HOL Formalised:
 Deductive System

R.D. Arthan
Lemma 1 Ltd.
rda@lemma-one.com

25 October 1993
Revised 17 October 2002

Abstract

This is part of a suite of documents giving a formal specification of the HOL logic. It defines the primitive inference rules, including conservative extension mechanisms. Related notions such as derivability are also defined.

The treatment of the HOL deductive system formally defined here is closely based on the semi-formal treatment in the documentation for the Cambridge HOL system.

An index to the formal material is provided at the end of the document.

1 DOCUMENT CONTROL

1.1 Contents list
1 DOCUMENT CONTROL 1
1.1 Contents list 1
1.2 Document cross references 2
2 GENERAL 3
2.1 Scope 3
2.2 Introduction 3
3 PREAMBLE 3
4 THE RULES OF INFERENCE 3
4.1 Free Variables 4
4.2 Object Language Constructs 4
4.3 Substitution of Equals 5
4.3.1 Substitution 6
4.3.2 $\quad \alpha$-conversion 7
4.3.3 The Inference Rule $S U B S T$ 7
4.4 Abstraction: ABS 8
4.5 Type Instantiation 8
4.5.1 Instantiation of Terms 9
4.5.2 The Inference Rule $I N S T_{-} T Y P E$ 11
4.6 Discharging an Assumption: DISCH 12
4.7 Modus Ponens: MP 13
5 THE AXIOM SCHEMATA 13
5.1 The Axiom Schema ASSUME 13
5.2 The Axiom Schema REFL 13
5.3 The Axiom Schema BETA_CONV 14
6 DERIVABILITY 14
7 NORMAL THEORIES 15
7.1 Object Language Constructs 15
7.2 Normal Thoeries 16
8 THEOREMS 17
9 CONSISTENCY AND CONSERVATIVE EXTENSION 18
10 DEFINITIONAL EXTENSIONS 19
10.1 Object Language Constructs 19
10.1.1 Truth 20
10.1.2 Universal Quantification 20
10.1.3 Existential Quantification 21
10.1.4 Falsity 21
10.1.5 Negation 22
10.1.6 Conjunction 22
10.1.7 Disjunction 23
10.1.8 ONE_ONE 24
10.1.9 ONTO 25
10.1.10 Type_Definition 25
10.2 new_type and new_constant 26
10.3 new_axiom 27
10.4 new_definition 27
10.5 new_specification 28
10.6 new_type_definition 30
11 THE THEORY INIT 31
11.1 The Axioms 31
11.1.1 BOOL_CASES_AX 31
11.1.2 IMP_ANTISYM_AX 31
11.1.3 ETA_AX 31
11.1.4 SELECT_AX 32
11.1.5 INFINITY_AX 32
11.2 The Theory 32
11.3 DEFINITIONAL EXTENSIONS 32
12 INDEX OF DEFINED TERMS 34

1.2 Document cross references

[1] DS/FMU/IED/SPC001. HOL Formalised: Language and Overview. R.D. Arthan, Lemma 1 Ltd., http://www.lemma-one.com.
[2] DS/FMU/IED/SPC004. HOL Formalised: Proof Development System. R.D. Arthan, Lemma 1 Ltd., http://www.lemma-one.com.
[3] The HOL System: Description. SRI International, 4 December 1989.

2 GENERAL

2.1 Scope

This document specifies the HOL deductive system. Some high level aspects of the implementation of the proof development system are also discussed. It is part of a suite of documents specifying the HOL logic, an overview of which may be found in [1].

2.2 Introduction

In [1] a brief theoretical discussion of the definition of deductive systems is given. In this document we fill in the details for HOL.

The first task is to define the rules of inference. HOL has five rules of inference: $A B S, D I S C H$, INST_TYPE, MP, SUBST (defined in section 4 below) and three axiom schemata: ASSUME, BETA_CONV and REFL (defined in section 5). We follow [3] in treating the axiom schemata just like unary rules of inference. Such rules are a convenient home for infinite families of axioms that we wish to have in every theory.

With the rules of inference in hand, we define derivability in section 6 . We then define the type of theorems of HOL as those pairs (s, T) where T is a theory and s is a sequent in the language of T derivable from the axioms of T.

Section 9, defines the type of all theorems and specifies the notions of consistency and conservative extension.

Mechanisms for extending theories by making definitions are of great practical importance, particularly those which preserve consistency. Section 10 discusses the means by which theories may be extended in the HOL system. Of particular importance are certain mechanisms for introducing new constants and types.
In section 11 we define the individual axioms of the HOL logic. The resulting theory is of special interest, as are what we call its definitional extensions, which we define in section 11.3: they are all consistent and have a common standard set-theoretic model; their theorems comprise what are normally taken to be the theorems of HOL by those who shun axiomatic extensions.

3 PREAMBLE

We introduce the new theory. Its parent is the theory spc001 which contains definitions concerned with the HOL language.
smL
open_theory"spc001";
new_theory" spc003";

4 THE RULES OF INFERENCE

In this section we treat the syntax manipulating functions required to define the various rules of inference. We consider each inference rule in turn. In the HOL system the inference rules are functions which take theorems (and other things) as arguments and return theorems. Since we
cannot define the type of theorems until we have defined the inference rules we define the rules as functions taking sequents (and other things) as arguments and returning sequents.

4.1 Free Variables

freevars_list returns the free variables of a term listed in order of first appearance (from left to right in the usual concrete syntax).

```
HOL Constant
    freevars_list:TERM }->((STRING\times TYPE)LIST
    \foralls:STRING; ty : TYPE; tm f a vty b:TERM
    freevars_list (mk_var(s,ty))=[(s,ty)]
    ^
    freevars_list (mk_const (s,ty)) = []
    ^
    (has_mk_comb (f,a)tm=> freevars_list tm = freevars_list f }~\mathrm{ freevars_list a)
^
((has_mk_abs(vty,b) tm ^ mk_var(s,ty) = vty) =>
    freevars_list tm = freevars_list b}~~{(s,ty)}
```

freevars_set returns the set of free variables of a term. We use it in cases where the order of appearance of the free variables in the term is immaterial.

```
HOL Constant
freevars_set:TERM }->(STRING\times TYPE)SE
    \foralltm : TERM\bulletfreevars_set tm = Elems(freevars_list tm)
```


4.2 Object Language Constructs

To define the rules of inference we need to form certain object language types and terms. We have already defined the function space type constructor. The other definitions needed are given in this section.

We need to form instances of the polymorphic constant " $=$ ":
HOL Constant
Equality : TYPE \rightarrow TERM
$\forall t y \bullet$ Equality $t y=m k_{-} \operatorname{const}("="$, Fun ty $($ Fun ty Bool $))$
The following is our analogue of the derived constructor function for equations in the HOL system.

```
has_mk_eq : (TERM \times TERM) }->\mathrm{ TERM }->\mathrm{ BOOL
\foralllhs rhs tm \bullet has_mk_eq(lhs,rhs) tm \Leftrightarrow
\exists tm2 •
    has_mk_comb(Equality(type_of_term lhs),lhs) tm2
\ has_mk_comb(tm2,rhs)tm
```

We also need to form implications. The following functions are analogous to those treating equality above.

HOL Constant

Implication : TERM
Implication $=m k_{-}$const $(" \Rightarrow "$, Fun Bool $($ Fun Bool Bool $))$

HOL Constant
has_mk_imp : $($ TERM \times TERM $) \rightarrow$ TERM \rightarrow BOOL
\forall lhs rhs $t m$ • has_mk_imp (lhs, rhs) $t m \Leftrightarrow$
\exists tm2 •
has_mk_comb(Implication, lhs) tm2
$\wedge \quad h a s _m k_{-} c o m b(t m 2, r h s) t m$

4.3 Substitution of Equals

In this section we define the inference rule SUBST.
In essence, SUBST says that given a theorem whose conclusion is an equation, $\mathcal{A}=\mathcal{B}$, where \mathcal{A} and \mathcal{B} are arbitrary terms of the same type, and given any other theorem with conclusion \mathcal{C}, we may obtain a new theorem by substituting \mathcal{B} for any subterm of \mathcal{C} which is identical with \mathcal{A}. This is subject to the proviso that no variable capture problems arise, i.e. no free variables of \mathcal{B} should become bound in the conclusion of the new theorem. (The assumption set of the consequent theorem is the union of the assumption sets of the antecedent theorems.)
The inference rule is, in fact, slightly more general. It allows one to use a whole set of theorems whose conclusions are equations to perform (simultaneous) substitutions for many subterms of \mathcal{C}. Moreover, it is implemented as a functional relation, effectively by renaming any bound variables of \mathcal{C} which would give rise to the capture problem.

The inference rule is parametrised by a template term and a set of some of its free variables, one for each equation. The actual statement of the rule is, essentially, that, if the result of substituting the left hand sides of the equations for the corresponding variables in the template term is equal to \mathcal{C} (modulo renaming bound variables), then we may infer the result of substituting the right hand sides of the equations for the corresponding template variables in the template term (providing we rename bound variables to avoid the capture problem).

The notions we must formalise are therefore: (i) substituting terms for free variables in a term according to a given mapping of variables to terms renaming bound variables as necessary to avoid variable capture; (ii) testing equivalence of terms modulo renaming of bound variables (aka. α conversion).

