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Abstract

This document contains a formal specification, in HOL, of the design of the logical kernel of
the ProofPower system.

This design document is essentially a sequel to a suite of documents entitle “HOL Formalised”
which define the syntax, semantics and deductive system of HOL and provide formal criteria for
assessing a tool that purports to be a theorem-proving system for HOL. This document defines a
design for such a theorem-proving system which is believed likely to meet these criteria (although
that has not been formally proved).

Although fairly abstract, the design does address realistic architectural issues such as how a
large body of HOL theories may be physically distributed for use by several users and how the
system can support deletion of definitions and axioms without compromising its logical integrity.

An index to the formal material is provided at the end of the document.
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2 GENERAL

2.1 Scope

This document gives a formal specification, at an abstract level of parts of the HOL proof development
system. The document is called for in [4] and is intended to help meet the requirements concerning
integrity and the route to high assurance stated in [3].

2.2 Introduction

2.2.1 Background and Requirements

The high level design document, [4], discusses informally the abstract data type used to represent
theorems, which it refers to as the Logical Kernel of the ProofPower proof development system.

This document gives a formal model of the main data structures used in the logical kernel and of
the operations on them. We stress that the definitions are intended to describe a simplified model
of the actual system, and, for reasons of efficiency or practicality, the actual details of the internal
datatypes will be implementation dependent.

2.2.2 Dependencies

This document depends on the suite of documents formalising HOL, overviewed in [5].

2.2.3 Notation

In addition to the specification facilities mentioned in [5], we use the Z-like schema boxes to introduce
labelled record types.

2.2.4 Deficiencies

The formalisation of the well-formedness condition on states has yet to be included.

2.2.5 Possible Enhancements

It has been suggested that there may be some merit in giving system extenders more control over
collections of theories. For example, it might be useful in some circumstances to arrange that no one
theory in a given collection of related theories could be opened without the others also being opened.
A neat scheme for doing this within the framework of the present document could be adopted, if
such a scheme is discovered. As things stand, such a feature must be implemented in non-critical
code.
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3 DISCUSSION

3.1 Basic Concepts for Ensuring Integrity

The design of the logical kernel is a development of the LCF paradigm which has been used in earlier
implementations of the HOL logic, most notably the Cambridge implementation described in [9]. The
original reference for LCF is [1]. The ideas depend upon the use of a strongly typed metalanguage
supporting the abstract data type facility, whereby a data type may be declared together with one
or more so-called constructosr, in such a way that the type discipline ensures that all values of the
data type are created using the constructors. For the ProofPower implementation of the HOL logic
the metalanguage is Standard ML, see [2], in which the abstype construct provides the necessary
feature.

In crude outline, integrity is ensured in an LCF-style proof development system by representing
theorems as elements of an abstract data type, which we will call THM . The representation type for
THM is the set of sentences of the logic — sequents in the case of HOL as formulated in [5]. The
constructors of the abstract data type are the axioms and inference rules of the logic, so that values
of type THM arise from computations which directly represent formal proofs. The great merit of
this approach is that it concentrates all the code which is critical to the integrity of the system in the
abstract data type and the small amount of code which supports it. Facilities such as user-interfaces
and proof procedures may be implemented using the primitive operations of the abstract data type
and are not themselves critical since they cannot compromise the integrity of the system.

This elegant paradigm has, however, to be adapted to meet practical requirements. The following
paragraphs summarise the key issues and solutions for ProofPower:

1. We must allow the user to make definitions and other extensions, both conservative and ax-
iomatic. Thus proofs (i.e. computations of theorems) are carried out with respect to a context
determined by a callection of such extensions, i.e. a theory in the sense of [5]. Since we wish to
let the user navigate at will around the various theories which have been constructed, we must
mark each theorem with an indicator (actually a store address) which uniquely identifies the
theory to which the theorem belongs. The inference rules use these indicators to ensure that a
theorem is valid in the context in which it is being used.

2. We wish to store the collection of theories belonging to one or more users in a reasonably
efficient fashion. Two measures facilitate this. Firstly, we make the concrete representation
of a theory hold only those extensions which are specific to it. The theories are organised as
a directed acyclic graph given by a parenthood relation defined by the user. The context (or
abstract theory) determined by such a concrete theory comprises the union of the extensions
contained in it and its ancestors with respect to this relation and is represented by a set of
theory addresses. Secondly, we organise the theories themselves into a tree of theory hierarchies.
A theory hierarchy is intended to represent the set of theories constructed by a particular user.
A theory hierarchy may conveniently be implemented as a physical store or database in which
we hold a set of theories together with a pointer to a parent theory hierarchy. This parenthood
relation on theory hierarchies allows a collection of theories to be shared amongst many users
without undue replication in the physical store. A theory hierarchy determines a set of theory
addresses from which the user may construct contexts in which to carry out proof.

3. We wish to allow the user to edit the contents of a theory by deleting extensions, and then,
perhaps, making new extensions which are logically incompatible with the ones which have
been deleted. This implies that a theorem must be marked with an indicator identifying the
set of extensions on which it may depend. For reasons of efficiency, this indicator comprises a
so-called level number. Each extension to a theory or deletion of an extension from a theory
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causes the level number to be incremented. When an extension is deleted, the corresponding
level number is added to a set of invalid levels maintained in the data structure representing
the theory. The inference rules both check that any theorem presented to them has a valid
level number and also generate theorems which have a level number corresponding to the most
recent extension to the context.

3.2 Implementation Strategies

The design given here can be implemented using several different strategies. The one currently used
in ProofPower uses an implementation of Standard ML, namely, Abstract Hardware Ltd.’s Poly/ML,
which provides a persistent object store structured as a tree of physical files called databases. The
root of this tree as realised for ProofPower contains the ML code of the compiler itself together with
the code and data which implements the ProofPower system.

When an interactive or batch session with the Poly/ML compiler is started, the user indicates a
database which, if it is to be updated, must be a leaf in the tree. As and when desired the user
can save the results of his work in the database. New databases are created using a command script
supplied as part of ProofPower which protects the user from most of the intricacies of working with
hierarchies as described in section 7.3. The freeze hierarchy operation, for example, is carried out
automatically on the parent database when a child is created, and the load hierarchy operation is
invoked automatically at the beginning of each session.

An alternative implementation strategy would be to store representations of theory hierarchies in
files using metalanguage I/O operations. This has the disadvantage of disassociating the theory
hierarchies from any associated metalanguage variable bindings. This disadvantage could doubtless
be ameliorated in various ways, largely determined by the capabilities of the metalanguage compiler
and associated tools.

3.3 Overview of Model

In the sequel we define a model of a proof development system for HOL. This is a more concrete
model than the abstract one used in [8]. Where confusion might otherwise arise we use the terms
concrete and abstract to distinguish notions in the present model from related notions in the more
abstract treatment. However, the model is still quite abstract in a number of ways. For example,
there is no commitment here as to whether the theory hierarchy is held entirely in main store or
whether it is a main store data structure used to access the contents of a theory in backing store.
Nor do we define a number of mechanisms which will be necessary in the interests of efficiency, e.g.
the use of a symbol table to give fast access to the context.

The main features of the implementation which we are modelling are as follows:

1. the representation of the theory hierarchy within the store of a machine;

2. the mechanisms whereby use of a theorem is restricted to contexts which include the context
in which it was proved;

3. the commands which manipulate the theory hierarchy or modify the context in which proof is
carried out;

4. a reversible facility for the user to prevent a theory from further modification1 .

1 This locking and unlocking facility is offered as a more general substitute for the ability, in earlier implementations
of HOL, to load a theory for read-only access (or the ability to use operating system facilities to prevent a filestore
representation of a theory from being modified).
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3.4 System Construction

In order to focus attention on the features identified in the previous section we specify the model as
a function pds which constructs the system from three subsystems:

1. A DEFINER, which stands for the operations which perform theory extensions;

2. An INFERRER, standing for the inference rules;

3. An INTERPRETER, which corresponds, approximately, to the metalanguage compiler, and is
actually a function from DEFINERs and INTERPRETERs to state transition functions.

This construction is purely for conceptual purposes, it is not intended to imply the use of any
particular implementation technique only that the implementation be capable of being viewed in
this way under an appropriate interpretation function.

Note that the above view on what it means to be an implementation of the design implies that the
names used in the implementation may differ from the names used in the design.

It is intended that implementations will include definition schemata, and, perhaps, other built-in
theorem schemata, for numeric and other literals. This technique demands either (a) that the proof
development system as seen by the user always has suitable definitions of appropriate types and
constants in scope or (b) that the implementation of each schema checks that it is operating in a
context containing appropriate definitions. Approach (b) is unlikely to be attractive for performance
reasons, and approach (a) may lead to boot-strapping problems (since it appears to imply that the
proof development system code cannot be used to assist in making the necessary definitions). One
approach might be to work on the assumption that the implementation of such schemata actually
checked that the right definitions were available and then demonstrate that the checks are actually
unnecessary in a particular implementation, in which steps are taken to ensure that the theories
containing the definitions are always in scope.

4 PRELIMINARIES

5 Preamble

The theory “spc005 ” which is defined in this document is introduced as follows. Its parent is
the theory “spc004 ” which defines the critical properties of an abstract model of a HOL proof
development system.

SML

open theory"spc004";

new theory"spc005";

new parent"cache ′play" handle Fail => ();

5.1 Dictionaries

Axioms, definitions and the like are held in the implementation in tables indexed by names. We refer
to such tables as dictionaries.
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We model dictionaries as sets of pairs representing partial functions in the usual set-theoretic manner.
In the implementation these will typically be finite partial functions represented by a concrete data
structure such as a list of pairs. However, the implementation will also contain some definitions or
theorem schemata (e.g. the rules which define numbers or strings), these may be thought of as (parts
of) infinite dictionaries in the appropriate theories.

SML

declare type abbrev("DICT", ["′X "], p:STRING ↔ ′X q);

Dictionaries are formed starting with an initial, empty, dictionary:
HOL Constant

initial dict : (′X )DICT

initial dict = {}

Entries may be added to a dictionary using the function enter :
HOL Constant

enter : STRING → ′X → (′X )DICT → (′X )DICT

∀key item dict•enter key item dict = dict ⊕ {(key , item)}

We look things up in a dictionary using lookup defined below. Note that the use we will make of
lookup is such that it may actually be implemented as a partial function, i.e. we will never associate
more than one value with a given key.
HOL Constant

lookup : STRING → (′X )DICT → ′X → BOOL

∀key dict item•
lookup key dict item ⇔ (key , item) ∈ dict

We may delete things by key from a dictionary using delete:
HOL Constant

delete : STRING → (′X )DICT → (′X )DICT

∀key dict• delete key dict = {key} −C dict

We may delete entries whose values lie in some set from a dictionary using block delete:
HOL Constant

block delete : (′X SET ) → (′X )DICT → (′X )DICT

∀a dict• block delete a dict = dict −B a

keys gives the set of key values in use in a dictionary:
HOL Constant

keys : (′X )DICT → STRING SET

keys = Dom
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5.2 Stores

The state of the proof development system will be held in assignable metalanguage variables of
various types. To model these we use a polymorphic notion of a store.

The addresses for our stores come from the following countably infinite type, ADDR. It gives a
useful cross-check on the present specification for this type to have a parameter which identifies the
type of object addressed. To achieve this we represent a (′X )ADDR as a pair ((εx :′ X •T ),n) where
n is a natural number. The result is a polymorphic type all of whose instances are isomorphic to the
natural numbers.
SML

val ADDR DEF = new type defn(["ADDR DEF"], "ADDR", ["′X "],

(tac proof (([], p∃a:′X × N•(λx•Fst x = εx :′X •T ) aq),
∃ tacp((εx :′X •T ), (n:N))q THEN

rewrite tac[])));

A store is a partial function from addresses to values, represented as a set of pairs:
SML

declare type abbrev("STORE", ["′X "], p:(′X )ADDR ↔ ′X q);

The operations on stores are assignment, dereferencing and allocation.

< − is the assignment operation, note that it is not defind to create new storage locations, but only
to modify existing ones.
SML

declare infix (300 , "<−");

HOL Constant

$<− : (′X )ADDR → ′X → (′X )STORE → (′X )STORE

∀ addr value st•
addr ∈ Dom st ⇒
(addr <− value) st = st ⊕ {(addr , value)}

fetch is the dereferencing operation:
HOL Constant

fetch : (′X )ADDR → (′X )STORE → ′X → BOOL

∀ addr st value• fetch addr st value ⇔ (addr , value) ∈ st

new is the allocation operation:
HOL Constant

new : ′X → (′X )STORE → ((′X )STORE × (′X )ADDR) → BOOL

∀ value st1 st2 addr•
new value st1 (st2 , addr) ⇔

¬addr ∈ Dom st1

∧ st2 = st1 ⊕ {(addr , value)}
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Stores are constructed using new from an initial empty store:

HOL Constant

initial store : (′X )STORE

initial store = {}

6 THE SYSTEM STATE

6.1 User-Defined Data

Theories will be record types containing a field in which essentially arbitrary user-defined data can
be stored. This will be used to support the concrete syntax of HOL, e.g. by allowing the syntactic
properties of identifiers to be stored in a theory, and may be used for similar purposes for other
languages. The presence of this field is not critical to the integrity of the system. Our model will be
polymorphic over the type of this information, for which we will systematically use the type variable
′UD .

