produce proofs



Aside: Continuous Logic

» The continuous logic CL of Ben Yaacov et al. is classical
tukasiewicz logic £L¢ extended with

> a unary logical connective called halving and written A/2.
> the axiom schemata:

AJ2 — A AJ2
AJ2+ AJ2 —o A.

» Algebraic semantics: continuous hoops, aka coops
(see http://arxiv.org/abs/1212.2887)

» We had already decomposed tL¢ as the combination of:

> the classical principle axiomatizing ALc:
ATt A
> and the intuitionistic principle axiomatizing tL;:

AA® (A— B)F B® (B — A).

» Wanted to understand halving in tL; alone


http://arxiv.org/abs/1212.2887

Putting Prover9 to work in tL;

» This led us to ask if the following rule is admissible in tL;:

H—AFH HFH—oA H —AFH HFH —A
HEH

> l.e., does every model of £L; admit at most one halving operator?

» Answer: Yes!
» Proof found (in about 3 minutes) using Prover9.
> Subsequently massaged into human-readable form by us.
> Less than 2 pages, but involves subtle applications of [CWC].
> The de Bruijn factor is 1.09 after compression ...
and about the same on paper ...



The Machine Proof

Appendix

Formnal proof of Theorem 3 s output by Provt:
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The Human Proof
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Fun with Prover9 and tLi

» Tried the Prover9 approach on range of conjectures
» Still had conjectures that we could prove with the heuristic but not
with Prover9
» More on this later in the talk

» With the kind assistance of Geoff Sutcliffe contributed a batch of
problems to TPTP

» LCL882+1.p to LCL903+1.p
» Mix of counter-example generation and proof problems

See (Dual) Hoops have Unique Halving Essays in Memory of Bill McCune.
LNCS 7788 or http://arxiv.org/abs/1203.0436


http://arxiv.org/abs/1203.0436

Prover9 Performance on TPTP Proof Problems

l TPTP Name \ Problem Statement \ Seconds ‘
LCL888+1.p | Halving is unique: rule for a = b/2 3.38
LCL889+1.p | Halving is unique: rule for a > b/2 229.13
LCL890+1.p | Halving is unique: rule for a < b/2 (i) 1,216.69
LCL891+1.p | Halving is unique: rule for a < b/2 (ii) 12,724.08
LCL892+1.p | Halving is unique: rule for a < b/2 (iii) 51,876.82
LCL893+1.p | x/2 = x implies x =0 0.01
LCL894+1.p | Weak conjunction is l.u.b. in a hoop (Horn) 1.90
LCL895+1.p | Weak conjunction is l.u.b. in a hoop (Equational) 14.41
LCL896+1.p | Associativity of weak conjunction implies CWC 5.95
LCL897+1.p | Weak conjunction is associative in a hoop 0.10
LCL898+1.p | An involutive hoop has CSD 66.30
LCL899+1.p | A bounded pocrim with CSD is involutive 0.01
LCL900+1.p | A bounded pocrim with CSD is a hoop 7.21
LCL901+4+1.p | An idempotent pocrim with CSD is boolean 0.74
LCL902+41.p | A boolean pocrim is involutive 0.02
LCL903+1.p | A boolean pocrim is idempotent 1.42




Case Study: Double Negation Translations



Double Negation Translations

v

Schemes for encoding L + [DNE] in L for some extension L of AL;.

v

Kolmogorov: double negate every subformula. E.g.,

P® (P S Q) N (PLL ® (PLL N QLL)LL)LL.

v

Gentzen: double negate variables. E.g.,

P& (P— Q)+ P+ (P — QHF).

v

Godel: rewrite implication using conjunction and negation. E.g.,

P2(P—Q)— P2 (P®QH)*.

v

Glivenko: double negate outermost formula only. E.g.,

P& (P— Q) (P@ (P — Q).