4.3.1 Substitution

We will need to choose new names for variables. More precisely, given a variable and a set of same we will wish to rename the variable, when necessary, to ensure that the result does not lie in the set. In practice in an implementation we would insist that the new name be derived from the old one in a specified way.

```
HOL Constant
    variant : ((STRING }\times\mathrm{ TYPE)SET ) }->(STRING\timesTYPE) ->STRING
\forallvs v ty \bullet
    if }\neg(v,ty)\inv
    then variant vs (v,ty)=v
    else }\neg(variant vs (v,ty),ty)\inv
```

Now we can define subst. Given a function R associating free variables with terms, subst R t1 is the term resulting from replacing every free variable $m k_{-} \operatorname{var}(s, t)$ in $t 1$ by $R\left(m k_{-} v a r(s, t)\right)$ with bound variables renamed as necessary to avoid capture. Variables which are not to be changed correspond to pairs (s, t) with $R(s, t)=m k_{-} \operatorname{var}(s, t)$.

Note R here is intended to respect types, in the sense that $\forall \operatorname{sty} \bullet t y p e_{-} f_{-} t e r m(R(s, t y))=t y$, but this is not checked here (since it is convenient for subst to be a total function). This property should be checked whenever subst is used.

The only difficult case in subst is when the second argument is an abstraction. In this case we calculate the variables which must not get captured (this is the value new_frees below) and use variant to give an alternative name for the bound variable if necessary. We then perform the substitution on the body using a function, $R R$, which is R modified to send the old bound variable to the new one.

HOL Constant

$$
\text { subst }:((S T R I N G \times T Y P E) \rightarrow \text { TERM }) \rightarrow \text { TERM } \rightarrow \text { TERM }
$$

```
\(\forall R:(S T R I N G \times T Y P E) \rightarrow T E R M ; t m: T E R M ;\)
\(s: S T R I N G ; ~ t y ~: ~ T Y P E ; ~ v t y ~: ~ T E R M ; ~\)
\(f: T E R M ; a: T E R M ; b: T E R M\)
subst \(R\left(m k_{-} \operatorname{var}(s, t y)\right)=R(s, t y)\)
\(\wedge\)
subst \(R\left(m k_{-} \operatorname{const}(s, t y)\right)=m k_{-} \operatorname{const}(s, t y)\)
\(\wedge\)
\(\left(h a s \_m k_{-} c o m b(f, a) t m \Rightarrow\right.\)
(subst \(R\) tm \(=\epsilon t \bullet h a s \_m k_{\_}\)comb \((\)subst \(R f\), subst \(\left.R a) t\right)\) )
\(\wedge\)
\(\left(\left(h a s \_m k_{-} a b s(v t y, b) t m \wedge m k_{\_} v a r(s, t y)=v t y\right) \Rightarrow\right.\)
(subst \(R\) tm \(=\)
    let new_frees \(=\bigcup(\) Graph (freevars_set o \(R\) ) Image
                                    (freevars_set \(b \backslash\{(s, t y)\}))\)
        in let \(s^{\prime}=\) variant new_frees \((s\), ty \()\)
        in let \(R R x=\) if \(x=(s\), ty \()\) then \(m k_{-} v a r\left(s^{\prime}\right.\), ty \()\) else \(R x\)
```

in

$$
\begin{aligned}
& \epsilon t \bullet \\
& \text { has_mk_abs } \\
& \left(m k_{_} v a r\left(s^{\prime}, t y\right),\right. \text { subst RR b)t }
\end{aligned}
$$

))
The special case of substitution where we simply wish to rename a variable is needed in the definition of our α-conversion test and elsewhere. The following function rename is used for this purpose. rename $(v, t y) w e$ is the result of changing the name in every free occurrence of the variable with name v, and type $t y$, in the term e, to w, renaming any bound variables as necessary.

```
HOL Constant
    rename:(STRING }\times\mathrm{ TYPE ) }->\mathrm{ STRING }->\mathrm{ TERM }->\mathrm{ TERM
```

$\forall v: S T R I N G ;$ ty : TYPE; w: STRING
-
rename $(v, t y) w=$
subst $\left(\lambda x \bullet i f x=(v, t y)\right.$ then $m k_{-} v a r(w, t y)$ else mk_var $\left.x\right)$

4.3.2 α-conversion

Our α-conversion test is as follows:

```
HOL Constant
    aconv:TERM }->\mathrm{ TERM }->\mathrm{ BOOL
    \forallt1 t2 : TERM
    aconv t1 t2 \Leftrightarrow
        (t1 = t2)
    V (\existst1f t1a t2f t2a\bullet
        has_mk_comb(t1f,t1a)t1
        ^ has_mk_comb(t2f, t2a)t2
        ^aconv t1f t2f ^aconv t1a t2a)
    V (\existsv1 v2 ty v1ty v2ty b1 b2\bullet
                has_mk_abs(v1ty,b1)t1 ^ has_mk_abs(v2ty, b2)t2
    ^ mk_var(v1,ty)=v1ty ^ m mk_var(v2,ty)=v2ty
    ^ aconv b1 (rename (v2, ty) v1 b2)
    \wedge ((v1 = v2) \vee (\neg(v1, ty) \in freevars_set b2 )))
```


4.3.3 The Inference Rule SUBST

We can now define the inference rule. Its first argument gives the correspondence between the template variables and equation theorems. We could take this argument to behave as REFL_axiom o mk_var on variables which are not template variables . Note that, to allow implementation as a partial function, we test up to α-convertibility on the first sequent argument only. Note also that the
way that the first argument to subst is constructed by dismantling equations ensures that it respects types.

```
HOL Constant
```



```
\foralleqs tm old_asms old_conc new_asms new_conc\bullet
SUBST_rule eqs tm (old_asms,old_conc) (new_asms, new_conc) \Leftrightarrow
(\forallv ty \bullet
    \existslhs rhs\bullet
    has_mk_eq(lhs,rhs)(concl(eqs(v,ty))) ^
    (type_of_term lhs = ty))
^
(aconv old_conc (subst (\lambda(v,ty)\bullet\epsilonlhs\bullet\existsrhs\bullethas_mk_eq(lhs,rhs)(concl(eqs(v,ty))))tm))
^
(new_conc = subst ( }\lambda(v,ty)\bullet\epsilonrhs\bullet\existslhs\bullethas_mk_eq(lhs,rhs)(concl(eqs(v,ty))))tm)
^
(new_asms = old_asms \cup U{asms | \existsvty\bulletasms=(hyp (eqs vty))})
```


4.4 Abstraction: ABS

Again $A B S$ is a partial function which we specify as a relation:
HOL Constant

$$
\text { ABS_rule }:(S T R I N G \times T Y P E) \rightarrow S E Q \rightarrow S E Q \rightarrow B O O L
$$

```
\(\forall\) vty old_asms old_conc new_asms new_conc
ABS_rule vty (old_asms,old_conc) (new_asms, new_conc) \(\Leftrightarrow\)
( \(\exists\) old_lhs old_rhs new_lhs new_rhs v•
    \(h a s \_m k_{-} e q\left(o l d \_l h s, o l d \_r h s\right) o l d \_c o n c \wedge\)
    has_mk_eq(new_lhs, new_rhs)new_conc \(\wedge\)
    \(m k_{-} v a r v t y=v \wedge\)
    \(h a s \_m k_{-} a b s\left(v, o l d d_{-} l h s\right) n e w_{-} l h s \wedge\)
    \(\left.h a s \_m k_{\_} a b s\left(v, o l d \_r h s\right) n e w \_r h s\right)\)
\(\wedge\)
\((\neg v t y \in \bigcup(\) Graph freevars_set Image old_asms \())\)
\(\wedge\)
\(\left(n e w_{-} a s m s=o l d_{-} a s m s\right)\)
```


4.5 Type Instantiation

The ability to prove and use general (polymorphic) theorems is one of the great strengths of the HOL system. The feature in the inference system which gives this strength is the inference rule $I N S T_{-}$ $T Y P E$ which allows us to instantiate the type variables in the conclusion of a polymorphic theorem.

In essence, the inference rule says that, given a theorem with conclusion, \mathcal{A}, say, we may infer the theorem which has the same assumption set and whose conclusion results from instantiating every type in \mathcal{A} according to a given mapping of type variables to types. This is subject to two provisos: (i) no type variable may be changed which appears in the assumption set for the theorem; (ii) no two variables in the assumptions or conclusion of the antecedent theorem, which are different, by virtue of their type, should become identified in the consequent theorem as a result of the transformation.