6.2 System Inputs

We will systematically use the type variable ′IP for the components of the input to the system which
we do not wish to specify in detail here. The actual inputs to the abstract data type would be
represented in the model by instantiating ′IP to some disjoint union type allowing for the various
possibilities (e.g. the template term which is a parameter to the rule of substitution defined in [7]).

6.3 Concrete Theories

It is useful to have a representation for the contents of a theory. This serves for the internal repre-
sentation in our simplified model (and an analogous type might be available in an implementation
for general use, e.g by the theory lister).

HOL Labelled Product

THEORY CONTENTS

tc name : STRING ;

tc ty env : (N × N) DICT ;

tc con env : (TYPE × N) DICT ;

tc parents : STRING LIST ;

tc axiom dict : (SEQ × N) DICT ;

tc definition dict : (SEQ × N) DICT ;

tc theorem dict : (SEQ × N) DICT ;

tc current level : N;

tc deleted levels : N SET ;

tc user data : ′UD

Here the fields have the following significance:
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Field Description

name This gives the name of the theory.

ty env This represents a type environment assigning arities and level
numbers to type operator names. It corresponds to the
TY ENV component of a theory as specified in [5]. The
level number gives the level number which was current when
the type was introduced.

con env This represents a constant environment assigning types and
level numbers to constant names. It corresponds to the
CON ENV component of a theory as specified in [5]. The
level number gives the level number which was current when
the constant was introduced.

parents This is the set of names of parents of this theory.

axiom dict This contains the non-definitional axioms of the theory. Each
axiom is marked with the level number which was current
when the axiom was introduced.

definition dict This contains the definitional axioms of the theory. Like the
axioms, these are marked with the level number current when
the definitional axiom was introduced.

theorem dict This contains the theorems which have been saved on the
theory. These are marked with the level number which was
current when the theorem was proved (or 0 if the theorem
belongs to an ancestor of the current theory).

user data This contains the user-defined data stored in the theory

current level This is the current level number. It is 0 when a theory is
first created. It is incremented whenever an extension to the
theory is introduced or deleted.

deleted levels This is the set of level numbers corresponding to extensions
which have been deleted.

Note that a theory can be used without modifying any of the above information. Moreover this
information does not depend on the hierarchy containing the theory.

6.4 Concrete Theory Hierarchies

A theory hierarchy is essentially a finite set of records each comprising a theory contents together
with information about the theory which is local to the hierarchy.

The local information comprises a status attribute (which indicates a fairly permanent property of
the theory) and a scope attribute which is set true when the theory in question is the current theory
or one of its ancestors. The scope attribute is discussed in more detail in section 7.4.1 below.

We recognise the following four values for the status attribute.

SML

declare type abbrev("STATUS", [], p:ONE + ONE + ONE + ONEq);

HOL Constant

TSNormal : STATUS ;

TSLocked : STATUS ;

TSAncestor : STATUS ;

TSDeleted : STATUS

11



[TSNormal ; TSLocked ; TSAncestor ; TSDeleted ] ∈ Distinct

The significance of the theory status values is as follows:

Value Description

TSNormal A theory which can be modified while this theory hierarchy
is current;

TSLocked A theory which cannot be modified while this theory hierar-
chy is current because the user has asked for it to be locked
(see section 7.4.6 for more information);

TSAncestor A theory which cannot be modified while this theory hierar-
chy is current since it belongs to an ancestor of some hierarchy
(see section 6.6.3 below for more information);

TSDeleted A theory which has been deleted.

The information about a theory held in a theory hierarchy then has the following type:

HOL Labelled Product

THEORY INFO

ti status : STATUS ;

ti inscope : BOOL;

ti contents : ((′UD)THEORY CONTENTS )ADDR

Here the address will reference a store of theory contents held in the state.

A theory hierarchy will comprise a list of THEORY INFOs:
SML

declare type abbrev("HIERARCHY ", ["′UD"], p:((′UD)THEORY INFO)LISTq);

6.5 Concrete Theorems

A theorem is represented by the following data type:

HOL Labelled Product

PDS THM

pt theory : ((′UD)THEORY CONTENTS )ADDR;

pt level : N;

pt sequent : SEQ

The pt theory component here gives the address of the (contents of the) theory to which the theorem
belongs (with respect to a store of theory contents held in the state of the system). The level number
is that which was current when the theorem was proved.

6.6 The System State

6.6.1 Definition and Initialisation

The state of our model of the proof development system has the following type:
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HOL Labelled Product

PDS STATE

ps current theory : ((′UD)THEORY CONTENTS )ADDR;

ps current hierarchy : ((′UD)HIERARCHY )ADDR;

ps theory store : ((′UD)THEORY CONTENTS )STORE ;

ps hierarchy store : ((′UD)HIERARCHY ) STORE ;

ps theorem store : ((′UD)PDS THM ) STORE

Here the current theory (resp. hierarchy) is the theory (resp. hierarchy) in which modifications to
the state of the system are currently being made, these modifications often constituting updates to
the three stores.

The theorem store component is different in intention from the other two stores in that it will not,
in practice, correspond to a metalanguage variable inside the abstract data type. It represents the
locations in which theorems computed by the abstract data type have been stored.

The initial state of the system is parameterised by the initial user-defined data. To define it we first
define the initial theory (we apologise for the fact that the initial theory is MIN not INIT ) The
initial theory information comes supplied with a store containing the contents of a suitable initial
theory:

HOL Constant

initial theory : ′UD →
( ((′UD)THEORY CONTENTS )STORE )

× (′UD)THEORY INFO

∀ud•initial theory ud =

let contents = MkTHEORY CONTENTS

"MIN "

initial dict initial dict

[]

initial dict initial dict initial dict

0 {}
ud

in let (st , addr) = ε(st , addr)•new contents initial store (st , addr)

in (st , MkTHEORY INFO TSNormal T addr)

The initial state is then as follows:

HOL Constant

initial state : ′UD → (′UD)PDS STATE

∀ud•initial state ud =

let (thy st , thy info) = initial theory ud

in let (hier st , hier addr) = ε(st , addr)•new [thy info] initial store (st , addr)

in MkPDS STATE (ti contents thy info) hier addr thy st hier st initial store
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6.6.2 Interpretation Mapping

In this section we define an interpretation function from PDS STATE s to the more abstract notion
of a theory hierarchy defined in [8]. To do this requires a number of auxiliary definitions:

theory contents returns the theory contents associated with a theory name in a state. It is a partial
function which we represent as a relation.

HOL Constant

theory contents : (′UD)PDS STATE → STRING →
(′UD)THEORY CONTENTS → BOOL

∀state name thy c•theory contents state name thy c ⇔
let thy st = ps theory store state

in let hier st = ps hierarchy store state

in let cur hier = ps current hierarchy state

in let infos = εx•fetch cur hier hier st x

in let thys = Map((λaddr•εx•fetch addr thy st x ) o ti contents) infos

in ∃thy• thy ∈ Elems thys ∧ tc name thy = name

The following function returns the names of the theories in a state:

HOL Constant

theory names : (′UD)PDS STATE → STRING SET

∀state name•name ∈ theory names state ⇔
∃thy c•theory contents state name thy c

theory ancestors returns the names of the ancestors of a given theory (which we take to include the
theory itself, if it is in the state):

HOL Constant

theory ancestors : (′UD)PDS STATE → STRING → STRING SET

∀state name•theory ancestors state name =
⋂{P :STRING SET |

(name ∈ theory names state ⇒ name ∈ P)

∧ (∀anc1 thy c anc2•
anc1 ∈ P

∧ theory contents state anc1 thy c

∧ anc2 ∈ Elems (tc parents thy c)

⇒ anc2 ∈ P)}

Given a set of theory contents, interpret theory contents constructs a THEORY in the sense of [5],
together with the sets of definitional axioms and saved theorems which are used in the definition of
the abstract notion of theory hierarchy in [8].
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HOL Constant

interpret theory contents : ((′UD)THEORY CONTENTS SET ) →
(THEORY × (SEQ SET ) × (SEQ SET ))

∀thy cs•interpret theory contents thy cs = (

abs theory(

{(tyn, arity) | ∃thy c lev•thy c ∈ thy cs

∧ lookup tyn (tc ty env thy c) (arity , lev)},
{(cn, ty) | ∃thy c lev•thy c ∈ thy cs

∧ lookup cn (tc con env thy c) (ty , lev)},
{seq | ∃thy c thmn lev•thy c ∈ thy cs ∧

(lookup thmn (tc axiom dict thy c) (seq , lev)

∨ lookup thmn (tc definition dict thy c) (seq , lev))}
),

{seq | ∃thy c thmn lev•thy c ∈ thy cs ∧
lookup thmn (tc definition dict thy c) (seq , lev)},

{seq | ∃thy c thmn lev•thy c ∈ thy cs ∧
lookup thmn (tc theorem dict thy c) (seq , lev)}

)

Our interpretation mapping for a state is now easy to define (note that the definition results in
abstract theory hierarchies which map undefined theory names to the theory all of whose components
are empty).

HOL Constant

interpret state : (′UD)PDS STATE → THEORY HIERARCHY

∀state•interpret state state = mk theory hierarchy(λthyn•
interpret theory contents {tc | ∃anc •

anc ∈ theory ancestors state thyn

∧ theory contents state anc tc})

(Note that the interpretation of a state does not depend on the theorem store. This is because the
theorem store will in general contain theorems which were proved in theories which have been deleted
or which depend on definitions or axioms which have been deleted.)

6.6.3 Well-Formedness

As is apparent from the construction of the interpretation mapping, we require the state to satisfy
an invariant which ensures that:

1. no hierarchy in the hierarchy store contains two distinct THEORY INFOs whose contents
fields address theory contents with the same name. Thus a theory name uniquely identifies the
address of the corresponding theory within a hierarchy;

2. there are no dangling addresses; more accurately the current theory (resp. hierarchy) should
be a valid address for the theory (resp. hierarchy) store and the list of addresses addressed by
the current hierarchy should all be valid addresses for the theory store;
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3. the ancestral of the parenthood relation is a rooted DAG (with root the initial theory);

4. the set of type names defined in a theory is disjoint from the type names in its ancestors (and
similarly for constant names);

5. no entry in any dictionary in any theory contains a level number which is in the set of deleted
levels for that theory.

Note that condition 4 above implies that that the type (or constant) names in a theory must be
disjoint from those in its descendants. This implies that we must not introduce new type or constant
names into a hierarchy which is the ancestor of some hierarchy. This is the significance of the
TSAncestor status value.

The formalisation of these conditions has been deferred.

7 OPERATIONS

7.1 Discussion

We can now define the operations on states which are of concern to us. We consider the operations
under four headings:

Operations on Hierarchies These are the operations concerned with creating and loading theory
hierarchies;

Operations on Theory Attributes These are the operations which affect the status and scope
attributes for one or more theories;

Operations on Theory Contents These are the operations which affect the contents of a theory;

Inference Rules These are the inference rules (viewed as functions on states returning theorems).

The operations are described in the following sections under the above headings. Except for the
Inference Rules, the operations are (functions returning) functions from states to states, and, we
are essentially doing imperative programming in HOL. It will be an implicit precondition of all of
these operations that the stores in the state are not full. Since each operation only allocates a finite
number of new addresses in the stores, this precondition will always be met by states constructed
by finite iteration of these operations starting from the initial state. We specify the operations so
that they always succeed if there is room enough in the stores (by making them do the identity state
change, if what might otherwise be a precondition does not hold).

The operation new parent affects both the contents of the current theory and the scope attributes
of the new ancestors. We will classify it, arbitrarily, as an operation on theory attributes.