Double Negation Translations (continued)

v

L will typically be an intuitionistic extension of AL;.

v

Want encoding to reflect in L the proof theory of “classical L, i.e.,
L. = L + [DNE].
Following Troelstra, we say an encoding A — Af is a correct double
negation translation if:

(DNS1) L. proves AT A and AF AT,

v

(DNS2) if L proves - A then L proves - AT,

(DNS3) L proves (AT)1t+ - AT,

For short, we just say the encoding “works” in L.

v

v

E.g., Kolmogorov and Godel encodings work in AL; and in tL;.
(The proofs are fairly routine exercises in induction over derivations.)



Double Negation is a Homomorphism in tL;

>

We had proved using semantic methods (with some help from
Mace4) that there are extensions of AL; where Gentzen works and
Glivenko doesn’t and vice versa.

Do Gentzen and Glivenko encodings work in £L;?

We conjectured two homomorphism properties:
(A® B)J_J_ ~ AJ_J_ ® BJ_J_

(A N B)J_J_ ~ AJ_J_ N BJ_J_

(where X >~ Y means tL; proves X - Y and Y I X).

Follows easily from these that all four translations are equivalent in
tL; and hence that Gentzen and Glivenko encodings work in tL;.

A key intermediate result for the homomorphism properties is:
(At - B)t ~ At @ Bt (*)

After a two hour search, Prover9 found a proof of (*).



Understanding the Machine Proofs



Understanding the Proofs

» The first proofs of the homomorphism properties were long.

» But patterns emerge. E.g., certain derived connectives keep

appearing:
AANB=A® (A — B) weak conjunction
AVB=(B—A)—A strong disjunction
A=B=A—-A®B strong implication
Al B=At® (B — A). NOR, Peirce’s ampheck

» Analysed the Prover9 proofs by identifying key lemmas and feeding
them back in first as conjectures and then as axioms.

» Resulting account for humans is about 7 pages containing 17
lemmas and theorems.

On Affine Logic and tukasiewicz Logic http://arXiv.org/abs/1404.0570


http://arXiv.org/abs/1404.0570

Prover9 in Action



Demo

> Let's get Prover9 to prove that tL; proves:

F (AT — A)EE



Improving a Prover9 Proof

Theorem

(1)
(2)
(3)
(2)

AN B)*

(
(At —
(
(A+ —o

(*) using (3)

ALL — 5

A)LL

B)t ~ At @ Bt
~ A= B*
B)t ~ At @ Bt

Length

109 steps
412 steps
147 steps

140 steps*

Depth

22
13
10

Time

1 min
133 min
86 min
43 sec



Further Properties of the Connectives

» Have De Morgan properties for the various connectives:
(A X B)J‘ ~ A- Bt
(A—-B)t ~ AtteBt
(AAB)Y ~ A= Bt
(A= B)t ~ AttaBt
(ANB)Y: ~ AtvBt
(AVB)t ~ AtABt.

v

The conjunctions ® and A and the implications — and = become
the usual intuitionistic connectives given contraction (AF A® A).

v

N.b., V is not the usual intuitionistic disjunction.

1 is definable in terms of A and +:

v

Al B~A+AB*.



A Challenge Problem

» A conjecture about the weak conjunction and the strong implication:
ANB=C~A=B=~C

» Prover9 proofs:

> Bob Veroff (242 lines with Horn aziomatization)
Found using Veroff's method of proof sketches

> Michael Kinyon (214 lines with equational axiomatization)
Found using Waldmeister first

» Have not yet teased out a human readable proof

See http://www.cs.unm.edu/~veroff/HOOPS/ for Prover9 proofs


http://www.cs.unm.edu/~veroff/HOOPS/

Concluding Remarks



Concluding Remarks

» Successfully mined human-readable proofs from machine proofs.
» Results have informed research outside ATP.
» Human input is identifying the “right” abstractions;

> Find useful derived concepts;
> Recover an intuitive proof plan.

v

Useful to have interactive support for proof factoring.

v

Interesting Al challenge to automate human aspects.

v

Engineering applications?

> “OK, your system has proved it works ...’
» “But what does the proof mean?”

The late Bill McCune was the real star:

v

> Mace4 provided quick returns and good value for a very low entry
cost, and then

> Prover9 found constructive proofs that we would never have found
without it.

Thank you!
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