The first proviso is, we believe, only enforced to preserve a convention of natural deduction systems, whereby inference rules involve only simple set operations on the assumption sets. It would seem to be quite in order for the first proviso to be dropped provided we insisted that the type instantiation be applied to every term in the sequent (we have, of course, not done this).
The second proviso cannot be avoided. Consider for example: $\lambda(x: * *) \bullet \lambda(x: *) \bullet(x: * *)$. If the types in this were instantiated according to $\{: * * \mapsto: *,: * \mapsto: *\}$, then from:

$$
\vdash \forall(\mathbf{y}: * *)(\mathbf{z}: *) \bullet(\lambda(\mathbf{x}: * *) \bullet \lambda(\mathbf{x}: *) \bullet(\mathbf{x}: * *)) \mathbf{y} \mathbf{z}=\mathbf{y}
$$

we could infer that:

$$
\vdash \forall(\mathbf{y}: *)(\mathbf{z}: *) \bullet(\lambda(\mathbf{x}: *) \bullet \lambda(\mathbf{x}: *) \bullet(\mathbf{x}: *)) \mathbf{y} \mathbf{z}=\mathbf{y}
$$

whence, by β-conversions:

$$
\vdash \forall(\mathbf{y}: *)(\mathbf{z}: *) \bullet \mathbf{z}=\mathbf{y} .
$$

This leads to a contradiction whenever : $*$ is instantiated to a type with more than one inhabitant.
To permit an implementation which is convenient to use, the inference rule is actually formulated without the second proviso. Instead, variables (both free and bound, in general) in the conclusion of the consequent theorem, which would violate the rule are renamed to avoid the problem. It is valid to rename free variables in these circumstances, given the first proviso, since the variables in question cannot occur free in the assumption set. Note that it would be invalid to rename free variables in \mathcal{A} which are not changed by the type instantiation (since these may appear free in the assumption set).
Formalising these notions is a little tricky. We present here a highly unconstructive specification, reminiscent of α-conversion. The notion to be formalised is the predicate on pairs of terms which says whether one is a type instance of another according to a given mapping of type variables to types and with respect to a set of variables with which clashes must not occur (this will be the set of free variables of the assumptions in practice).

It is entertaining and instructive to consider algorithms meeting these specifications.

4.5.1 Instantiation of Terms

Instantiation of terms is a little tricky. The following two functions should be viewed as local to the function inst. inst_loc1 is very similar to an α-convertibility test. Indeed aconv could have been defined as inst_loc1 I. The first TERM argument of inst_loc1 and inst_loc2 gives the terms whose types are being instantiated (i.e. it is the "more polymorphic" term).
inst_loc1 checks that one term, tm2, is a type instance of tm1, according to a mapping from type variable names to types given by tysubs, under the assumption that the free variable names agree, i.e. that the first occurrence of each variable which may need renaming will be its binding occurrence in a λ-abstraction.

$$
\text { inst_loc1 }:(S T R I N G \rightarrow \text { TYPE }) \rightarrow \text { TERM } \rightarrow \text { TERM } \rightarrow \text { BOOL }
$$

```
\(\forall\)
tysubs : STRING \(\rightarrow\) TYPE;
tm1 tm2 : TERM•
inst_loc1 tysubs tm1 tm2 \(\Leftrightarrow\)
            ( \(\exists s\) ty1 ty2 \(m k_{-} X \bullet\)
            \(\left(\left(m k_{-} X=m k_{-} v a r\right) \vee\left(m k_{-} X=m k_{-}\right.\right.\)const \(\left.)\right)\)
        \(\wedge \quad m k_{-} X(s, t y 1)=t m 1 \wedge m k_{-} X(s\), ty2 \()=t m 2\)
        \(\wedge \quad(\) ty2 \(=\) inst_type tysubs ty1) \()\)
\(\vee \quad(\exists t m 1 f\) tm1a tm2f tm2a•
    \(h a s \_m k_{-} c o m b(t m 1 f, t m 1 a) t m 1 \wedge h a s_{-} m k_{-} \operatorname{comb}(t m 2 f, t m 2 a) t m 2\)
    \(\wedge \quad i n s t_{-} l o c 1\) tysubs tm1f tm2f \(\wedge\) inst_loc1 tysubs tm1a tm2a)
\(\vee \quad(\exists v 1\) v2 ty1 ty2 b1 b2 v1ty1 v2ty2 •
    \(m k_{-} \operatorname{var}(v 1, t y 1)=v 1 t y 1 \wedge h a s_{-} m k_{-} a b s(v 1 t y 1, b 1) t m 1\)
\(\wedge \quad m k_{-} \operatorname{var}(v 2\), ty2 \()=\) v2ty2 \(\wedge h a s_{-} m k_{-} a b s(v 2 t y 2, b 2) t m 2\)
\(\wedge \quad i n s t \_l o c 1\) tysubs (rename (v1, ty1) v2 b1) b2
\(\wedge \quad(\) ty2 \(=\) inst_type tysubs ty1)
\(\wedge \quad \neg(\exists\) ty3 v2ty3
                \(m k_{-} v a r(v 2, t y 3)=v 2 t y 3\)
            \(\wedge \quad((v 2\), ty3 \() \in\) freevars_set b1)
            \(\wedge \quad(\) ty2 \(=\) inst_type tysubs ty3)
            \(\wedge \quad(\neg\) v2ty3 \(=\) v1ty1 \()))\)
```

inst_loc2 uses inst_loc1 to check that a term tm2 is a type instance of the result of renaming free variables of a term tm2 according to a mapping given by a list of pairs. It also checks that the type of the second variable in each pair in the list is a type instance of the type of the first variable in the pair, and that the second variable in each pair is not in the set, avoid, unless both names and types agree for that pair. In the application of inst_loc2 in inst the list of pairs is obtained by combining the free variable lists of the two terms side by side. The set avoid is a set of variables (coming from the assumptions of a sequent) whose free occurrences must not change as a result of the type instantiation.

```
HOL Constant
inst_loc2:((STRING × TYPE)SET) }
    (STRING }->\mathrm{ TYPE) }
    (((STRING × TYPE) × (STRING × TYPE)) LIST) }
    TERM -> TERM }->\mathrm{ BOOL
\forallavoid : (STRING × TYPE)SET;
tysubs :STRING -> TYPE;
v1 : STRING; ty1 : TYPE;
v2 :STRING; ty2 : TYPE;
rest : ((STRING × TYPE) }\times(STRING × TYPE ) LIST;
tm1 tm2 : TERM\bullet
```

```
(inst_loc2 avoid tysubs [] tm1 tm2 \Leftrightarrow
    inst_loc1 tysubs tm1 tm2)
    ^
    (inst_loc2 avoid tysubs (Cons ((v1, ty1),(v2, ty2)) rest) tm1 tm2 \Leftrightarrow
        (((v2, ty2) \in avoid ) => ((v1, ty1) = (v2, ty2)))
    (ty2 = inst_type tysubs ty1)
    inst_loc2 avoid tysubs rest
    (rename (v1, ty1) v2 tm1) tm2)
```

With the above preliminaries we can now define inst. Note that the condition that the free variable lists of the two terms have the same length is required to ensure that inst_loc2 examines each free variable of each term.

```
HOL Constant
    inst:((STRING \times TYPE) SET) }
        (STRING }->\mathrm{ TYPE) }->\mathrm{ TERM }->\mathrm{ TERM
    \forallavoid :(STRING × TYPE)SET;
    tysubs:STRING -> TYPE; tm1 : TERM\bullet
    let tm2 = inst avoid tysubs tm1
    in let fl1 = freevars_list tm1
    in let fl2 = freevars_list tm2
    in
        ((Length fl1 = Length fl2)
    \inst_loc2 avoid tysubs (Combine fl1 fl2) tm1 tm2)
```


4.5.2 The Inference Rule $I N S T$ _ TYPE

Given inst, we need a few simple auxiliaries before we can define the inference rule INST_TYPE.
We need to detect the type variables in a term. We use some auxiliary functions to do this: type_tyvars detects the type variables in a type.

```
HOL Constant
    type_tyvars: TYPE }->(STRING SET
        (\foralls\bullet type_tyvars (mk_var_type s)={s})
    \wedge (\foralls tl\bullet type_tyvars (mk_type (s,tl)) =
        U(Elems (Map type_tyvars tl)))
```

term_types detects the types in a term.

```
HOL Constant
term_types: TERM }->(TYPE SET
\foralltm : TERM; s:STRING; ty : TYPE;
f :TERM; a : TERM; v:TERM; b:TERM\bullet
term_types (mk_var(s,ty))={ty}
\wedge
term_types (mk_const (s,ty)) ={ty}
^
(has_mk_comb (f,a) tm =(term_types tm = term_types f U term_types a))
^
(has_mk_abs(v,b) tm m(term_types tm = term_types v \cup term_types b))
```

term_tyvars detects all the type variables in a term using the previous two functions.
HOL Constant
term_tyvars : TERM $\rightarrow(S T R I N G S E T)$
$\forall t m \bullet$ term_tyvars $t m=\bigcup($ Graph type_tyvars Image (term_types tm) $)$

INST_TYPE_rule is now readily defined:

```
HOL Constant
INST_TYPE_rule : (STRING -> TYPE) }->\mathrm{ SEQ }->\mathrm{ SEQ }->\mathrm{ BOOL
tysubs old_asms old_conc new_seq\bullet
INST_TYPE_rule tysubs (old_asms,old_conc) new_seq \Leftrightarrow
( }\forall\mathrm{ tyv •
    (tyv }\in\cup(Graph term_tyvars Image old_asms)) 
        (tysubs tyv = mk_var_type tyv))
^
let asms_frees = \ (Graph freevars_set Image old_asms)
in
        new_seq = (old_asms, inst asms_frees tysubs old_conc)
```