7.2 Utility Functions

It is convenient to have a single function giving the components of a state (the only inconvenience is
having to write out its signature!):
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HOL Constant

dest state : (′UD)PDS STATE →
( (′UD)THEORY CONTENTS ADDR

× (′UD)HIERARCHY ADDR

× (′UD) THEORY CONTENTS STORE

× (′UD)HIERARCHY STORE

× (′UD)PDS THM STORE )

∀state•dest state state = (

ps current theory state,

ps current hierarchy state,

ps theory store state,

ps hierarchy store state,

ps theorem store state)

Similarly, the following destructor function for theory contents is useful

HOL Constant

dest theory contents : (′UD)THEORY CONTENTS →
( STRING

× (N × N) DICT

× (TYPE × N) DICT

× STRING LIST

× (SEQ × N) DICT

× (SEQ × N) DICT

× (SEQ × N) DICT

× N
× N SET

× ′UD )

∀tc•dest theory contents tc = (

tc name tc,

tc ty env tc,

tc con env tc,

tc parents tc,

tc axiom dict tc,

tc definition dict tc,

tc theorem dict tc,

tc current level tc,

tc deleted levels tc,

tc user data tc)

current theory contents returns the contents of the current theory, (here and elsewhere we use
variable names of the form 1 , 2 etc. for variables which are required by the syntax but whose
value we are not concerned with).
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HOL Constant

current theory contents : (′UD)PDS STATE →
(′UD)THEORY CONTENTS

∀state•current theory contents state =

let (cur thy , 1 , thy st , 2 , 3 ) = dest state state

in (εtc•fetch cur thy thy st tc)

current theory name returns the name of the current theory.

HOL Constant

current theory name : (′UD)PDS STATE → STRING

∀state•current theory name state =

tc name(current theory contents state)

current abstract theory returns the abstract theory corresponding to the current theory. This func-
tion is used later to abbreviate the specification of various conditions.

HOL Constant

current abstract theory : (′UD)PDS STATE → THEORY

∀state•current abstract theory state = Fst(interpret theory contents{tc|∃anc•
anc ∈ theory ancestors state (current theory name state)

∧ theory contents state anc tc})

theory info returns the THEORY INFO associated with a given theory name in the current state
(and returns rubbish if the name does not identify a theory in the state).

HOL Constant

theory info : (′UD)PDS STATE → STRING → (′UD) THEORY INFO

∀state name•theory info state name =

let (cur thy , cur hier , thy st , hier st , 1 ) = dest state state

in let hier = εh•fetch cur hier hier st h

in εti• tc name(εtc•fetch (ti contents ti) thy st tc) = name

∧ ¬ti status ti = TSDeleted

current theory status returns the status value associated with the current theory. Note that this
status cannot be TSDeleted in the states arising from the operations we will define.

HOL Constant

current theory status : (′UD)PDS STATE → STATUS

∀state•current theory status state =

ti status (theory info state (current theory name state))

Several of the operations we wish to define involve the important notion of checking whether a
theorem is in scope. The check is carried out as follows.
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1. we fetch the theory contents addressed by the theory component of the theorem;

2. we fetch the THEORY INFO associated with the name in the theory contents computed in
step 1;

3. We return true iff. the following three conditions hold: (a) the address in the THEORY INFO
is the same as that in the theorem; (b) the scope flag in the THEORY INFO is true; (c) the
level number in the theorem is not one of the deleted levels in the theory contents.

HOL Constant

check thm : (′UD)PDS STATE → (′UD)PDS THM → BOOL

∀state thm•check thm state thm ⇔
let (cur thy , cur hier , thy st , hier st , 1 ) = dest state state

in let tc = εtc•fetch (pt theory thm) thy st tc

in let ti = theory info state (tc name tc)

in ( pt theory thm = ti contents ti

∧ ti inscope ti

∧ ¬pt level thm ∈ tc deleted levels tc )

check thm address determines whether an address identifies a theorem in the theorem store which
is in scope:

HOL Constant

check thm address : (′UD)PDS STATE → (′UD)PDS THM ADDR → BOOL

∀state thm ad•check thm address state thm ad ⇔
let ( 1 , 2 , 3 , 4 , thm st) = dest state state

in ∃thm•fetch thm ad thm st thm ∧ check thm state thm

fetch thms fetches a list of theorems from the theorem store given a list of addresses. It is the
responsibility of a function using fetch thms to check the validity of the addresses:

HOL Constant

fetch thms :

(′UD)PDS STATE → (′UD)PDS THM ADDR LIST → (′UD)PDS THM LIST

∀state thm ads•fetch thms state thm ads =

let ( 1 , 2 , 3 , 4 , thm st) = dest state state

in Map (λa•εthm•fetch a thm st thm) thm ads

We may sometimes need to know whether one theory hierarchy is an ancestor of another. This is
essentially inclusion of lists of theory addresses viewed as sets. If the hierarchies in question are given
by their addresses relative to a state, the following function gives the relation. Note that it returns
false if either of the addresses is not valid for the hierarchy store in the state.
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HOL Constant

hierarchy ancestor : (′UD)PDS STATE →
((′UD)HIERARCHY )ADDR →
((′UD)HIERARCHY )ADDR → BOOL

∀state hier ad1 hier ad2 •hierarchy ancestor state hier ad1 hier ad2 ⇔
let ( 1 , cur hier , 2 , hier st , 3 ) = dest state state

in ∀h1 h2•
fetch hier ad1 hier st h1 ∧ fetch hier ad2 hier st h2

⇒ Elems (Map ti contents h1 ) ⊆ Elems (Map ti contents h2 )

pds mk thm makes a theorem from a given sequent with theory and level values taken from the
current theory of a state. It makes no checks whatsoever. It is the responsibility of a function using
mk thm to store the resulting theorem in the theorem store.

HOL Constant

pds mk thm : (′UD)PDS STATE → SEQ → (′UD)PDS THM

∀state seq•pds mk thm state seq =

let cur thy = ps current theory state

in let lev = tc current level (current theory contents state)

in MkPDS THM cur thy lev seq

make current does most of the work of opening a theory. It is defined here because it is needed both
in open theory and in load hierarchy , q.v. It is given a name which must identify a theory which
has not been deleted. On this assumption, it carries out the following steps.

1. compute a modified theory hierarchy in which the inscope flags are true for the new current
theory and its ancestors only;

2. assign the result of step 1 to the current hierarchy;

3. set the current theory to the address of the theory contents identified by the name (as found
in the corresponding THEORY INFO).

HOL Constant

make current : STRING → (′UD)PDS STATE → (′UD)PDS STATE

∀thyn state•make current thyn state =

let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let f1 = λti•tc name(εtc•fetch (ti contents ti) thy st tc)

in let f2 = λti•(f1 ti) ∈ theory ancestors state thyn

in let f3 = λti•MkTHEORY INFO(ti status ti)(f2 ti)(ti contents ti)

in let hier ′ = Map f3 (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in let cur thy ′ = ti contents (theory info state thyn)

in MkPDS STATE cur thy ′ cur hier thy st hier st ′ thm st
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7.3 Operations on Hierarchies

7.3.1 freeze hierarchy

freeze hierarchy changes the status of all undeleted theories in the current hierarchy to TSAncestor
(in readiness for subsequent new hierarchy operations). It performs the following steps:

1. compute a modified theory hierarchy from the one held in the current hierarchy by setting the
status of all undeleted theories to be TSAncestor ;

2. assign the result of step 1 to the current hierarchy;

HOL Constant

freeze hierarchy : (′UD)PDS STATE → (′UD)PDS STATE

∀state•freeze hierarchy state =

let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let f1 = λn•if n = TSDeleted then n else TSAncestor

in let f2 = λti•MkTHEORY INFO(f1 (ti status ti))(ti inscope ti)(ti contents ti)

in let hier ′ = Map f2 (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in MkPDS STATE cur thy cur hier thy st hier st ′ thm st

7.3.2 new hierarchy

new hierarchy creates a new hierarchy. It performs the following steps:

1. if there is an theory in the current hierarchy with status other than TSAncestor or TSDeleted
then leave the state alone.

2. allocate a new theory hierarchy initially equal to the current hierarchy.

3. return a state with the current hierarchy equal to the one allocated in step 2.

HOL Constant

new hierarchy : (′UD)PDS STATE → (′UD)PDS STATE

∀state•new hierarchy state =

let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let hier = εh•fetch cur hier hier st h

in

if (∃ti•ti ∈ Elems hier

∧ ¬ti status ti ∈ {TSAncestor ; TSDeleted})
then state

else let (hier st ′, cur hier ′) = ε(st , a)•new hier hier st (st , a)

in MkPDS STATE cur thy cur hier ′ thy st hier st ′ thm st
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7.3.3 load hierarchy

This operation typically corresponds to loading a theory into the system from filestore. Not all
implementations will require it, since in a persistent object store approach it may be possible to
arrange for the state of the system to persist from session to session2 .

The parameter to load hierarchy is the address of the hierarchy to load. This might in practice be
a metalanguage variable or a file name.

The algorithm is as follows:

1. if the address of the hierarchy to be loaded is not valid for the hierararchy store then leave the
state alone;

2. otherwise, if the hierarchy we wish to load is not a descendant of the current hierarchy then
leave the state alone;

3. otherwise, compute the state in which the current hierarchy is the address of the new hierarchy
and all other fields are as in the old state.

4. return the result of making the original current theory current again in the state computed in
step 3.

Note that the current theory is unchanged by this operation. The resulting state is nonetheless
well-formed, since the new current hierarchy is a descendant of the old one.

HOL Constant

load hierarchy : ((′UD)HIERARCHY )ADDR →
(′UD)PDS STATE → (′UD)PDS STATE

∀hier state•load hierarchy hier state =

let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in

if ¬(hierarchy ancestor state cur hier hier)

then state

else let cur thyn = current theory name state

in let st ′ = MkPDS STATE cur thy hier thy st hier st thm st

in make current cur thyn st ′

7.4 Operations on Theory Attributes

7.4.1 open theory

open theory takes one argument which is the name of the theory to be opened (i.e. made the current
theory).

1. if the name is not the name of any theory or it is the name of a theory which has been deleted,
then we leave the state alone;

2 It will be required with a persistent object store mechanism such as the PolyML one, since the state variables
inside the abstract datatype will be held in the HOL system database not the user’s database and so their values will
not be permanently updated by the theory management operations.
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2. otherwise, return the state obtained by using makecurrent to make the named theory the
current theory.

HOL Constant

open theory : STRING → (′UD)PDS STATE → (′UD)PDS STATE

∀thyn state•open theory thyn state =

if ¬thyn ∈ theory names state ∨ ti status(theory info state thyn) = TSDeleted

then state

else make current thyn state

7.4.2 delete theory

delete theory takes one argument which is the name of the theory to be deleted. The algorithm is
as follows:

1. if the name is not the name of any theory, or if the theory it names does not have status
TSNormal or has children or if it is in scope we leave the state alone;

2. otherwise, we compute a modified theory hierarchy in which the theory to be deleted has its
status attribute set to TSDeleted ;

3. We assign to the theory contents for this theory an empty theory of the same name;

4. we assign the result of step 2 to the current hierarchy

Before we define delete theory , we specify a function to compute the empty theory required in step
3. This is also used to support new theory . The function is parameterised by the theory name and
the desired parents.

HOL Constant

empty theory :

STRING → (STRING LIST ) → ′UD → (′UD) THEORY CONTENTS

∀thyn pars ud•empty theory thyn pars ud =

MkTHEORY CONTENTS

thyn

initial dict initial dict

pars

initial dict initial dict initial dict

0 {}
ud

For delete theory we also need an arbitrary user datum value:

HOL Constant

arbitrary ud : ′UD

T
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HOL Constant

delete theory : STRING → (′UD)PDS STATE → (′UD)PDS STATE

∀thyn state•delete theory thyn state =

if ¬thyn ∈ theory names state

∨ ¬ti status(theory info state thyn) = TSNormal

∨ ti inscope(theory info state thyn)

∨ ∃childname tc•theory contents state childname tc

∧ thyn ∈ Elems (tc parents tc)

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let ti = theory info state thyn

in let f = λti ′•
if ti ′ = ti

then MkTHEORY INFO TSDeleted F (ti contents ti)

else ti

in let hier ′ = Map f (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in let thy = empty theory thyn [] arbitrary ud

in let thy st ′ = (ti contents ti <− thy) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st ′ thm st

7.4.3 new theory

new theory takes two arguments, the first of which is the name of the theory to be created. The new
theory has the current theory as parent. The current theory is not changed3 . The second argument
to new theory gives an inital user-defined data value for the new theory.