4.6 Discharging an Assumption: DISCH

$D I S C H$ is, in essence, the usual rule of natural deduction which allows one to infer from a proof of \mathcal{B} on the assumption \mathcal{A}, that $\mathcal{A} \Rightarrow \mathcal{B}$ on no assumption. The actual rule is suitably generalised to cover sequents and their assumption sets. It is not required that \mathcal{A} be in the assumption set, and the logic would probably not be complete otherwise.

```
HOL Constant
    DISCH_rule : \(T E R M \rightarrow S E Q \rightarrow S E Q \rightarrow B O O L\)
\(\forall\) tm old_asms old_conc new_seq •
DISCH_rule tm (old_asms, old_conc) new_seq \(\Leftrightarrow\)
(type_of_term tm \(=\) Bool) \(\wedge\)
\(\left(\right.\) new_seq \(=\left(\left(o l d \_a s m s \backslash\{t m\}\right)\right.\), \(\left.\left.\epsilon \bullet \bullet h a s \_m k \_i m p\left(t m, o l d \_c o n c\right) t\right)\right)\)
```


4.7 Modus Ponens: MP

This is the usual rule: from $\mathcal{A} \Rightarrow \mathcal{B}$ and \mathcal{A}, infer \mathcal{B}. This generalises to sequents by taking the union of the assumption sets.

HOL Constant

```
MP_rule : \(S E Q \rightarrow S E Q \rightarrow S E Q \rightarrow B O O L\)
\(\forall\) imp_asms imp_conc ant_asms ant_conc new_asms new_conc
MP_rule (imp_asms, imp_conc) (ant_asms, ant_conc) (new_asms, new_conc) \(\Leftrightarrow\)
(has_mk_imp(ant_conc, new_conc)imp_conc) \(\wedge\)
\((\) new_asms \(=\) imp_asms \(\cup\) ant_asms \()\)
```


5 THE AXIOM SCHEMATA

5.1 The Axiom Schema ASSUME

ASSUME allows us to infer for any boolean term \mathcal{A}, that \mathcal{A} holds on the assumptions $\{\mathcal{A}\}$. This is straightforward to formalise. We must check that the term being assumed is of the right type.
HOL Constant
ASSUME_axiom : TERM $\rightarrow S E Q \rightarrow B O O L$
\forall tm seq • ASSUME_axiom tm seq \Leftrightarrow
(type_of_term tm $=$ Bool) \wedge
$(s e q=(\{t m\}, t m))$

5.2 The Axiom Schema REFL

REFL says that for any term \mathcal{A}, we may infer that $\mathcal{A}=\mathcal{A}$ without assumptions.

```
HOL Constant
```

REFL_axiom : TERM $\rightarrow S E Q$
$\forall t m \bullet R E F L_{-}$axiom $t m=\left(\{ \}, \epsilon t \bullet h a s_{_} m k_{_} e q(t m, t m) t\right)$

5.3 The Axiom Schema BETA_CONV

$B E T A_{-} C O N V$ says that, without any assumptions, any β-redex is equal to its β-reduction. This is straightforward to define, given the apparatus we used to define $S U B S T$. Note that the way we construct the first argument to subst by dismantling a combination ensures that it respects types.

HOL Constant

$$
\text { BETA_CONV_axiom : TERM } \rightarrow S E Q \rightarrow B O O L
$$

```
tm new_seq\bullet
BETA_CONV_axiom tm new_seq \Leftrightarrow
\exists v ty vty b abs a
mk_var (v,ty) = vty ^
has_mk_abs(vty, b)abs ^
has_mk_comb (abs,a)tm ^
(new_seq =
let subs: ((STRING }\times\mathrm{ TYPE ) }->\mathrm{ TERM )=
    (\lambda(vx, tyx)\bullet if vx = v^tyx = ty then a else mk_var (vx, tyx ))
in
    ({},(\epsilont\bullethas_mk_eq(tm, subst subs b)t)))
```


6 DERIVABILITY

In this section we will define derivability. This is a relation between sets of sequents and sequents. As usual, we first define direct derivability. We include instances of the axiom schemata as valid direct derivations from no premisses. This is merely for convenience, we could equally well include all instances of the axiom schemata as axioms in every theory when theories are defined.

```
HOL Constant
```

 directly_derivable_from \(: S E Q \rightarrow(S E Q S E T) \rightarrow B O O L\)
    ```
* seq seqs \bullet
directly_derivable_from seq seqs }
(\exists eqs tm old_seq \bullet
Ran (Graph eqs)\subseteq seqs ^ old_seq }\in\mathrm{ seqs ^SUBST_rule eqs tm old_seq seq)
v
(\exists vty old_seq \bullet old_seq }\in\mathrm{ seqs ^ ABS_rule vty old_seq seq)
V
(\exists tysubs old_seq \bullet old_seq \in seqs ^ INST_TYPE_rule tysubs old_seq seq)
V
(\exists tm old_seq \bullet old_seq }\in\mathrm{ seqs ^ DISCH_rule tm old_seq seq)
V
(\exists imp_seq ant_seq \bullet
imp_seq }\in\mathrm{ seqs ^ ant_seq }\in\mathrm{ seqs ^ MP_rule imp_seq ant_seq seq)
V
(\exists tm \bullet ASSUME_axiom tm seq)
```

```
V
    tm}\bulletseq=REF\mp@subsup{L}{-}{\primeaxiom tm)
V
(\exists tm \bullet BETA_CONV_axiom tm seq)
```

Proofs will just be lists of sequents. Any non-empty list is a valid proof (of the sequent at its head) on the premisses given by those elements of the list which are not directly derivable from elements later in the list. There is little point in making the relevant type definition for a syntactic class of proofs in this sense, since they contain so little information. We simply define the function which extracts the set of premisses.

```
HOL Constant
    premisses : (SEQ LIST) }->(SEQ SET
    *eq rest
    premisses [] = {}
    ^
    premisses (Cons seq rest)=
    if directly_derivable_from seq (Elems rest)
    then premisses rest
    else {seq}}\cup premisses res
```

HOL Constant
derivable_from : SEQ $\rightarrow(S E Q$ SET $) \rightarrow$ BOOL
\forall seq seqs •
derivable_from seq seqs $=$
\exists seql • premisses $($ Cons seq seql) \subseteq seqs

7 NORMAL THEORIES

In [1] a type THEORY is defined to represent the idea of a theory comprising signatures governing the formation of types and terms and a set of axioms. However the type THEORY is too general for our present purposes, since we have formulated rules of inference on the assumption that the nullary type ":bool" and the constants " $=$ " and " \Rightarrow " are available. In this section we define a predicate normal_theory which selects the theories in which the inference rules are intended to be valid. (The normal theories correspond to those whose type structures and signatures are standard in the terminology of [3]. Unfortunately the term standard theory is used for a stronger notion in [3].)

7.1 Object Language Constructs

To define the type of all well-formed HOL theories we need two further object language constructs: the choice function " ϵ " and the type of individuals": ind". These are required since we will follow [3] in insisting on the presence of the equality, implication and choice functions in each theory. It
is noteworthy however that neither the rules of inference nor the standard conservative extension mechanisms require choice or the individuals; they are only used in the axioms given in section 11.

| HOL Constant |
| :--- |
| Star : TYPE |
| Star $=m k_{\text {_var_type }} \quad * *$ |

| Hol Constant |
| :--- | :--- |
| Choice : TERM |
| Choice $=m k_{-}$const $((" \epsilon "$, Fun (Fun Star Bool) Star)) |

```
HOL Constant
```

 Ind : TYPE
 Ind \(=m k_{-}\)type \((" i n d ",[])\)

7.2 Normal Thoeries

We now wish to define the predicate normal_theory. It is natural to say that the normal theories are those which extend the minimal normal theory which contains only ":bool", "=" etc. Thus we must define this minimal normal theory and also the notion of extension of theories.
$M I N$ is the minimal normal theory. It is represented by the triple MIN_REP:

```
HOL Constant
    MIN_REP : TY_ENV }\times\mathrm{ CON_ENV }\times\mathrm{ SEQS
    MIN_REP = (
        {("bool", 0); ("->", 2 ); ("ind", 0 )},
        {("=", Fun Star (Fun Star Bool));
                ("=>", Fun Bool (Fun Bool Bool));
        (" }\epsilon\mathrm{ ", Fun (Fun Star Bool)Star)},
        {}
    )
HOL Constant
    MIN : THEORY
    MIN = abs_theory MIN_REP
```

Extension for objects of type THEORY is the following binary relation:
smL
|declare_infix(200, " extends");

```
\forallthy1 thy2\bullet
thy1 extends thy2 }
(types thy2 \subseteq types thy1) }
(constants thy2 \subseteq constants thy1) ^
(axioms thy2 \subseteqaxioms thy1)
```

The normal theories are those which extend the minimal theory MIN. Note that we do not exclude inconsistent theories here. (This corresponds to the possibility of introducing inconsistent axioms in the HOL system).