1. if the name is the name of an existing, undeleted, theory, then we leave the state alone;

2. otherwise, we allocate space in the theory store for the new theory initialised to an empty
theory with the given name and user-defined data, and with the current theory as its parent;

3. we compute a new theory hierarchy by pushing a THEORY INFO for the new theory onto
the current theory hierarchy;

4. we assign the result of step 3 to the current hierarchy

3 The user interface to this function may open the new theory after performing the primitive operation described
here.
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HOL Constant

new theory :STRING → ′UD → (′UD)PDS STATE →
(′UD)PDS STATE

∀thyn ud state•new theory thyn ud state=

if thyn ∈ theory names state

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let thy = empty theory thyn [current theory name state] ud

in let (thy st ′, addr) = ε(st , a)• new thy thy st (st , a)

in let ti = MkTHEORY INFO TSNormal F addr

in let hier ′ = Cons ti (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in MkPDS STATE cur thy cur hier thy st ′ hier st ′ thm st

7.4.4 new parent

new parent takes one argument, which is the name of the theory to be added as new parent of the
current theory. The algorithm is as follows (in which we should recall that the ancestors of a theory
are taken to include the theory itself):

1. we check to see whether any of the following conditions is satisfied:

(a) the name is not the name of an existing theory;

(b) the name is already the name of a parent of the current theory;

(c) an ancestor, anc, of the theory identified by the name contains a type name or a constant
name which is in the current abstract theory, but anc is not already an ancestor of the
current theory.

if any of the above conditions hold, then we leave the state alone;

2. otherwise, we compute a new theory contents from the current theory contents by adding the
name to the set of its parents;

3. we compute a new theory hierarchy in which the inscope flags are true for those theories which
are either ancestors of the original current theory or ancestors of the new parent;

4. we assign to the current theory the results of step 2 and to the current hierarchy the results of
step 3.
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HOL Constant

new parent : STRING → (′UD)PDS STATE →
(′UD)PDS STATE

∀thyn state•new parent thyn state=

if ¬thyn ∈ theory names state

∨ thyn ∈ Elems(tc parents (current theory contents state))

∨ ∃ancn•ancn ∈ (theory ancestors state thyn

\ theory ancestors state (current theory name state))

∧ let anc = εanc•theory contents state ancn anc

in let cur thy = current abstract theory state

in (∃ty nlev• ty ∈ Dom(types cur thy)

∧ lookup ty (tc ty env anc) nlev)

∨ (∃con tylev•con ∈ Dom (constants cur thy)

∧ lookup con (tc con env anc) tylev)

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let cur thyn = current theory name state

in let f1 = λti•tc name(εtc•fetch (ti contents ti) thy st tc)

in let f2 = λti•(f1 ti) ∈ theory ancestors state thyn ∨ ti inscope ti

in let f3 = λti•MkTHEORY INFO(ti status ti)(f2 ti)(ti contents ti)

in let hier ′ = Map f3 (εh•fetch cur hier hier st h)

in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let tc′ = MkTHEORY CONTENTS

nm t e c e (Cons thyn pars) ax d def d thm d lev x levs ud

in let hier st ′ = (cur hier <− hier ′) hier st

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st ′ thm st

7.4.5 duplicate theory

duplicate theory makes a copy of a theory, with the same contents (except for the name) but with no
descendants. It takes two arguments, the name of the theory to be duplicated and the name of the
copy. In order that the ancestor relations is always rooted, the initial theory may not be duplicated.

The algorithm is as follows:

1. if the name of the theory to be duplicated does not identify an existing theory, or if the name
of the copy does, or if the theory to be duplicated is the initial theory, then we leave the state
alone.

2. otherwise, we compute a new theory contents from the contents of the theory to be duplicated
by changing the name to that of the copy;
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3. we allocate space in the theory store for the theory contents computed in step 2;

4. we compute a new theory hierarchy by pushing a THEORY INFO for the new theory onto
the current one;

5. we assign the result of step 3 to the current hierarchy

HOL Constant

duplicate theory : STRING → STRING → (′UD)PDS STATE →
(′UD)PDS STATE

∀thyn copyn state•duplicate theory thyn copyn state =

if ¬thyn ∈ theory names state

∨ copyn ∈ theory names state

∨ thyn = "MIN "

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let tc = εtc•theory contents state thyn tc

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let tc′ = MkTHEORY CONTENTS

copyn t e c e (Cons thyn pars) ax d def d thm d lev x levs ud

in let (thy st ′, addr) = ε(st , a)•
new tc′ thy st (st , a)

in let ti = MkTHEORY INFO TSNormal F addr

in let hier ′ = Cons ti (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in MkPDS STATE cur thy cur hier thy st ′ hier st ′ thm st

7.4.6 lock theory

lock theory takes a single parameter which is the name of the theory to lock. A locked theory may
not be deleted or have its contents changed.

1. if the name is not the name of any theory, or if the theory it names does not have status
TSNormal , then we leave the state alone;

2. otherwise, we compute a modified theory hierarchy in which the theory to be locked has status
attribute set to TSLocked .

3. we assign the result of step 2 to the current hierarchy

SML
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HOL Constant

lock theory : STRING → (′UD)PDS STATE → (′UD)PDS STATE

∀thyn state•lock theory thyn state =

if ¬thyn ∈ theory names state

∨ ¬ti status(theory info state thyn) = TSNormal

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let ti = theory info state thyn

in let f = λti ′•
if ti ′ = ti

then MkTHEORY INFO TSLocked(ti inscope ti)(ti contents ti)

else ti

in let hier ′ = Map f (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in MkPDS STATE cur thy cur hier thy st hier st ′ thm st

7.4.7 unlock theory

unlock theory takes a single parameter which is the name of the theory to unlock.

1. if the name is not the name of any theory, or if the theory it names does not have status
TSLocked , then we leave the state alone;

2. otherwise, we compute a modified theory hierarchy in which the theory to be locked has status
attribute set to TSNormal .

3. we assign the result of step 2 to the current hierarchy

HOL Constant

unlock theory : STRING → (′UD)PDS STATE → (′UD)PDS STATE

∀thyn state•unlock theory thyn state =

if ¬thyn ∈ theory names state

∨ ¬ti status(theory info state thyn) = TSLocked

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let ti = theory info state thyn

in let f = λti ′•
if ti ′ = ti

then MkTHEORY INFO TSNormal (ti inscope ti) (ti contents ti)

else ti

in let hier ′ = Map f (εh•fetch cur hier hier st h)

in let hier st ′ = (cur hier <− hier ′) hier st

in MkPDS STATE cur thy cur hier thy st hier st ′ thm st
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7.5 Operations on Theory Contents

7.5.1 save thm

save thm takes two parameters. The first parameter is the key under which the theorem is to be
saved. The second parameter is the theorem. The theorem is saved in the current theory.

1. we fetch the contents of the current theory;

2. if the key is already in use as a key into the theorem dictionary of the theory fetched in step
1, or if the current theory does not have status TSNormal (e.g. because it is locked), or if the
theorem is not in scope (see below), then we leave the state alone.

3. we compute a new theory contents by entering the theorem into the theorem dictionary (which
was computed along the way in step 2) under the given key.

4. we assign the new theory contents to the current theory.

Note that we take the level number associated with the stored theorem from the theorem if the
theorem belongs to the current theory. We take it as 0 if the theorem does not belong to the current
theory (since if it belongs to an ancestor it depends on no definitions in the current theory). Thus, we
allow further definitions to be made after a theorem has been inferred but before it is saved, without
requiring it to be deleted if some of the subsequent definitions are deleted. There is no particular
requirement for this feature, but it is as easy to provide as any other formulation.

Note also that we do not update the theorems proved field, since if the model is correct the theorem
must already be in it.

HOL Constant

save thm : STRING → (′UD)PDS THM →
(′UD)PDS STATE → (′UD)PDS STATE

∀key thm state•save thm key thm state =

let tc = current theory contents state

in

if key ∈ keys (tc theorem dict tc)

∨ ¬current theory status state = TSNormal

∨ ¬check thm state thm

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let level = if pt theory thm = cur thy then pt level thm else 0

in let thm d ′ = enter key (pt sequent thm, level) (tc theorem dict tc)

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let tc′ = MkTHEORY CONTENTS

nm t e c e pars ax d def d thm d ′ lev x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st
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7.5.2 delete extension

delete extension allows the latest (undeleted) definition or axiom to be deleted from the current
theory4 . Here “definition” is taken to include constants or types introduced with new type or
new constant (i.e. which do not have a defining axiom).

1. if there is nothing in the current theory to be deleted or if the current theory has children or
does not have status TSNormal , we leave the state alone;

2. we calculate the most recent level number, dlev say, of any object stored in the theory;

3. we remove all definitions and axioms with level number equal to dlev from the definition and
axiom dictionaries and similarly for the type and constant environments; we increment the
current level and add dlev to the set of deleted levels;

4. we assign the theory contents computed in the previous step to the current theory.

The following utility is used to assist in step 2:

HOL Constant

is latest level : (′UD)PDS STATE → N → BOOL

∀state lev•is latest level state lev ⇔
let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let present = {lv | (∃ 1 key• lookup key t e ( 1 , lv))

∨ (∃ 1 key• lookup key c e ( 1 , lv))

∨ (∃ 1 key• lookup key ax d ( 1 , lv))}
in lev ∈ present ∧ (∀lv•lv ∈ present ⇒ lv ≤ lev)

HOL Constant

delete extension : (′UD)PDS STATE → (′UD)PDS STATE

∀state•delete extension state =

let tc = current theory contents state

in

if (¬(∃lev•is latest level state lev)

∨ (∃childname tc•theory contents state childname tc

∧ current theory name state ∈ Elems (tc parents tc))

∨ ¬current theory status state = TSNormal)

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let dlev = εlv•is latest level state lv

4 In practice, the user interface to this facility will be capable of recursively deleting definitions and axioms until a
desired definition or axiom has been deleted.
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in let def d ′ = block delete {( 1 , lv)|lv = dlev} def d

in let ax d ′ = block delete {( 1 , lv)|lv = dlev} ax d

in let t e ′ = block delete {( 1 , lv)|lv = dlev} t e

in let c e ′ = block delete {( 1 , lv)|lv = dlev} c e

in let lev ′ = lev+1

in let tc′ = MkTHEORY CONTENTS

nm t e ′ c e ′ pars ax d ′ def d ′ thm d lev ′ (x levs ∪ {dlev}) ud

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st

7.5.3 delete thm

delete thm deletes a theorem from the current theory. The algorithm is very simple:

1. if the key is not valid for the theorem dictionary for the current theory, or if the current theory
does not have status TSNormal , we leave the state alone;

2. otherwise, we assign to the current theory a new theory contents in which the indicated theorem
has been removed from the theorem dictionary.

SML

HOL Constant

delete thm : STRING →
(′UD)PDS STATE → (′UD)PDS STATE

∀key state•delete thm key state =

let tc = current theory contents state

in

if ¬key ∈ keys (tc theorem dict tc)

∨ ¬current theory status state = TSNormal

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let thm d ′ = delete key thm d

in let tc′ = MkTHEORY CONTENTS

nm t e c e pars ax d def d thm d ′ lev x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st

7.5.4 pds new axiom

pds new axiom adds a new axiom to a theory. It has two parameters, the first of which is the term
giving the new axiom and the second of which gives the key under which the axiom is to be stored.
The new axiom is a sequent with no assumptions and with conclusion the given term. The algorithm
is:
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1. if the key is already in use for an axiom in the current theory, or if the new axiom is not a
well-formed sequent with respect to the current theory, then we leave the state alone

2. otherwise, let lev be the current level number for the current theory;

3. we assign to the current theory a new theory contents in which the new axiom has been entered
in the axiom dictionary at level lev + 1 and the new current level is lev + 1 ;

4. we return a result state with the theory store modified by the assignment of step 3 and with
the new axiom added to the set of theorems proved.

HOL Constant

pds new axiom : TERM → STRING →
(′UD)PDS STATE → (′UD)PDS STATE

∀tm key state•pds new axiom tm key state =

let tc = current theory contents state

in let seq = ({}, tm)

in

if key ∈ keys (tc axiom dict tc)

∨ ¬seq ∈ sequents (current abstract theory state)

∨ ¬current theory status state = TSNormal

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let lev ′ = lev+1

in let ax d ′ = enter key (seq , lev ′) ax d

in let tc′ = MkTHEORY CONTENTS

nm t e c e pars ax d ′ def d thm d lev ′ x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in let (thm st ′, 1 ) = εsa•new(pds mk thm state seq)thm st sa

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st ′

7.5.5 General Definitional Mechanisms

The definitional mechanisms to be supplied will be closely based on the ones identified in [6]. We
wish to defer the formal specification of the mechanisms which introduce new definitional axioms,
while still specifying something about their role in our model of the system. To do this we supply
a “generic” definitional mechanism, the function make definition below, which is parameterised by
a function (called a DEFINER) which represents an implementation of the definitional mechanisms.
To avoid complicating the handling of definitional axioms, the “definitional” mechanisms new type
and new constant which do not introduce new definitional axioms are defined here.