```
HOL Constant
    is_normal_theory : THEORY SET
    \forallthy\bulletthy \in is_normal_theory = thy extends MIN
```


8 THEOREMS

We can, at last, define the type of all HOL theorems. A theorem will consist of a sequent and a theory. The type is the subtype of the type of all such pairs in which the sequent is well-formed with respect to the type and constant environments of the theory and in which the sequent may be derived from the axioms of the theory.

HOL Constant

```
is_thm \(\quad:(S E Q \times T H E O R Y)\) SET
```

\forall seq thy \bullet
$(s e q, t h y) \in i s _t h m \Leftrightarrow$
thy \in is_normal_theory
\wedge
seq \in sequents thy
\wedge
derivable_from seq (axioms thy)

Note that if (seq, thy) is a theorem in this sense, the derivation of seq from the axioms of thy may involve sequents which are not well-formed with respect to thy (i.e. which contain type operators or constants which are not in thy). This is allowed since it simplifies the definition of derivability and makes no difference to the set of theorems in a given theory (this is essentially the fact that the extension mechanisms new_type and new_constant are conservative).

Proving that $\exists t h m \bullet t h m \in i s _t h m$ involves rather more work than has been involved in previous type definitions. (A witness is easy to supply, e.g. (REFL_axiom ($m k_{-} \operatorname{var}\left({ }^{(} x, S t a r\right)$), MIN) would do. However, to show that it is a witness we need to compute sequents MIN and to do this we must show that MIN_REP is indeed the representative of a theory and checking the conditions on the two environments is rather long-winded). For the time being we therefore defer this proof task and use type_spec to define the type, THM, of theorems.

```
SML
type_spec \(\left\{r e p_{-} f u n=" r e p_{-} t h m ", d e f \_t m=\ulcorner\right.\)
    \(\mathbf{T H M} \simeq \mathbf{m k}\) _thm Of is_thm
ᄀ
\};
```

The components of a theorem are extracted using the following functions:
HOL Constant

```
            thm_seq : \(T H M \rightarrow S E Q\)
    \(\forall\) thm •
    thm_seq thm \(=\) Fst(rep_thm thm)
```

HOL Constant
thm_thy : THM \rightarrow THEORY
$\forall t h m$
thm_thy thm $=$ Snd $($ rep_thm thm)

9 CONSISTENCY AND CONSERVATIVE EXTENSION

A theory is consistent if not every sequent which is well-formed in it can be derived from the axioms:

An extension of a theory is conservative if no sequent of the smaller theory is provable in the larger but not in the smaller.

SML
|declare_infix(200, " conservatively_extends");

```
\forallthy1 thy2\bullet
thy1 conservatively_extends thy2 }
(thy1 extends thy2) ^
(\forall seq •
(seq \in sequents thy2) =>
(derivable_from seq (axioms thy1)) =>
(derivable_from seq (axioms thy2)))
```


10 DEFINITIONAL EXTENSIONS

10.1 Object Language Constructs

A theory $L O G$ in which more of the standard logical apparatus is available will be needed to define some of the definitional extension mechanisms. For example, new_type_definition works with a theorem whose conclusion must be an existentially quantified term of a particular form. To define $L O G$ we need some more object language types and terms and these are defined in this section. (It is convenient to leave the definition of $L O G$ itself until we have defined new_definition.)

The formulation of the various logical connectives follows the HOL manual, [3].
It is helpful now to have the following term constructor functions. Note that we are now using total functions to approximate partial ones; we must, therefore, be careful only to apply them to appropriate arguments.

We can now define the object language constructs needed. (These could be defined via our explicit representations of types and terms using strings. This has not been done since the explicit concrete syntax used is very hard to read.)

10.1.1 Truth

The constant T : bool is defined by the following equation:

$$
\mathbf{T}=((\lambda(\mathbf{x}: \text { bool }) \bullet \mathbf{x})=(\lambda(\mathbf{x}: \text { bool }) \bullet \mathbf{x}))
$$

HOL Constant

| Truth : TERM |
| :--- |
| Truth $=$ mk_const $(" T "$, Bool $)$ |

```
HOL Constant
```

 Truth_def : TERM
 Truth_def \(=\)
 let \(x=m k_{-} v a r(" x "\), Bool \()\)
 in
 \(m k_{-} e q\left(m k_{_} a b s(x, x), m k_{_} a b s(x, x)\right)\)

10.1.2 Universal Quantification

The constant $\forall:(* \rightarrow b o o l) \rightarrow b o o l$ is defined by the following equation:

$$
\$ \forall=(\lambda(\mathbf{P}: * \rightarrow \text { bool }) \bullet \mathbf{P}=(\lambda(\mathbf{x}: *) \bullet \mathbf{T})
$$

```
HOL Constant
    Forall : TYPE \(\rightarrow\) TERM
    \(\forall\) ty \(\bullet\) Forall ty \(=m k_{-}\)const \((" \forall "\), Fun (Fun ty Bool) Bool \()\)
HoL Constant
    Forall_def : TERM
    Forall_def =
    let \(P=m k_{-} v a r(" P "\), Fun Star Bool)
    in let \(x=m k_{-} \operatorname{var}(" x "\), Star \()\)
    in
    \(m k_{-} a b s\left(P, m k_{-} e q\left(P, m k_{-} a b s(x, T r u t h)\right)\right)\)
HOL Constant
    mk_forall : \((\) TERM \(\times\) TERM \() \rightarrow\) TERM
    \(\forall\) tm1 tm2•mk_forall \((t m 1\), tm2 \()=\)
    \(m k_{-} c o m b\left(F o r a l l\left(t y p e_{-} o f\right.\right.\) _term tm1), \(\left.m k_{-} a b s(t m 1, t m 2)\right)\)
```


10.1.3 Existential Quantification

The constant $\exists:(* \rightarrow$ bool $) \rightarrow$ bool is defined by the following equation, which defines \exists in terms of the choice function $\epsilon:(* \rightarrow b o o l) \rightarrow *$:

$$
\$ \exists=\lambda(\mathbf{P}: * \rightarrow \mathbf{b o o l}) \bullet \mathbf{P}(\epsilon \mathbf{P})
$$

(This may be a little perplexing at first sight. In the intended interpretations, given a predicate $P: * \rightarrow b o o l$, if there is some $x: *$ for which P is true (i.e. for which $P x=T$), then ϵP is such an x. I.e. taking as known the intuitive notion of "whether or not something with a given property exists", ϵ chooses something with a given property if such a thing exists. The above definition can be viewed as taking as known the informal notion of "choosing something with a given property" and defining \exists to determine whether or not something with a given property exists by attempting to choose something with the given property and checking whether the attempt succeeded.)

```
HOL Constant
    Exists : TYPE }->\mathrm{ TERM
\forallty \bullet Exists ty =mk_const("\exists", Fun (Fun ty Bool) Bool)
```

```
HOL Constant
```

HOL Constant
Exists_def : TERM
Exists_def : TERM
Exists_def =
Exists_def =
let P = mk_var("P", Fun Star Bool)
let P = mk_var("P", Fun Star Bool)
in let PchoiceP = mk_comb (P,mk_comb(Choice, P))
in let PchoiceP = mk_comb (P,mk_comb(Choice, P))
in
in
mk_abs(P, PchoiceP)
mk_abs(P, PchoiceP)
HOL Constant
has_mk_exists : (TERM × TERM) }->\mathrm{ TERM }->\mathrm{ BOOL
\forallm1 tm2 tm3 •
has_mk_exists(tm1, tm2) tm3 =
has_mk_comb(Exists (type_of_term tm1),mk_abs(tm1,tm2))tm3
HOL Constant
mk_exists : (TERM }\times\mathrm{ TERM) }->\mathrm{ TERM
\foralltm1 tm2\bulletmk_exists(tm1, tm2) =
mk_comb(Exists (type_of_term tm1),mk_abs(tm1, tm2))

```

\subsection*{10.1.4 Falsity}

The constant \(F:\) bool is defined by the following equation:
\[
\mathbf{F}=\forall(\mathbf{x}: \text { bool }) \bullet \mathbf{x}
\]
(Again this may seem perplexing. The type bool is intended to contain the truth values. The above definition says that false is the truth value of the proposition that every truth value is true!)

HOL Constant
\begin{tabular}{|l} 
Falsity : TERM \\
Falsity \(=m k_{-}\)const \(\left({ }^{\prime \prime} F^{\prime \prime}\right.\), Bool \()\)
\end{tabular}

HOL Constant
Falsity_def : TERM

Falsity_def \(=\)
let \(x=m k_{-} \operatorname{var}(" x ", B o o l)\)
in
\(m k_{-}\)forall \((x, x)\)

\subsection*{10.1.5 Negation}

The constant \(\neg:\) bool \(\rightarrow\) bool is defined by the following equation:
\[
\$ \neg=\lambda(\mathbf{b}: \mathbf{b o o l}) \bullet \mathbf{b} \Rightarrow \mathbf{F}
\]
\begin{tabular}{|l} 
Hol Constant \\
Negation \(:\) TERM \\
Negation \(=m k_{-}\)const \((" \neg "\), Fun Bool Bool \()\)
\end{tabular}

HOL Constant
Negation_def : TERM

Negation_def \(=\)
let \(b=m k_{-} v a r(" b ", B o o l)\)
in
\(m k_{\_} a b s\left(b, m k_{\_} i m p(b, F a l s i t y)\right)\)

\subsection*{10.1.6 Conjunction}

The constant \(\wedge:\) bool \(\rightarrow\) bool \(\rightarrow\) bool is defined by the following equation:
\[
\$ \wedge=\lambda \mathbf{b} 1 \bullet \lambda \mathbf{b} 2 \bullet \forall \mathbf{b} \bullet(\mathbf{b} 1 \Rightarrow(\mathbf{b} 2 \Rightarrow \mathbf{b})) \Rightarrow \mathbf{b}
\]
(I assume, but do not know, that the above formulation has some practical advantage in the present context over the more obvious definition in terms of \(\neg\) and \(\Rightarrow\).)