The input to the DEFINER has the following type, which is also used in section 7.6 below:

SML

declare type abbrev("SUBSYS INPUT", ["′IP", "′UD"], p:′IP × (′UD)PDS THM LISTq);
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The input to the system which is used to derive the input to the DEFINER has the type:

SML

declare type abbrev("PDS INPUT", ["′IP", "′UD"], p:′IP × (′UD)PDS THM ADDR LISTq);

The addresses in a PDS INPUT are intended to be addresses for the theorem store in the state.

The parameter then has the type:

SML

declare type abbrev("DEFINER", ["′IP", "′UD"],

p:((′IP , ′UD)SUBSYS INPUT × (′UD)PDS STATE ) ↔
(SEQ × ((STRING × N) LIST ) × ((STRING × TYPE ) LIST ) × (STRING LIST ))q);

Thus, a DEFINER is a partial function, represented as a set of pairs, which computes a 4-tuple
comprising:

• a sequent which is to be the definitional axiom resulting from the definition;

• a list of type names and arities for any new types introduced by the definition;

• a list of constant names and types for any new constants introduced by the definition;

• a list of keys under which the definitional axiom is to be saved on the theory.

The algorithm for make definition is as follows:

1. if the input and state are not in the domain of the DEFINER, or if the theorems in the input
are not all valid in the current theory then leave the state alone;

2. otherwise, apply the DEFINER to the input-state pair;

3. let lev be the current level number;

4. using the result of step 2 and the key parameter, compute a modified theory contents from the
current theory contents; the modified theory contents has level number lev + 1 and has the
new definition (with level number lev + 1 ) and new type and constant dictionary entries as
returned by the DEFINER;

5. assign the result of step 4 to the current theory;

6. return a state with the theory store modified as in step 5 and with the new definitional axiom
added to the set of theorems proved.
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HOL Constant

make definition : (′IP , ′UD)DEFINER →
((′IP , ′UD)PDS INPUT × (′UD)PDS STATE ) →
(′UD)PDS STATE

∀definer pars thm ads state•
make definition definer ((pars, thm ads), state) =

if ∃thm ad•thm ad ∈ Elems thm ads ∧ ¬check thm address state thm ad

then state

else let thms = fetch thms state thm ads

in

if ¬((pars, thms), state) ∈ Dom definer

then state

else let (seq , tys, cons, ks) = definer@((pars, thms), state)

in let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let lev ′ = lev+1

in let def d ′ = Fold (λk•enter k (seq , lev ′)) ks def d

in let t e ′ = Fold (Uncurry enter) (Map (λ(s,x )•(s, (x , lev ′))) tys) t e

in let c e ′ = Fold (Uncurry enter) (Map (λ(s,x )•(s, (x , lev ′))) cons) c e

in let tc′ = MkTHEORY CONTENTS

nm t e ′ c e ′ pars ax d def d ′ thm d lev ′ x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in let (thm st ′, 1 ) = εsa•new(pds mk thm state seq)thm st sa

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st ′

7.5.6 pds new type

pds new type introduce a new type with a given arity without any associated definitional axiom. It
takes two parameters, the first being the name of the type and the second being the arity. A type
with the same name as a type which is already in scope in the current theory is not allowed.

1. if some ancestor of the current theory contains a type with the same name then we leave the
state alone;

2. otherwise, let lev be the current level number;

3. using the result of step 2 and the parameters, compute a modified theory contents from the
current theory contents; the modified theory contents has level number lev + 1 and and a new
type entry for the new type;

4. assign the result of step 4 to the current theory;

5. return a state with the theory store modified as in step 5.
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HOL Constant

pds new type : STRING → N → (′UD)PDS STATE →
(′UD)PDS STATE

∀ty arity state•
pds new type ty arity state =

if ty ∈ Dom(types (current abstract theory state))

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let lev ′ = lev+1

in let t e ′ = enter ty (arity , lev ′) t e

in let tc′ = MkTHEORY CONTENTS

nm t e ′ c e pars ax d def d thm d lev ′ x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st

7.5.7 pds new constant

pds new constant introduce a new constant with a given type without any associated definitional
axiom. It takes two parameters, the first being the name of the constant and the second being the
type. A constant with the same name as a constant which is already in scope in the current theory
is not allowed.

1. if some ancestor of the current theory contains a constant with the same name, or if the supplied
type of the constant is not well-formed with respect to the current theory, then we leave the
state alone;

2. otherwise, let lev be the current level number;

3. using the result of step 2 and the parameters, compute a modified theory contents from the
current theory contents; the modified theory contents has level number lev + 1 and and a new
constant entry for the new constant;

4. assign the result of step 4 to the current theory;

5. return a state with the theory store modified as in step 5.
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HOL Constant

pds new constant : STRING → TYPE → (′UD)PDS STATE →
(′UD)PDS STATE

∀con ty state•
pds new constant con ty state =

if con ∈ Dom(constants (current abstract theory state))

∨ ¬ty ∈ wf type (types (current abstract theory state))

then state

else let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d , lev , x levs, ud) =

dest theory contents tc

in let lev ′ = lev+1

in let c e ′ = enter con (ty , lev ′) c e

in let tc′ = MkTHEORY CONTENTS

nm t e c e ′ pars ax d def d thm d lev ′ x levs ud

in let thy st ′ = (cur thy <− tc ′) thy st

in MkPDS STATE cur thy cur hier thy st ′ hier st thm st

7.6 Inference

The inference rules to be supplied will typically comprise primitive rules implementing the rules
specified in [5] together with rules which define string and other literals and rules which, while they
could be derived from the primitive rules, are built-in for reasons of efficiency. As a very special case,
we consider the inference rules to include the functions which given a theory name and a key return
the axiom (or definition or theorem) stored under that key in the indicated theory.

As with the definitional mechanisms, we wish to defer specification of the rules, and so we complete
the present specification by defining a “generic” inference function, make inference, parameterised
by a function which represents an implementation of such a set of rules.

SML

declare type abbrev("INFERRER", ["′IP", "′UD"],

p:((′IP , ′UD)SUBSYS INPUT × (′UD)PDS STATE ) ↔ SEQq);

An INFERRER is a partial function, represented as a set of pairs, which, returns a sequent.

The algorithm for make inference is as follows:

1. if the input and state are not in the domain of the INFERRER, or if the theorems in the input
are not all valid in the current theory then leave the state alone;

2. otherwise, apply the INFERRER to the input-state pair;

3. compute a theorem, with the current theory as its theory field, the current level number as its
level field, and with the result of step 2 as its sequent field;
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4. return a state with the result of step 3 added to the theorems proved field.

HOL Constant

make inference : (′IP , ′UD)INFERRER →
((′IP , ′UD)PDS INPUT × (′UD)PDS STATE ) →
(′UD)PDS STATE

∀inferrer pars thm ads state•
make inference inferrer ((pars, thm ads), state) =

if (∃thm ad•thm ad ∈ Elems thm ads ∧ ¬check thm address state thm ad)

then state

else let thms = fetch thms state thm ads

in

if ¬((pars, thms), state) ∈ Dom inferrer

∨ ¬current theory status state = TSNormal

then state

else let seq = inferrer@((pars, thms), state)

in let (cur thy , cur hier , thy st , hier st , thm st) = dest state state

in let (thm st ′, 1 ) = εsa•new(pds mk thm state seq)thm st sa

in MkPDS STATE cur thy cur hier thy st hier st thm st ′

8 SYSTEM CONSTRUCTION

We have defined the operations on the state in terms of two subsystems: the definitional mechanisms
and the inference rules. We now wish to say how the operations and two such subsystems are to be
combined to produce a system.

8.1 Auxiliary Definitions

We will say that a state-to-state transition function is allowed , if it is one of the operations on states
defined in section 7 above. Since some of these operations are parameterised by the definitional
mechanism or inference rules, so is this property:

HOL Constant

allowed : (′IP , ′UD)DEFINER →
(′IP , ′UD)INFERRER →
( (′UD)PDS STATE → (′UD)PDS STATE ) → BOOL

∀definer inferrer trans•
allowed definer inferrer trans ⇔

trans = freeze hierarchy

∨ trans = new hierarchy

∨ ∃addr•trans = load hierarchy addr

∨ ∃thyn•trans = open theory thyn

∨ ∃thyn•trans = delete theory thyn
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∨ ∃thyn ud•trans = new theory thyn ud

∨ ∃thyn•trans = new parent thyn

∨ ∃thyn copyn•trans = duplicate theory thyn copyn

∨ ∃thyn•trans = lock theory thyn

∨ ∃thyn•trans = unlock theory thyn

∨ ∃key thm•trans = save thm key thm

∨ trans = delete extension

∨ ∃key•trans = delete thm key

∨ ∃tm key•trans = pds new axiom tm key

∨ ∃ty arity•trans = pds new type ty arity

∨ ∃con ty•trans = pds new constant con ty

∨ ∃pars thm ads•trans = Curry(make definition definer)(pars, thm ads)

∨ ∃pars thm ads•trans = Curry(make inference inferrer)(pars, thm ads)

8.2 The System Construction

The construction of the system also involves a third subsystem: a “command interpreter”, which,
given a DEFINER and an INFERRER maps inputs onto transition functions. Thus it has the
following type:

SML

declare type abbrev("INTERPRETER", ["′IP", "′UD"],

p:(′IP , ′UD)DEFINER → (′IP , ′UD)INFERRER →
(′IP ,′UD)PDS INPUT →
(′UD)PDS STATE → (′UD)PDS STATEq);

The loosely specified function pds constructs a system from a DEFINER, an INFERRER and an
INTERPRETER. After expanding the type abbreviations, the systems it constructs may be seen to
have the following type:

Discussion

: ((′IP × (′UD)PDS THM list) × (′UD)PDS STATE )

→ ((′UD)PDS STATE × ((′UD)PDS THM STORE ))

Thus inputs to the system are composed of unspecified “parameters”, together with lists of theorems.
Its output is taken to be the theorem store (which, in practice, certainly includes any theorem
returned by one of the constructors of the abstract datatype).

pds constructs HOL SYSTEM s in the sense of [8], allowing us to assert the critical properties defined
in that document for these systems.

HOL Constant

pds : (′IP , ′UD)DEFINER →
(′IP , ′UD)INFERRER →
(′IP , ′UD)INTERPRETER →
( (′IP , ′UD)PDS INPUT ,

(′UD)PDS THM STORE ,

(′UD)PDS STATE )HOL SYSTEM
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∀definer inferrer interpreter•
pds definer inferrer interpreter =

( (λ((pars, thm ads), state)•
let state ′ = interpreter definer inferrer (pars, thm ads) state

in (state ′, ps theorem store state ′)),

interpret state )

8.3 Subsystem Critical Properties

We will use the term good of subsystems which satisfy their critical properties. The critical properties
can be expressed either syntactically or semantically. We choose the semantic formulation, which is
felt to be somewhat simpler.

A DEFINER is good if the extension of abstract theories induced by its intended effect on concrete
theories is definitional:
HOL Constant

good definer : (′IP , ′UD)DEFINER → BOOL

∀definer•good definer definer ⇔
∀pars thms state•

((pars, thms), state) ∈ Dom definer

⇒ let thy = current abstract theory state

in let (tyenv , conenv , axs) = rep theory thy

in let (seq , tys, cons, 1 ) = definer@((pars, thms), state)

in let tyenv ′ = Fold (λtn•λte•te ∪ {tn}) tys tyenv

in let conenv ′ = Fold (λst•λce•ce ∪ {st}) cons conenv

in let axs ′ = axs ∪ {seq}
in let thy ′ = abs theory(tyenv ′, conenv ′, axs ′)

in thy ∈ definitional extension thy ′

An INFERRER is good if the sequent it computes is always (a) valid with respect to the current
abstract theory and the theorems it is given as part of its parameter and (b) is well-formed with
respect to the current abstract theory. As in the definition of valid in [6], an apparently unused
parameter must be used to ensure that the type of the universe of models appears in the type of
good inferrer .

HOL Constant

good inferrer : ′U → (′IP , ′UD)INFERRER → BOOL

∀v inferrer•good inferrer v inferrer ⇔
∀pars thms state•

((pars, thms), state) ∈ Dom inferrer

⇒ let thy = current abstract theory state

in let seq = inferrer@((pars, thms), state)

in ( seq ∈ sequents thy

∧ seq ∈ valid v thy)
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An INTERPRETER is good if it always returns allowable state transitions.

HOL Constant

good interpreter : (′IP , ′UD)INTERPRETER → BOOL

∀interpreter•good interpreter interpreter ⇔
∀definer inferrer pars thm ads•

allowed definer inferrer(interpreter definer inferrer(pars, thm ads))

In terms of these notions of goodness we may now formulate a conjecture that good components,
according to the above syntactic definitions, make a system meeting its critical requirements either
in the semantic formulation:

Conjecture

?` ∀definer inferrer interpreter•
( good definer definer

∧ good inferrer inferrer

∧ ∀v :′U •good interpreter v interpreter)

⇒ ( standard (pds definer inferrer interpreter)

∧ ∀v :′U •validity preserving v (pds definer inferrer interpreter))

or in the syntactic formulation:

Conjecture

?` ∀definer inferrer interpreter•
( good definer definer

∧ good inferrer inferrer

∧ ∀v :′U •good interpreter v interpreter)

⇒ ( standard (pds definer inferrer interpreter)

∧ derivability preserving (pds definer inferrer interpreter))
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9 THEORY LISTING

10 THE THEORY spc005

10.1 Parents

spc004

10.2 Constants

initial dict (CHAR LIST × ′X ) SET
enter CHAR LIST

→ ′X
→ (CHAR LIST × ′X ) SET
→ (CHAR LIST × ′X ) SET

lookup CHAR LIST → (CHAR LIST × ′X ) SET → ′X → BOOL
delete CHAR LIST → (CHAR LIST × ′X ) SET → (CHAR LIST × ′X ) SET
block delete ′X SET → (CHAR LIST × ′X ) SET → (CHAR LIST × ′X ) SET
keys (CHAR LIST × ′X ) SET → CHAR LIST SET
$<− ′X ADDR → ′X → (′X ADDR × ′X ) SET → (′X ADDR × ′X ) SET
fetch ′X ADDR → (′X ADDR × ′X ) SET → ′X → BOOL
new ′X

→ (′X ADDR × ′X ) SET
→ (′X ADDR × ′X ) SET × ′X ADDR
→ BOOL

initial store
(′X ADDR × ′X ) SET

tc user data ′UD THEORY CONTENTS → ′UD
tc deleted levels

′UD THEORY CONTENTS → N SET
tc current level

′UD THEORY CONTENTS → N
tc theorem dict

′UD THEORY CONTENTS
→ (CHAR LIST × (TERM SET × TERM ) × N) SET

tc definition dict
′UD THEORY CONTENTS
→ (CHAR LIST × (TERM SET × TERM ) × N) SET

tc axiom dict
′UD THEORY CONTENTS
→ (CHAR LIST × (TERM SET × TERM ) × N) SET

tc parents ′UD THEORY CONTENTS → CHAR LIST LIST
tc con env ′UD THEORY CONTENTS → (CHAR LIST × TYPE × N) SET
tc ty env ′UD THEORY CONTENTS → (CHAR LIST × N × N) SET
tc name ′UD THEORY CONTENTS → CHAR LIST
MkTHEORY CONTENTS

CHAR LIST
→ (CHAR LIST × N × N) SET
→ (CHAR LIST × TYPE × N) SET
→ CHAR LIST LIST
→ (CHAR LIST × (TERM SET × TERM ) × N) SET
→ (CHAR LIST × (TERM SET × TERM ) × N) SET
→ (CHAR LIST × (TERM SET × TERM ) × N) SET
→ N
→ N SET
→ ′UD
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→ ′UD THEORY CONTENTS
TSDeleted ONE + ONE + ONE + ONE
TSAncestor ONE + ONE + ONE + ONE
TSLocked ONE + ONE + ONE + ONE
TSNormal ONE + ONE + ONE + ONE
ti contents ′UD THEORY INFO → ′UD THEORY CONTENTS ADDR
ti inscope ′UD THEORY INFO → BOOL
ti status ′UD THEORY INFO → ONE + ONE + ONE + ONE
MkTHEORY INFO

ONE + ONE + ONE + ONE
→ BOOL
→ ′UD THEORY CONTENTS ADDR
→ ′UD THEORY INFO

pt sequent ′UD PDS THM → TERM SET × TERM
pt level ′UD PDS THM → N
pt theory ′UD PDS THM → ′UD THEORY CONTENTS ADDR
MkPDS THM ′UD THEORY CONTENTS ADDR

→ N
→ TERM SET × TERM
→ ′UD PDS THM

ps theorem store
′UD PDS STATE → (′UD PDS THM ADDR × ′UD PDS THM ) SET

ps hierarchy store
′UD PDS STATE
→ (′UD THEORY INFO LIST ADDR × ′UD THEORY INFO LIST )
SET

ps theory store
′UD PDS STATE
→ (′UD THEORY CONTENTS ADDR × ′UD THEORY CONTENTS )
SET

ps current hierarchy
′UD PDS STATE → ′UD THEORY INFO LIST ADDR

ps current theory
′UD PDS STATE → ′UD THEORY CONTENTS ADDR

MkPDS STATE ′UD THEORY CONTENTS ADDR
→ ′UD THEORY INFO LIST ADDR
→ (′UD THEORY CONTENTS ADDR × ′UD THEORY CONTENTS )
SET
→ (′UD THEORY INFO LIST ADDR × ′UD THEORY INFO LIST )
SET
→ (′UD PDS THM ADDR × ′UD PDS THM ) SET
→ ′UD PDS STATE

initial theory
′UD
→ (′UD THEORY CONTENTS ADDR × ′UD THEORY CONTENTS )

SET
× ′UD THEORY INFO

initial state
′UD → ′UD PDS STATE

theory contents
′UD PDS STATE → CHAR LIST → ′UD THEORY CONTENTS → BOOL

theory names ′UD PDS STATE → CHAR LIST SET
theory ancestors

′UD PDS STATE → CHAR LIST → CHAR LIST SET
interpret theory contents

′UD THEORY CONTENTS SET
→ THEORY
× (TERM SET × TERM ) SET
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× (TERM SET × TERM ) SET
interpret state

′UD PDS STATE → THEORY HIERARCHY
dest state ′UD PDS STATE

→ ′UD THEORY CONTENTS ADDR
× ′UD THEORY INFO LIST ADDR
× (′UD THEORY CONTENTS ADDR × ′UD THEORY CONTENTS )
SET
× (′UD THEORY INFO LIST ADDR
× ′UD THEORY INFO LIST ) SET

× (′UD PDS THM ADDR × ′UD PDS THM ) SET
dest theory contents

′UD THEORY CONTENTS
→ CHAR LIST
× (CHAR LIST × N × N) SET
× (CHAR LIST × TYPE × N) SET
× CHAR LIST LIST
× (CHAR LIST × (TERM SET × TERM ) × N) SET
× (CHAR LIST × (TERM SET × TERM ) × N) SET
× (CHAR LIST × (TERM SET × TERM ) × N) SET
× N
× N SET
× ′UD

current theory contents
′UD PDS STATE → ′UD THEORY CONTENTS

current theory name
′UD PDS STATE → CHAR LIST

current abstract theory
′UD PDS STATE → THEORY

theory info ′UD PDS STATE → CHAR LIST → ′UD THEORY INFO
current theory status

′UD PDS STATE → ONE + ONE + ONE + ONE
check thm ′UD PDS STATE → ′UD PDS THM → BOOL
check thm address

′UD PDS STATE → ′UD PDS THM ADDR → BOOL
fetch thms ′UD PDS STATE

→ ′UD PDS THM ADDR LIST
→ ′UD PDS THM LIST

hierarchy ancestor
′UD PDS STATE
→ ′UD THEORY INFO LIST ADDR
→ ′UD THEORY INFO LIST ADDR
→ BOOL

pds mk thm ′UD PDS STATE → TERM SET × TERM → ′UD PDS THM
make current CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
freeze hierarchy

′UD PDS STATE → ′UD PDS STATE
new hierarchy

′UD PDS STATE → ′UD PDS STATE
load hierarchy

′UD THEORY INFO LIST ADDR
→ ′UD PDS STATE
→ ′UD PDS STATE

open theory CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
empty theory CHAR LIST → CHAR LIST LIST → ′UD → ′UD THEORY CONTENTS
arbitrary ud ′UD
delete theory

CHAR LIST → ′UD PDS STATE → ′UD PDS STATE

43



new theory CHAR LIST → ′UD → ′UD PDS STATE → ′UD PDS STATE
new parent CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
duplicate theory

CHAR LIST → CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
lock theory CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
unlock theory

CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
save thm CHAR LIST → ′UD PDS THM → ′UD PDS STATE → ′UD PDS STATE
is latest level

′UD PDS STATE → N → BOOL
delete extension

′UD PDS STATE → ′UD PDS STATE
delete thm CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
pds new axiom

TERM → CHAR LIST → ′UD PDS STATE → ′UD PDS STATE
make definition

(((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (′IP × ′UD PDS THM ADDR LIST ) × ′UD PDS STATE
→ ′UD PDS STATE

pds new type CHAR LIST → N → ′UD PDS STATE → ′UD PDS STATE
pds new constant

CHAR LIST → TYPE → ′UD PDS STATE → ′UD PDS STATE
make inference

(((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ (′IP × ′UD PDS THM ADDR LIST ) × ′UD PDS STATE
→ ′UD PDS STATE

allowed (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ (′UD PDS STATE → ′UD PDS STATE )
→ BOOL

pds (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ ((((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

44



→ ′IP × ′UD PDS THM ADDR LIST
→ ′UD PDS STATE
→ ′UD PDS STATE )
→ ((′IP × ′UD PDS THM ADDR LIST ) × ′UD PDS STATE
→ ′UD PDS STATE
× (′UD PDS THM ADDR × ′UD PDS THM ) SET )

× (′UD PDS STATE → THEORY HIERARCHY )
good definer (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )

× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ BOOL
good inferrer

′U
→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ BOOL
good interpreter

((((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ ′IP × ′UD PDS THM ADDR LIST
→ ′UD PDS STATE
→ ′UD PDS STATE )
→ BOOL

10.3 Types

′1 ADDR
′1 THEORY CONTENTS
′1 THEORY INFO
′1 PDS THM
′1 PDS STATE

10.4 Type Abbreviations

′X DICT (CHAR LIST × ′X ) SET
′X STORE (′X ADDR × ′X ) SET
STATUS ONE + ONE + ONE + ONE
′UD HIERARCHY

′UD THEORY INFO LIST
(′IP , ′UD) SUBSYS INPUT

′IP × ′UD PDS THM LIST
(′IP , ′UD) PDS INPUT

′IP × ′UD PDS THM ADDR LIST
(′IP , ′UD) DEFINER

(((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
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× CHAR LIST LIST ) SET
(′IP , ′UD) INFERRER

(((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

(′IP , ′UD) INTERPRETER
(((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )

× (TERM SET × TERM )
× (CHAR LIST × N) LIST
× (CHAR LIST × TYPE ) LIST
× CHAR LIST LIST ) SET

→ (((′IP × ′UD PDS THM LIST ) × ′UD PDS STATE )
× TERM SET
× TERM ) SET

→ ′IP × ′UD PDS THM ADDR LIST
→ ′UD PDS STATE
→ ′UD PDS STATE

10.5 Fixity

Right Infix 300 :
<−

10.6 Definitions

initial dict ` initial dict = {}
enter ` ∀ key item dict

• enter key item dict = dict ⊕ {(key , item)}
lookup ` ∀ key dict item

• lookup key dict item ⇔ (key , item) ∈ dict
delete ` ∀ key dict• delete key dict = {key} −C dict
block delete ` ∀ a dict• block delete a dict = dict −B a
keys ` keys = Dom
ADDR DEF ` ∃ f • TypeDefn (λ x• Fst x = (ε x• T )) f
<− ` ConstSpec

(λ $”<−′”
• ∀ addr value st
• addr ∈ Dom st
⇒ $”<−′” addr value st

= st ⊕ {(addr , value)})
$<−

fetch ` ∀ addr st value
• fetch addr st value ⇔ (addr , value) ∈ st

new ` ∀ value st1 st2 addr
• new value st1 (st2 , addr)
⇔ ¬ addr ∈ Dom st1 ∧ st2 = st1 ⊕ {(addr , value)}

initial store
` initial store = {}

THEORY CONTENTS
` ∃ f • TypeDefn (λ x• T ) f

MkTHEORY CONTENTS
tc name
tc ty env
tc con env
tc parents
tc axiom dict
tc definition dict
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tc theorem dict
tc current level
tc deleted levels
tc user data ` ∀ t x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

• tc name
(MkTHEORY CONTENTS

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x1
∧ tc ty env

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x2
∧ tc con env

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x3
∧ tc parents

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x4
∧ tc axiom dict

(MkTHEORY CONTENTS
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x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x5
∧ tc definition dict

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x6
∧ tc theorem dict

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x7
∧ tc current level

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x8
∧ tc deleted levels

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6

48



x7
x8
x9
x10 )

= x9
∧ tc user data

(MkTHEORY CONTENTS
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10 )