The name of the constant is a slash, /, followed by a backslash, \(\backslash\). The backslash character must be escaped by another backslash character within an HOL string.

HOL Constant
\begin{tabular}{|l} 
Conjunction : TERM \\
Conjunction \(=m k_{-}\)const \((" / \backslash \backslash "\), Fun Bool \((\) Fun Bool Bool \())\)
\end{tabular}

HOL Constant
Conjunction_def : TERM

Conjunction_def \(=\)
let \(b=m k_{-} v a r(" b ", B o o l)\)
in let b1 = mk_var("b1", Bool)
in let b2 = mk_var("b2", Bool)
in
\(m k_{-} a b s\left(b 1, m k_{-} a b s\left(b 2, m k_{-} f o r a l l\left(b, m k_{-} i m p\left(m k_{-} i m p\left(b 1, m k_{-} i m p(b 2, b)\right), b\right)\right)\right)\right)\)

A derived constructor function for conjunctions is useful.
HOL Constant
mk_conj \(:(T E R M \times T E R M) \rightarrow\) TERM
```

\foralltm1 tm2\bullet
mk_conj(tm1,tm2) = mk_comb(m\mp@subsup{k}{-}{}\operatorname{comb}(\mathrm{ Conjunction,tm1),tm2)}

```

\subsection*{10.1.7 Disjunction}

The constant \(V\) : bool \(\rightarrow\) bool \(\rightarrow\) bool is defined by the following equation:
\[
\$ \vee=\lambda \mathbf{b} 1 \bullet \lambda \mathbf{b} 2 \bullet \forall \mathbf{b} \bullet((\mathbf{b} 1 \Rightarrow \mathbf{b}) \Rightarrow(\mathbf{b} 2 \Rightarrow \mathbf{b})) \Rightarrow \mathbf{b}
\]
(As for conjunction I assume this has some advantage over a definition from the propositional calculus.)
The name of the constant is a backslash, \\, followed by a slash, /. The backslash character must be escaped by another backslash character within an HOL string.
```

HOL Constant
Disjunction : TERM

```

Disjunction \(=m k_{-}\)const \((" \backslash \backslash / "\), Fun Bool (Fun Bool Bool) \()\)
```

HOL Constant
Disjunction_def : TERM
Disjunction_def =
let b = mk_var("b",Bool)
in let b1 = mk_var("b1", Bool)
in let b2 = mk_var("b2", Bool)
in
mk_abs(b1,mk_abs(b2, mk_forall(b, mk_imp(mk_imp(b1,b),
mk_imp(mk_imp(b2,b),b)))))

```

A derived constructor function for disjunctions is useful later.
```

HOL Constant
mk_disj : (TERM × TERM)}->\mathrm{ TERM
\foralltm1 tm2\bullet
mk_disj(tm1,tm2) = mk_comb(mk_comb(Disjunction,tm1),tm2)

```

\subsection*{10.1.8 ONE_ONE}

The definition of Type_Definition below requires the notion of a one-to-one function. The constant ONE_ONE is defined by the following equation:
\[
\text { ONE_ONE }=\lambda(\mathbf{f}: * \rightarrow * *) \bullet \forall(\mathbf{x} 1: *) \bullet \forall(\mathbf{x} 2: *) \bullet(\mathbf{f} \mathbf{x} 1=\mathbf{f} \mathbf{x} 2) \Rightarrow(\mathbf{x} 1=\mathbf{x} 2)
\]

\section*{HOL Constant}

StarStar : TYPE

StarStar \(=m k_{\text {_var_type }}\) "**"

HOL Constant
One_One : TERM

One_One = mk_const("ONE_ONE", Fun(Fun Star StarStar)Bool)

\section*{HOL Constant}

One_One_def : TERM

One_One_def =
let \(f=m k_{-} \operatorname{var}(" f "\), Fun Star StarStar)
in let \(x 1=m k_{1}\) var (" \(x 1\) ",Star \()\)
in let \(x 2=m k_{-} \operatorname{var}(" x 2 ", S t a r)\) in
\(m k_{-} a b s\left(f, m k_{-}\right.\)forall( \(x 1, m k_{-}\)forall(x2, \(m k_{-} i m p\left(m k_{-} e q\left(m k_{-} c o m b(f, x 1), m k_{-} \operatorname{comb}(f, x 2)\right)\right.\), \(\left.\left.\left.\left.m k_{-} e q(x 1, x 2)\right)\right)\right)\right)\)

\subsection*{10.1.9 ONTO}

The axiom of infinity requires the notion of an onto function. The constant \(O N T O\) is defined by the following equation:
\[
\mathbf{O N T O}=\lambda(\mathbf{f}: * \rightarrow * *) \bullet \forall(\mathbf{y}: * *) \bullet \exists(\mathbf{x}: *) \bullet \mathbf{y}=\mathbf{f} \mathbf{x}
\]

HOL Constant
```

ONTO :TERM

```
```

ONTO = mk_const("ONTO", Fun(Fun Star StarStar)Bool)

```

The name is all upper case to avoid conflict with the actual constant Onto used in the metalanguage system.
```

HOL Constant

```

ONTO_def : TERM
```

ONTO_def =
let f = mk_var("f",Fun Star StarStar)
in let x = mk_var("x",Star)
in let y = mk_var(" " ",StarStar) in
mk_abs(f,mk_forall(y,mk_exists(x,mk_eq(y,mk_comb (f, x)))))

```

\subsection*{10.1.10 Type_Definition}

Type_Definition may be new to some readers. It is a term asserting that a function represents one type as a subtype of another. It is used in defining new_type_definition. It has type \((* * \rightarrow b o o l) \rightarrow(* \rightarrow *\) \(*) \rightarrow\) bool and is defined by the following equation:
\[
\begin{gathered}
\text { Type_Definition }=\lambda(P: * * \rightarrow \text { bool }) \bullet(\text { rep }: * \rightarrow * *) \bullet \text { ONE_ONE rep } \\
\wedge \forall(x: * *) \bullet P x=\exists(y: *) \bullet x=\text { rep } y
\end{gathered}
\]

It is useful later to have a version of Type_Definition parameterised over the types involved.
```

HOL Constant

```
```

 Type_Definition : TYPE \(\rightarrow\) TYPE \(\rightarrow\) TERM
 \(\forall\) ty1 ty2
 Type_Definition ty1 ty2 =
 \(m k_{-}\)const("Type_Definition", (Fun (Fun ty2 Bool) (Fun(Fun ty1 ty2)Bool)))
    ```
```

Type_Definition_def $=$
let $P=m k_{-} v a r(" P "$, Fun StarStar Bool)
in let rep $=m k_{-} \operatorname{var}($ "rep",Fun Star StarStar $)$
in let $x=m k_{-} \operatorname{var}(" x ", S t a r S t a r)$
in let $y=m k_{-} \operatorname{var}(" y "$, Star $)$ in
$m k_{-} a b s\left(P, m k_{-} a b s(r e p\right.$,
$m k_{-} \operatorname{conj}\left(m k_{-} \operatorname{comb}\left(O n e_{-} O n e, ~ r e p\right)\right.$,
$m k_{-}$forall $\left(x, m k_{-} e q\left(m k_{-} \operatorname{comb}(P, x), m k_{-} \operatorname{exists}(y\right.\right.$,
$\left.\left.\left.\left.\left.\left.m k_{-} e q\left(x, m k_{-} \operatorname{comb}(r e p, y)\right)\right)\right)\right)\right)\right)\right)$

```

\section*{10.2 new_type and new_constant}

The first two definitional extension mechanisms, new_type and new_constant are conservative, but not very powerful.
new_type is used to declare a name to be used as a type constructor. No axioms about the type are introduced so that only instances of polymorphic functions may be applied to it. The only constraint is that the name should not be a type constructor in the theory to be extended.

To see, syntactically, that new_type is conservative observe that, given a proof in which the new type does not appear in the conclusion, distinct applications of the new type operator could be replaced by distinct type variables not used elsewhere in the proof. The result would be a proof in the unextended theory with the same conclusion as the original proof.
```

HOL Constant
new_type : \mathbb{N }->\mathrm{ STRING }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL}
\forall arity name thy1 thy2 \bullet
new_type arity name thy1 thy2 }
\neg ~ n a m e ~ \in ~ D o m (t y p e s ~ t h y 1) ~ \wedge ~
types thy2 = types thy1 \cup{(name, arity) } ^
constants thy2 = constants thy1 ^
axioms thy2 = axioms thy1

```
new_constant is used to declare a name to be used as a constant of a given type. No axioms about the constant are introduced so that it behaves as a value which we cannot determine. The only constraint is that the name should not be a constant in the theory to be extended and that the type of the constant should be well-formed.

HOL Constant
new_constant : STRING \(\rightarrow\) TYPE \(\rightarrow\) THEORY \(\rightarrow\) THEORY \(\rightarrow\) BOOL
\(\forall\) name type thy 1 thy 2
new_constant name type thy1 thy2 \(\Leftrightarrow\)
\(\neg\) name \(\in \operatorname{Dom}(\) constants thy1 \() \wedge\)
```

type \inwf_type (types thy1) ^
constants thy2 = constants thy1 \cup {(name, type) } ^
types thy2 = types thy1 ^
axioms thy2 = axioms thy1

```

Again it is easy to see syntactically that this is conservative. Simply replace distinct instances of the new constant in a proof by distinct variables not used elsewhere in the proof to obtain a proof in the unextended theory.

\section*{10.3 \\ new_axiom}
new_axiom is both powerful and dangerous! It allows a sequent with no hypotheses and a given conclusion to be taken as an axiom. The only constraint is that the sequent be well-formed with respect to the environments of the theory being extended.

It is convenient, for technical reasons, in [2] to have the more general operation of adding a set of new axioms. We therefore define new_axiom in terms of the more general new_axioms.
```

HOL Constant
new_axioms : (TERM SET) }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL
* tms thy1 thy2 \bullet
new_axioms tms thy1 thy2 =
let seqs}={(x,tm)|x={}\wedgetm\intms
in
seqs \subseteq sequents thy1^
types thy2 = types thy1 ^
constants thy2 = constants thy1 ^
axioms thy2 = axioms thy1 \cup seqs
HOL Constant
new_axiom : TERM }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL
\forall tm thy1 thy2 -
new_axiom tm thy1 thy2 = new_axioms {tm} thy1 thy2

```

\section*{10.4 new_definition}
new_definition is useful and conservative. It allows the simultaneous introduction of a new constant and an axiom asserting that the new constant is equal to a given term. The constraints imposed are (a) the name must satisfy the check made in new_constant, (b) the term must be closed and (c) the term must contain no bound variables whose types contain type variables which do not appear in the type of the new constant. Condition (c) ensures that different type instances of the term result in different instances of the constant; this avoids a possible inconsistency (see [2] for an example which arises in the course of this specification).
```

new_definition :STRING }->\mathrm{ TERM }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL

```
```

\forall name tm thy1 thy2 •
new_definition name tm thy1 thy2 }
let ty = type_of_term tm
in
\existsthy1a \bullet
new_constant name ty thy1 thy1a ^
freevars_set tm = {} ^
term_tyvars tm \subseteq type_tyvars ty ^
new_axiom (m\mp@subsup{k}{-}{}eq(m\mp@subsup{k}{-}{}const(name, ty), tm)) thy1a thy2

```

\section*{10.5 new_specification}
new_specification allows the simultaneous introduction of a set of new constants satisfying a given predicate provided that a theorem asserting the existence of some set of values satisfying the constants is given. An axiom asserting the predicate for the new constants is introduced. Like new_definition, new_specification is useful and conservative.

The constraints imposed are analogous to those imposed in new_definition: (a) the constant names must be pairwise distinct and different from any constant name in the theory being extended, (b) the predicate must have no free variables apart from those corresponding to the new constants, (c) any type variable contained in a bound variable of the predicate must appear as a type variable of each of the new constants. Also, of course, the theorem must have the right form.

Since we now need to work with existential quantifiers it is necessary to introduce the theory \(L O G\). We impose the restriction that new_specification may only be used to extend theories which extend \(L O G\).
```

HOL Constant

```
LOG : THEORY
```

 \exists thy1 thy2 thy3 thy4 thy5 thy6 thy7 thy8 thy9\bullet
 let Name = \lambdacon \bullet\epsilons\bullet\existsty\bulletmk_const(s,ty)=con
 in
 (new_definition (Name Truth) Truth_def MIN thy1
 new_definition (Name (Forall Star)) Forall_def thy1 thy2
new_definition (Name (Exists Star)) Exists_def thy2 thy3
new_definition (Name Falsity) Falsity_def thy3 thy4
new_definition (Name Negation) Negation_def thy4 thy5
new_definition (Name Conjunction) Conjunction_def thy5 thy6
new_definition (Name Disjunction) Disjunction_def thy6 thy%
new_definition (Name One_One) One_One_def thy't thy8
^new_definition (Name ONTO) ONTO_def thy8 thy9
^ new_definition (Name (Type_Definition Star StarStar)) Type_Definition_def thy9 LOG)

```

To define new_specification we need the relation has_list_mk_exists, and the relation new_constants which is like new_constant but handles a set of new constants.
```

HOL Constant
has_list_mk_exists : (TERM LIST) }->\mathrm{ TERM }->\mathrm{ TERM }->\mathrm{ BOOL
(\foralltm1 tm2\bullet has_list_mk_exists [] tm1 tm2 \Leftrightarrowtm1 = tm2)
\wedge
(\forall v rest tm1 tm2 •
has_list_mk_exists (Cons v rest) tm1 tm2 \Leftrightarrow
\exists rem \bullet has_mk_exists(v, rem) tm2 ^
has_list_mk_exists rest rem tm1)
HOL Constant
new_constants:((STRING \times TYPE) SET) }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL
\forall cons thy1 thy2 \bullet
new_constants cons thy1 thy2 }
Dom cons \cap Dom (constants thy1) ={}^
Ran cons \subseteqwf_type(types thy1) ^
constants thy2 = constants thy1 \cup cons ^
types thy2 = types thy1 ^
axioms thy2 = axioms thy1

```

We can now define new_specification.
```

HOL Constant
new_specification : ((STRING × (STRING × TYPE)) LIST) }
TERM }->\mathrm{ THM }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL
\forall pairs tm thm thy1 thy2
new_specification pairs tm thm thy1 thy2 $=$
let conl $=$ Fst(Split pairs)
in let varl $=$ Map mk_var $(\operatorname{Snd}($ Split pairs $))$
in let tyl $=$ Map Snd $(\operatorname{Snd}($ Split pairs $))$
in let subs $=\lambda(s, t y)$
if $\quad \exists c \bullet(c,(s, t y)) \in$ Elems pairs
then $\quad m k_{-}$const $((\epsilon c \bullet(c,(s, t y)) \in$ Elems pairs $)$, ty $)$
else mk_var($s, t y$)
in let axiom $=$ subst subs tm
in (\exists conc•
has_list_mk_exists varl tm conc
\wedge thy1 extends LOG
$\wedge($ freevars_set conc $=\{ \})$
\wedge conl \in Distinct

```
```

 varl \in Distinct
 \thm_seq thm = ({}, conc)
 \thy1 extends thm_thy thm
 \wedge (\forall \text { ty@ ty } \in \text { Elems tyl } \Rightarrow \text { term_tyvars conc } \subseteq \text { type_tyvars ty)}
 \wedge(\exists thy1a
 new_constants (Elems (Combine conl tyl)) thy1 thy1a ^
 new_axiom axiom thy1a thy2))
    ```

\section*{10.6 new_type_definition}
new_type_definition allows the introduction of a new type in one-to-one correspondence with the subset of an existing type satisfying a given predicate, given a theorem asserting that the subset is not empty. A new axiom asserting the existence of a representation function for the new type is introduced. Like new_definition, new_type_definition is useful and conservative.

For simplicity, we have made the list of type variable names to be used as the parameters of the type being defined, a parameter to new_type. The constraints imposed are (a) that the list of type parameter names contain no repeats, (b) the theorem must have the right form and (c) all type variables contained in the predicate must be contained in the list of type parameters names. Condition (c) ensures that different type instances of the new axiom involve different type instances of the new type.
```

HOL Constant
new_type_definition :
STRING }->(\mathrm{ STRING LIST) }->\mathrm{ THM }->\mathrm{ THEORY }->\mathrm{ THEORY }->\mathrm{ BOOL
\forall name typars thm thy1 thy2 -
new_type_definition name typars thm thy1 thy2 }
\exists p xty x ty px thy1a axiom \bullet
let newty = mk_type(name, Map mk_var_type typars)
in let f = mk_var("f", Fun newty ty)
in thy1 extends LOG
\ hyp (thm_seq thm) = {}
^ has_mk_exists (xty, px)(concl (thm_seq thm))
^ mk_var (x,ty) = xty
^ has_mk_comb (p,xty) px
freevars_set p = {}
term_tyvars p}\subseteq\mathrm{ Elems typars
typars }\in\mathrm{ Distinct
^ has_mk_exists(f,mk_comb(m\mp@subsup{k}{-}{\prime}comb(Type_Definition newty ty, p),f)) axiom
^ new_type (\# typars) name thy1 thy1a
new_axiom axiom thy1a thy2

```

\section*{11 THE THEORY INIT}

By extending the theory \(L O G\) with five axioms we will arrive at the theory \(I N I T\). In a typical HOL proof development system all theories will be extensions of this theory.