= x10
∧ MkTHEORY CONTENTS

(tc name t)
(tc ty env t)
(tc con env t)
(tc parents t)
(tc axiom dict t)
(tc definition dict t)
(tc theorem dict t)
(tc current level t)
(tc deleted levels t)
(tc user data t)

= t
TSNormal
TSLocked
TSAncestor
TSDeleted ` ConstSpec

(λ (TSNormal ′, TSLocked ′, TSAncestor ′, TSDeleted ′)
• [TSNormal ′; TSLocked ′; TSAncestor ′; TSDeleted ′]
∈ Distinct)

(TSNormal , TSLocked , TSAncestor , TSDeleted)
THEORY INFO ` ∃ f • TypeDefn (λ x• T ) f
MkTHEORY INFO
ti status
ti inscope
ti contents ` ∀ t x1 x2 x3

• ti status (MkTHEORY INFO x1 x2 x3 ) = x1
∧ (ti inscope (MkTHEORY INFO x1 x2 x3 ) ⇔ x2 )
∧ ti contents (MkTHEORY INFO x1 x2 x3 ) = x3
∧ MkTHEORY INFO

(ti status t)
(ti inscope t)
(ti contents t)

= t
PDS THM ` ∃ f • TypeDefn (λ x• T ) f
MkPDS THM
pt theory
pt level
pt sequent ` ∀ t x1 x2 x3

• pt theory (MkPDS THM x1 x2 x3 ) = x1
∧ pt level (MkPDS THM x1 x2 x3 ) = x2

49



∧ pt sequent (MkPDS THM x1 x2 x3 ) = x3
∧ MkPDS THM

(pt theory t)
(pt level t)
(pt sequent t)

= t
PDS STATE ` ∃ f • TypeDefn (λ x• T ) f
MkPDS STATE
ps current theory
ps current hierarchy
ps theory store
ps hierarchy store
ps theorem store

` ∀ t x1 x2 x3 x4 x5
• ps current theory (MkPDS STATE x1 x2 x3 x4 x5 ) = x1
∧ ps current hierarchy

(MkPDS STATE x1 x2 x3 x4 x5 )
= x2
∧ ps theory store (MkPDS STATE x1 x2 x3 x4 x5 )

= x3
∧ ps hierarchy store (MkPDS STATE x1 x2 x3 x4 x5 )

= x4
∧ ps theorem store (MkPDS STATE x1 x2 x3 x4 x5 )

= x5
∧ MkPDS STATE

(ps current theory t)
(ps current hierarchy t)
(ps theory store t)
(ps hierarchy store t)
(ps theorem store t)

= t
initial theory

` ∀ ud
• initial theory ud

= (let contents
= MkTHEORY CONTENTS

”MIN ”
initial dict
initial dict
[]
initial dict
initial dict
initial dict
0
{}
ud

in let (st , addr)
= (ε (st , addr)
• new contents initial store (st , addr))

in (st , MkTHEORY INFO TSNormal T addr))
initial state

` ∀ ud
• initial state ud

= (let (thy st , thy info) = initial theory ud
in let (hier st , hier addr)

= (ε (st , addr)
• new

[thy info]
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initial store
(st , addr))

in MkPDS STATE
(ti contents thy info)
hier addr
thy st
hier st
initial store)

theory contents
` ∀ state name thy c
• theory contents state name thy c
⇔ (let thy st = ps theory store state

in let hier st = ps hierarchy store state
in let cur hier = ps current hierarchy state

in let infos
= (ε x• fetch cur hier hier st x )

in let thys
= Map

((λ addr
• ε x• fetch addr thy st x )
o ti contents)

infos
in ∃ thy
• thy ∈ Elems thys
∧ tc name thy = name)

theory names ` ∀ state name
• name ∈ theory names state
⇔ (∃ thy c• theory contents state name thy c)

theory ancestors
` ∀ state name
• theory ancestors state name

=
⋂

{P
|(name ∈ theory names state ⇒ name ∈ P)
∧ (∀ anc1 thy c anc2
• anc1 ∈ P

∧ theory contents state anc1 thy c
∧ anc2 ∈ Elems (tc parents thy c)
⇒ anc2 ∈ P)}

interpret theory contents
` ∀ thy cs
• interpret theory contents thy cs

= (abs theory
({(tyn, arity)

|∃ thy c lev
• thy c ∈ thy cs
∧ lookup

tyn
(tc ty env thy c)
(arity , lev)},

{(cn, ty)
|∃ thy c lev
• thy c ∈ thy cs
∧ lookup

cn
(tc con env thy c)
(ty , lev)},

{seq
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|∃ thy c thmn lev
• thy c ∈ thy cs
∧ (lookup

thmn
(tc axiom dict thy c)
(seq , lev)
∨ lookup

thmn
(tc definition dict thy c)
(seq , lev))}),

{seq
|∃ thy c thmn lev
• thy c ∈ thy cs
∧ lookup

thmn
(tc definition dict thy c)
(seq , lev)},

{seq
|∃ thy c thmn lev
• thy c ∈ thy cs
∧ lookup

thmn
(tc theorem dict thy c)
(seq , lev)})

interpret state
` ∀ state
• interpret state state

= mk theory hierarchy
(λ thyn
• interpret theory contents
{tc
|∃ anc
• anc ∈ theory ancestors state thyn
∧ theory contents state anc tc})

dest state ` ∀ state
• dest state state

= (ps current theory state,
ps current hierarchy state,
ps theory store state,
ps hierarchy store state,
ps theorem store state)

dest theory contents
` ∀ tc
• dest theory contents tc

= (tc name tc, tc ty env tc, tc con env tc,
tc parents tc, tc axiom dict tc,
tc definition dict tc, tc theorem dict tc,
tc current level tc, tc deleted levels tc,
tc user data tc)

current theory contents
` ∀ state
• current theory contents state

= (let (cur thy , 1 , thy st , 2 , 3 )
= dest state state

in ε tc• fetch cur thy thy st tc)
current theory name

` ∀ state
• current theory name state
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= tc name (current theory contents state)
current abstract theory

` ∀ state
• current abstract theory state

= Fst
(interpret theory contents
{tc
|∃ anc
• anc

∈ theory ancestors
state
(current theory name state)

∧ theory contents state anc tc})
theory info ` ∀ state name

• theory info state name
= (let (cur thy , cur hier , thy st , hier st , 1 )

= dest state state
in let hier = (ε h• fetch cur hier hier st h)

in ε ti
• tc name

(ε tc
• fetch (ti contents ti) thy st tc)

= name
∧ ¬ ti status ti = TSDeleted)

current theory status
` ∀ state
• current theory status state

= ti status
(theory info state (current theory name state))

check thm ` ∀ state thm
• check thm state thm
⇔ (let (cur thy , cur hier , thy st , hier st , 1 )

= dest state state
in let tc

= (ε tc• fetch (pt theory thm) thy st tc)
in let ti = theory info state (tc name tc)

in pt theory thm = ti contents ti
∧ ti inscope ti
∧ ¬ pt level thm ∈ tc deleted levels tc)

check thm address
` ∀ state thm ad
• check thm address state thm ad
⇔ (let ( 1 , 2 , 3 , 4 , thm st)

= dest state state
in ∃ thm
• fetch thm ad thm st thm
∧ check thm state thm)

fetch thms ` ∀ state thm ads
• fetch thms state thm ads

= (let ( 1 , 2 , 3 , 4 , thm st)
= dest state state

in Map
(λ a• ε thm• fetch a thm st thm)
thm ads)

hierarchy ancestor
` ∀ state hier ad1 hier ad2
• hierarchy ancestor state hier ad1 hier ad2
⇔ (let ( 1 , cur hier , 2 , hier st , 3 )
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= dest state state
in ∀ h1 h2
• fetch hier ad1 hier st h1

∧ fetch hier ad2 hier st h2
⇒ Elems (Map ti contents h1 )
⊆ Elems (Map ti contents h2 ))

pds mk thm ` ∀ state seq
• pds mk thm state seq

= (let cur thy = ps current theory state
in let lev

= tc current level
(current theory contents state)

in MkPDS THM cur thy lev seq)
make current ` ∀ thyn state

• make current thyn state
= (let (cur thy , cur hier , thy st , hier st ,

thm st)
= dest state state

in let f1 ti
= tc name

(ε tc
• fetch (ti contents ti) thy st tc)

in let f2 ti
⇔ f1 ti ∈ theory ancestors state thyn

in let f3 ti
= MkTHEORY INFO

(ti status ti)
(f2 ti)
(ti contents ti)

in let hier ′

= Map
f3
(ε h• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in let cur thy ′

= ti contents
(theory info state thyn)

in MkPDS STATE
cur thy ′

cur hier
thy st
hier st ′

thm st)
freeze hierarchy

` ∀ state
• freeze hierarchy state

= (let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let f1 n

= (if n = TSDeleted
then n
else TSAncestor)

in let f2 ti
= MkTHEORY INFO

(f1 (ti status ti))
(ti inscope ti)
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(ti contents ti)
in let hier ′

= Map
f2
(ε h• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in MkPDS STATE

cur thy
cur hier
thy st
hier st ′

thm st)
new hierarchy

` ∀ state
• new hierarchy state

= (let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let hier = (ε h• fetch cur hier hier st h)

in if
∃ ti
• ti ∈ Elems hier
∧ ¬ ti status ti
∈ {TSAncestor ; TSDeleted}

then state
else

(let (hier st ′, cur hier ′)
= (ε (st , a)
• new hier hier st (st , a))

in MkPDS STATE
cur thy
cur hier ′

thy st
hier st ′

thm st))
load hierarchy

` ∀ hier state
• load hierarchy hier state

= (let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in if ¬ hierarchy ancestor state cur hier hier
then state
else

(let cur thyn = current theory name state
in let st ′

= MkPDS STATE
cur thy
hier
thy st
hier st
thm st

in make current cur thyn st ′))
open theory ` ∀ thyn state

• open theory thyn state
= (if
¬ thyn ∈ theory names state
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∨ ti status (theory info state thyn)
= TSDeleted

then state
else make current thyn state)

empty theory ` ∀ thyn pars ud
• empty theory thyn pars ud

= MkTHEORY CONTENTS
thyn
initial dict
initial dict
pars
initial dict
initial dict
initial dict
0
{}
ud

arbitrary ud ` T
delete theory

` ∀ thyn state
• delete theory thyn state

= (if
¬ thyn ∈ theory names state
∨ ¬ ti status (theory info state thyn)

= TSNormal
∨ ti inscope (theory info state thyn)
∨ (∃ childname tc
• theory contents state childname tc
∧ thyn ∈ Elems (tc parents tc))

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let ti = theory info state thyn

in let f ti ′

= (if ti ′ = ti
then

MkTHEORY INFO
TSDeleted
F
(ti contents ti)

else ti)
in let hier ′

= Map
f
(ε h• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in let thy

= empty theory
thyn
[]
arbitrary ud

in let thy st ′

= (ti contents ti <− thy)
thy st

in MkPDS STATE
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cur thy
cur hier
thy st ′

hier st ′

thm st))
new theory ` ∀ thyn ud state

• new theory thyn ud state
= (if thyn ∈ theory names state

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let thy

= empty theory
thyn
[current theory name state]
ud

in let (thy st ′, addr)
= (ε (st , a)
• new thy thy st (st , a))

in let ti
= MkTHEORY INFO TSNormal F addr

in let hier ′

= Cons
ti
(ε h
• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in MkPDS STATE

cur thy
cur hier
thy st ′

hier st ′

thm st))
new parent ` ∀ thyn state

• new parent thyn state
= (if
¬ thyn ∈ theory names state
∨ thyn
∈ Elems

(tc parents
(current theory contents state))

∨ (∃ ancn
• ancn

∈ theory ancestors state thyn
\ theory ancestors

state
(current theory name state)

∧ (let anc
= (ε anc
• theory contents state ancn anc)

in let cur thy
= current abstract theory state

in (∃ ty nlev
• ty ∈ Dom (types cur thy)
∧ lookup
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ty
(tc ty env anc)
nlev)

∨ (∃ con tylev
• con ∈ Dom (constants cur thy)
∧ lookup

con
(tc con env anc)
tylev)))

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let cur thyn = current theory name state

in let f1 ti
= tc name

(ε tc
• fetch

(ti contents ti)
thy st
tc)

in let f2 ti
⇔ f1 ti
∈ theory ancestors state thyn
∨ ti inscope ti

in let f3 ti
= MkTHEORY INFO

(ti status ti)
(f2 ti)
(ti contents ti)

in let hier ′

= Map
f3
(ε h
• fetch

cur hier
hier st
h)

in let tc
= current theory contents

state
in let (nm, t e, c e, pars,

ax d , def d , thm d ,
lev , x levs, ud)

= dest theory contents tc
in let tc′

= MkTHEORY CONTENTS
nm
t e
c e
(Cons thyn pars)
ax d
def d
thm d
lev
x levs
ud
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in let hier st ′

= (cur hier <− hier ′)
hier st

in let thy st ′

= (cur thy <− tc′)
thy st

in MkPDS STATE
cur thy
cur hier
thy st ′

hier st ′

thm st))
duplicate theory

` ∀ thyn copyn state
• duplicate theory thyn copyn state

= (if
¬ thyn ∈ theory names state
∨ copyn ∈ theory names state
∨ thyn = ”MIN ”

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let tc

= (ε tc
• theory contents state thyn tc)

in let (nm, t e, c e, pars, ax d , def d ,
thm d , lev , x levs, ud)

= dest theory contents tc
in let tc′

= MkTHEORY CONTENTS
copyn
t e
c e
(Cons thyn pars)
ax d
def d
thm d
lev
x levs
ud

in let (thy st ′, addr)
= (ε (st , a)
• new tc′ thy st (st , a))

in let ti
= MkTHEORY INFO

TSNormal
F
addr

in let hier ′

= Cons
ti
(ε h
• fetch

cur hier
hier st
h)
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in let hier st ′

= (cur hier <− hier ′)
hier st

in MkPDS STATE
cur thy
cur hier
thy st ′

hier st ′

thm st))
lock theory ` ∀ thyn state

• lock theory thyn state
= (if
¬ thyn ∈ theory names state
∨ ¬ ti status (theory info state thyn)

= TSNormal
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let ti = theory info state thyn

in let f ti ′

= (if ti ′ = ti
then

MkTHEORY INFO
TSLocked
(ti inscope ti)
(ti contents ti)

else ti)
in let hier ′

= Map
f
(ε h• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in MkPDS STATE

cur thy
cur hier
thy st
hier st ′

thm st))
unlock theory

` ∀ thyn state
• unlock theory thyn state

= (if
¬ thyn ∈ theory names state
∨ ¬ ti status (theory info state thyn)

= TSLocked
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let ti = theory info state thyn

in let f ti ′

= (if ti ′ = ti
then

MkTHEORY INFO
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TSNormal
(ti inscope ti)
(ti contents ti)

else ti)
in let hier ′

= Map
f
(ε h• fetch cur hier hier st h)

in let hier st ′

= (cur hier <− hier ′) hier st
in MkPDS STATE

cur thy
cur hier
thy st
hier st ′

thm st))
save thm ` ∀ key thm state

• save thm key thm state
= (let tc = current theory contents state

in if
key ∈ keys (tc theorem dict tc)
∨ ¬ current theory status state = TSNormal
∨ ¬ check thm state thm

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let level

= (if pt theory thm = cur thy
then pt level thm
else 0 )

in let thm d ′

= enter
key
(pt sequent thm, level)
(tc theorem dict tc)

in let (nm, t e, c e, pars, ax d ,
def d , thm d , lev , x levs, ud)

= dest theory contents tc
in let tc′

= MkTHEORY CONTENTS
nm
t e
c e
pars
ax d
def d
thm d ′

lev
x levs
ud

in let thy st ′

= (cur thy <− tc′) thy st
in MkPDS STATE

cur thy
cur hier
thy st ′
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hier st
thm st))

is latest level
` ∀ state lev
• is latest level state lev
⇔ (let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d , thm d ,
lev , x levs, ud)

= dest theory contents tc
in let present

= {lv
|(∃ 1 key• lookup key t e ( 1 , lv))
∨ (∃ 1 key
• lookup key c e ( 1 , lv))
∨ (∃ 1 key
• lookup key ax d ( 1 , lv))}

in lev ∈ present
∧ (∀ lv• lv ∈ present ⇒ lv ≤ lev))

delete extension
` ∀ state
• delete extension state

= (let tc = current theory contents state
in if
¬ (∃ lev• is latest level state lev)
∨ (∃ childname tc
• theory contents state childname tc
∧ current theory name state
∈ Elems (tc parents tc))

∨ ¬ current theory status state = TSNormal
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let (nm, t e, c e, pars, ax d , def d ,

thm d , lev , x levs, ud)
= dest theory contents tc

in let dlev
= (ε lv• is latest level state lv)

in let def d ′

= block delete
{( 1 , lv)|lv = dlev}
def d

in let ax d ′

= block delete
{( 1 , lv)|lv = dlev}
ax d

in let t e ′

= block delete
{( 1 , lv)|lv = dlev}
t e

in let c e ′

= block delete
{( 1 , lv)|lv = dlev}
c e

in let lev ′ = lev + 1
in let tc′

= MkTHEORY CONTENTS
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nm
t e ′

c e ′

pars
ax d ′

def d ′

thm d
lev ′

(x levs ∪ {dlev})
ud

in let thy st ′

= (cur thy <− tc′)
thy st

in MkPDS STATE
cur thy
cur hier
thy st ′

hier st
thm st))

delete thm ` ∀ key state
• delete thm key state

= (let tc = current theory contents state
in if
¬ key ∈ keys (tc theorem dict tc)
∨ ¬ current theory status state = TSNormal

then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let (nm, t e, c e, pars, ax d , def d ,

thm d , lev , x levs, ud)
= dest theory contents tc

in let thm d ′ = delete key thm d
in let tc′

= MkTHEORY CONTENTS
nm
t e
c e
pars
ax d
def d
thm d ′

lev
x levs
ud

in let thy st ′

= (cur thy <− tc′) thy st
in MkPDS STATE

cur thy
cur hier
thy st ′

hier st
thm st))

pds new axiom
` ∀ tm key state
• pds new axiom tm key state

= (let tc = current theory contents state
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in let seq = ({}, tm)
in if

key ∈ keys (tc axiom dict tc)
∨ ¬ seq
∈ sequents

(current abstract theory state)
∨ ¬ current theory status state

= TSNormal
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let (nm, t e, c e, pars, ax d , def d ,

thm d , lev , x levs, ud)
= dest theory contents tc

in let lev ′ = lev + 1
in let ax d ′

= enter key (seq , lev ′) ax d
in let tc′

= MkTHEORY CONTENTS
nm
t e
c e
pars
ax d ′

def d
thm d
lev ′

x levs
ud

in let thy st ′

= (cur thy <− tc′) thy st
in let (thm st ′, 1 )

= (ε sa
• new

(pds mk thm
state
seq)

thm st
sa)

in MkPDS STATE
cur thy
cur hier
thy st ′

hier st
thm st ′))

make definition
` ∀ definer pars thm ads state
• make definition definer ((pars, thm ads), state)

= (if
∃ thm ad
• thm ad ∈ Elems thm ads
∧ ¬ check thm address state thm ad

then state
else

(let thms = fetch thms state thm ads
in if ¬ ((pars, thms), state) ∈ Dom definer
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then state
else

(let (seq , tys, cons, ks)
= definer @ ((pars, thms), state)

in let (cur thy , cur hier , thy st ,
hier st , thm st)

= dest state state
in let tc

= current theory contents state
in let (nm, t e, c e, pars, ax d ,

def d , thm d , lev , x levs,
ud)

= dest theory contents tc
in let lev ′ = lev + 1

in let def d ′

= Fold
(λ k
• enter

k
(seq , lev ′))

ks
def d

in let t e ′

= Fold
(Uncurry enter)
(Map

(λ (s, x )
• (s, x , lev ′))

tys)
t e

in let c e ′

= Fold
(Uncurry enter)
(Map

(λ (s, x )
• (s, x ,

lev ′))
cons)

c e
in let tc′

= MkTHEORY CONTENTS
nm
t e ′

c e ′

pars
ax d
def d ′

thm d
lev ′

x levs
ud

in let thy st ′

= (cur thy
<− tc′)

thy st
in let (thm st ′, 1 )

= (ε sa
• new
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(pds mk thm state seq)
thm st
sa)

in MkPDS STATE
cur thy
cur hier
thy st ′

hier st
thm st ′)))

pds new type ` ∀ ty arity state
• pds new type ty arity state

= (if
ty
∈ Dom

(types (current abstract theory state))
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d ,
thm d , lev , x levs, ud)

= dest theory contents tc
in let lev ′ = lev + 1

in let t e ′

= enter ty (arity , lev ′) t e
in let tc′

= MkTHEORY CONTENTS
nm
t e ′

c e
pars
ax d
def d
thm d
lev ′

x levs
ud

in let thy st ′

= (cur thy <− tc′) thy st
in MkPDS STATE

cur thy
cur hier
thy st ′

hier st
thm st))

pds new constant
` ∀ con ty state
• pds new constant con ty state

= (if
con
∈ Dom

(constants
(current abstract theory state))

∨ ¬ ty
∈ wf type

(types
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(current abstract theory state))
then state
else

(let (cur thy , cur hier , thy st , hier st ,
thm st)

= dest state state
in let tc = current theory contents state

in let (nm, t e, c e, pars, ax d , def d ,
thm d , lev , x levs, ud)

= dest theory contents tc
in let lev ′ = lev + 1

in let c e ′

= enter con (ty , lev ′) c e
in let tc′

= MkTHEORY CONTENTS
nm
t e
c e ′

pars
ax d
def d
thm d
lev ′

x levs
ud

in let thy st ′

= (cur thy <− tc′) thy st
in MkPDS STATE

cur thy
cur hier
thy st ′

hier st
thm st))

make inference
` ∀ inferrer pars thm ads state
• make inference inferrer ((pars, thm ads), state)

= (if
∃ thm ad
• thm ad ∈ Elems thm ads
∧ ¬ check thm address state thm ad

then state
else

(let thms = fetch thms state thm ads
in if
¬ ((pars, thms), state) ∈ Dom inferrer
∨ ¬ current theory status state

= TSNormal
then state
else

(let seq
= inferrer @ ((pars, thms), state)

in let (cur thy , cur hier , thy st ,
hier st , thm st)

= dest state state
in let (thm st ′, 1 )

= (ε sa
• new

(pds mk thm state seq)
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thm st
sa)

in MkPDS STATE
cur thy
cur hier
thy st
hier st
thm st ′)))

allowed ` ∀ definer inferrer trans
• allowed definer inferrer trans
⇔ trans = freeze hierarchy
∨ trans = new hierarchy
∨ (∃ addr
• trans = load hierarchy addr
∨ (∃ thyn
• trans = open theory thyn
∨ (∃ thyn
• trans = delete theory thyn
∨ (∃ thyn ud
• trans = new theory thyn ud
∨ (∃ thyn
• trans = new parent thyn
∨ (∃ thyn copyn
• trans

= duplicate theory
thyn
copyn

∨ (∃ thyn
• trans

= lock theory
thyn

∨ (∃ thyn
• trans

= unlock theory
thyn

∨ (∃ key thm
• trans

= save thm
key
thm
∨ trans = delete extension
∨ (∃ key
• trans = delete thm key
∨ (∃ tm key
• trans = pds new axiom tm key
∨ (∃ ty arity
• trans = pds new type ty arity
∨ (∃ con ty
• trans = pds new constant con ty
∨ (∃ pars thm ads
• trans

= Curry
(make definition definer)
(pars, thm ads)

∨ (∃ pars thm ads
• trans

= Curry
(make inference inferrer)
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(pars,
thm ads))))))))))))))))

pds ` ∀ definer inferrer interpreter
• pds definer inferrer interpreter

= ((λ ((pars, thm ads), state)
• (let state ′

= interpreter
definer
inferrer
(pars, thm ads)
state

in (state ′, ps theorem store state ′))),
interpret state)

good definer ` ∀ definer
• good definer definer
⇔ (∀ pars thms state
• ((pars, thms), state) ∈ Dom definer
⇒ (let thy = current abstract theory state

in let (tyenv , conenv , axs)
= rep theory thy

in let (seq , tys, cons, 1 )
= definer @ ((pars, thms), state)

in let tyenv ′

= Fold
(λ tn te• te ∪ {tn})
tys
tyenv

in let conenv ′

= Fold
(λ st ce• ce ∪ {st})
cons
conenv

in let axs ′ = axs ∪ {seq}
in let thy ′

= abs theory
(tyenv ′, conenv ′, axs ′)

in thy
∈ definitional extension

thy ′))
good inferrer

` ∀ v inferrer
• good inferrer v inferrer
⇔ (∀ pars thms state
• ((pars, thms), state) ∈ Dom inferrer
⇒ (let thy = current abstract theory state

in let seq
= inferrer @ ((pars, thms), state)

in seq ∈ sequents thy
∧ seq ∈ valid v thy))

good interpreter
` ∀ interpreter
• good interpreter interpreter
⇔ (∀ definer inferrer pars thm ads
• allowed

definer
inferrer
(interpreter

definer
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inferrer
(pars, thm ads)))
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