\subsection*{11.1 The Axioms}

\subsection*{11.1.1 BOOL_CASES_AX}

This is the law of the excluded middle:
\(\mid B O O L_{-} C A S E S \backslash \_A X \vdash \forall(b: b o o l) \bullet(b=T) \vee(b=F)\)
HOL Constant
BOOL_CASES_AX : TERM

BOOL_CASES_AX =
let \(b=m k_{-} v a r(" b ", B o o l)\)
in \(m k_{-}\)forall ( \(b, m k_{-} \operatorname{disj}\left(m k_{-} e q(b\right.\), Truth \(), m k_{-} e q(b\), Falsity \(\left.\left.)\right)\right)\)

\subsection*{11.1.2 IMP_ANTISYM_AX}

This says that implication is an antisymmetric relation:
\(\mid I M P_{-} A N T I S Y M_{-} A X \vdash \forall(b 1: b o o l) \bullet \forall(b 2: b o o l) \bullet(b 1 \Rightarrow b 2) \Rightarrow(b 2 \Rightarrow b 1) \Rightarrow(b 1=b 2)\)
HOL Constant
IMP_ANTISYM_AX : TERM

IMP_ANTISYM_AX =
let b1 = mk_var("b1", Bool)
in let b2 = mk_var \((" b 2 ", ~ B o o l)\)
in \(m k_{-}\)forall(b1, \(m k_{-}\)forall(b2,
```

 mk_imp(mk_imp(mk_imp(b1,b2),mk_imp(b2, b1)),mk_eq(b1,b2))))
    ```

\subsection*{11.1.3 ETA_AX}

This says that an \(\eta\)-redex is equal to its \(\eta\)-reduction.
\(\mid E T A \_A X \vdash \forall(f: * \rightarrow * *) \bullet(\lambda(x: *) \bullet f x)=f\)
HOL Constant
ETA_AX : TERM
\(E T A \_A X=\)
let \(f=m k_{-} \operatorname{var}(" f 1 "\), Fun Star StarStar)
in let \(x=m k_{-} \operatorname{var}(" x "\),Star \()\)
in \(m k_{-}\)forall \(\left(f, m k_{-} e q\left(m k_{-} a b s\left(x, m k_{-} \operatorname{comb}(f, x)\right), f\right)\right)\)

\subsection*{11.1.4 SELECT_AX}

This is the defining property of the choice function \(\epsilon\).
\[
\mid S E L E C T_{-} A X \vdash \forall(P: * \rightarrow b o o l) \bullet \forall(x: *) \bullet P \quad x \quad \Rightarrow \quad P(\epsilon P)
\]

HOL Constant
SELECT_AX : TERM

SELECT_AX =
let \(P=m k_{-} \operatorname{var}(" P "\), Fun Star Bool)
in let \(x=m k_{-} \operatorname{var}(" x "\),Star \()\)
in \(m k_{-}\)forall( \(P, m k_{-}\)forall ( \(x\),
\(m k_{-} \operatorname{imp}\left(m k_{-} \operatorname{comb}(P, x), m k_{-} \operatorname{comb}\left(P, m k_{-} \operatorname{comb}(\right.\right.\) Choice,\(\left.\left.\left.P)\right)\right)\right)\)

\subsection*{11.1.5 INFINITY_AX}

This is the axiom of infinity. It asserts that the type \(i n d\) is in one-to-one correspondence with a proper subset of itself:
```

INFINITY_AX\vdash\exists(f:ind ->ind)\bulletONE_ONE f ^ \negONTO f

```
```

HOL Constant
INFINITY_AX : TERM

```
    INFINITY_AX =
    let \(f=m k_{-} \operatorname{var}(" f "\), Fun Ind Ind)
    in \(m k_{-} \operatorname{conj}\left(m k_{-} \operatorname{comb}\left(O n e_{-} O n e, f\right), m k_{-} \operatorname{comb}\left(N e g a t i o n, m k_{-} \operatorname{comb}(O N T O, f)\right)\right)\)

\subsection*{11.2 The Theory}

HOL Constant
INIT : THEORY
\(\exists\) thy1 thy2 thy3 thy4 thy5 thy6 •
new_axiom BOOL_CASES_AX LOG thy1
\(\wedge\) new_axiom IMP_ANTISYM_AX thy1 thy2
\(\wedge \quad\) new_axiom ETA_AX thy2 thy3
\(\wedge \quad\) new_axiom SELECT_AX thy 4 thy 5
\(\wedge\) new_type \(0(\) Fst (dest_type Ind) ) thy5 thy6
\(\wedge\) new_axiom INFINITY_AX thy6 INIT

\subsection*{11.3 DEFINITIONAL EXTENSIONS}

We will say that a theory thy1 is a definitional extension of a theory thy2 if one may go from thy2 to thy1 by some sequence of extensions by the functions new_type, new_constant, new_definition,
new_specification and new_type_definition. It is stressed that definitional extensions in this sense comprise significantly more than just extension by adjoining a defining equation for a new constant.
```

HOL Constant

```
    definitional_extension : THEORY \(\rightarrow\) THEORY SET
    \(\forall t h y \bullet d e f i n i t i o n a l \_e x t e n s i o n ~ t h y ~=\bigcap\) thyset \(\mid\)
        thy \(\in\) thyset
    \(\wedge(\quad \forall\) thy 1 thy2 arity name \(\bullet\)
        thy1 \(\in\) thyset \(\wedge\)
        new_type arity name thy1 thy \(2 \Rightarrow\) thy2 \(\in\) thyset
    \() \wedge(\)
    \(\forall\) thy1 thy2 name type
        thy1 \(\in\) thyset \(\wedge\)
    new_constant name type thy1 thy2 \(\Rightarrow\) thy \(2 \in\) thyset
\() \wedge(\)
\(\forall\) thy1 thy2 name tm•
    thy1 \(\in\) thyset \(\wedge\)
    new_definition name tm thy1 thy2 \(\Rightarrow\) thy2 \(\in\) thyset
    \() \wedge(\)
    \(\forall\) thy1 thy2 pairs tm thme
        thy1 \(\in\) thyset \(\wedge\)
    new_specification pairs tm thm thy1 thy2 \(\Rightarrow\) thy \(2 \in\) thyset
\() \wedge(\)
\(\forall t h y 1\) thy2 name typars thm \(\bullet\)
    thy1 \(\in\) thyset \(\wedge\)
    new_type_definition name typars thm thy1 thy2 \(\Rightarrow\) thy2 \(\in\) thyset
) \(\}\)

Of particular importance are theories which may be obtained from INIT by definitional extension. These theories are of interest since, we assert, they form a sound formalism in which much of the practical machine-checked proof work one might wish to do can be carried out.

\section*{12 INDEX OF DEFINED TERMS}
ABS_rule 8 mk_disj ..... 24
aconv \(7 m k_{-} e q\) ..... 19
ASSUME_axiom ..... 13 ..... 21
BETA_CONV_axiom ..... 14
BOOL_CASES_AX ..... 31
Choice ..... 16
Conjunction_def ..... 23
Conjunction ..... 23
conservatively_extends ..... 19
consistent_theory ..... 18
definitional_extension ..... 33
derivable_from ..... 15
directly_derivable_from ..... 14
DISCH_rule ..... 13
Disjunction_def ..... 24
Disjunction ..... 23
Equality ..... 4
ETA_AX ..... 31
Exists_def ..... 21
Exists ..... 21
extends ..... 17
Falsity_def ..... 22
Falsity ..... 22
Forall_def ..... 20
Forall ..... 20
freevars_list ..... 4
freevars_set ..... 4
has_list_mk_exists ..... 29
has_mk_eq ..... 5
has_mk_exists ..... 21
has_mk_imp ..... 5
Implication ..... 5
IMP_ANTISYM_AX ..... 31
Ind ..... 16
INFINITY_AX ..... 32
INIT ..... 32
inst_loc1 ..... 10
inst_loc2 ..... 10
INST_TYPE_rule11
is_normal_theory ..... 17
is_thm ..... 17
LOG ..... 28
MIN_REP ..... 16
MIN ..... 16
\(m k_{-} a b s\) ..... 19
\(m k_{-} c o m b\) ..... 19
\(m k_{-} c o n j\) ..... 2310 Type_Definition_def
\(m k_{-}\)forall ..... 20
\(m k_{-} i m p\) ..... 19
\(m k_{-} t h m\) ..... 18
MP_rule ..... 13
Negation_def ..... 22
Negation ..... 22
new_axioms ..... 27
new_axiom ..... 27
new_constants ..... 29
new_constant ..... 26
new_definition ..... 28
new_specification ..... 29
new_type_definition ..... 30
new_type ..... 26
One_One_def ..... 24
One_One ..... 24
ONTO_def ..... 25
ONTO ..... 25
premisses ..... 15
REFL_axiom ..... 13
rename ..... 7
SELECT_AX ..... 32
spc003 ..... 3
StarStar ..... 2416
SUBST_rule ..... 8
ubst ..... 6
term_types ..... 12
term_tyvars ..... 12
hm_seq ..... 18
hm_thy ..... 18
THM ..... 18
Truth_def ..... 20
Truth ..... 20
12 Type_Definition26
11
variant ..... 6```

