
HOL Formalised:

Deductive System

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

25 October 1993
Revised 17 October 2002

Abstract

This is part of a suite of documents giving a formal specification of the HOL logic. It defines
the primitive inference rules, including conservative extension mechanisms. Related notions such
as derivability are also defined.

The treatment of the HOL deductive system formally defined here is closely based on the
semi-formal treatment in the documentation for the Cambridge HOL system.

An index to the formal material is provided at the end of the document.

Copyright c© : Lemma 1 Ltd 2006
Reference: DS/FMU/IED/SPC003; issue 1.15

1 DOCUMENT CONTROL

1.1 Contents list

1 DOCUMENT CONTROL 1
1.1 Contents list . 1
1.2 Document cross references . 2

2 GENERAL 3
2.1 Scope . 3
2.2 Introduction . 3

3 PREAMBLE 3

4 THE RULES OF INFERENCE 3
4.1 Free Variables . 4
4.2 Object Language Constructs . 4
4.3 Substitution of Equals . 5

4.3.1 Substitution . 6
4.3.2 α-conversion . 7
4.3.3 The Inference Rule SUBST . 7

4.4 Abstraction: ABS . 8
4.5 Type Instantiation . 8

4.5.1 Instantiation of Terms . 9
4.5.2 The Inference Rule INST TYPE . 11

4.6 Discharging an Assumption: DISCH . 12
4.7 Modus Ponens: MP . 13

5 THE AXIOM SCHEMATA 13
5.1 The Axiom Schema ASSUME . 13
5.2 The Axiom Schema REFL . 13
5.3 The Axiom Schema BETA CONV . 14

6 DERIVABILITY 14

7 NORMAL THEORIES 15
7.1 Object Language Constructs . 15
7.2 Normal Thoeries . 16

8 THEOREMS 17

9 CONSISTENCY AND CONSERVATIVE EXTENSION 18

10 DEFINITIONAL EXTENSIONS 19
10.1 Object Language Constructs . 19

10.1.1 Truth . 20
10.1.2 Universal Quantification . 20
10.1.3 Existential Quantification . 21
10.1.4 Falsity . 21
10.1.5 Negation . 22
10.1.6 Conjunction . 22
10.1.7 Disjunction . 23
10.1.8 ONE ONE . 24

1

10.1.9 ONTO . 25
10.1.10 Type Definition . 25

10.2 new type and new constant . 26
10.3 new axiom . 27
10.4 new definition . 27
10.5 new specification . 28
10.6 new type definition . 30

11 THE THEORY INIT 31
11.1 The Axioms . 31

11.1.1 BOOL CASES AX . 31
11.1.2 IMP ANTISYM AX . 31
11.1.3 ETA AX . 31
11.1.4 SELECT AX . 32
11.1.5 INFINITY AX . 32

11.2 The Theory . 32
11.3 DEFINITIONAL EXTENSIONS . 32

12 INDEX OF DEFINED TERMS 34

1.2 Document cross references

[1] DS/FMU/IED/SPC001. HOL Formalised: Language and Overview. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[2] DS/FMU/IED/SPC004. HOL Formalised: Proof Development System. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[3] The HOL System: Description. SRI International, 4 December 1989.

2

2 GENERAL

2.1 Scope

This document specifies the HOL deductive system. Some high level aspects of the implementation
of the proof development system are also discussed. It is part of a suite of documents specifying the
HOL logic, an overview of which may be found in [1].

2.2 Introduction

In [1] a brief theoretical discussion of the definition of deductive systems is given. In this document
we fill in the details for HOL.

The first task is to define the rules of inference. HOL has five rules of inference: ABS , DISCH ,
INST TYPE , MP , SUBST (defined in section 4 below) and three axiom schemata: ASSUME ,
BETA CONV and REFL (defined in section 5). We follow [3] in treating the axiom schemata just
like unary rules of inference. Such rules are a convenient home for infinite families of axioms that we
wish to have in every theory.

With the rules of inference in hand, we define derivability in section 6. We then define the type of
theorems of HOL as those pairs (s,T) where T is a theory and s is a sequent in the language of T
derivable from the axioms of T .

Section 9, defines the type of all theorems and specifies the notions of consistency and conservative
extension.

Mechanisms for extending theories by making definitions are of great practical importance, partic-
ularly those which preserve consistency. Section 10 discusses the means by which theories may be
extended in the HOL system. Of particular importance are certain mechanisms for introducing new
constants and types.

In section 11 we define the individual axioms of the HOL logic. The resulting theory is of special
interest, as are what we call its definitional extensions, which we define in section 11.3: they are
all consistent and have a common standard set-theoretic model; their theorems comprise what are
normally taken to be the theorems of HOL by those who shun axiomatic extensions.

3 PREAMBLE

We introduce the new theory. Its parent is the theory spc001 which contains definitions concerned
with the HOL language.

SML

open theory"spc001";

new theory"spc003";

4 THE RULES OF INFERENCE

In this section we treat the syntax manipulating functions required to define the various rules of
inference. We consider each inference rule in turn. In the HOL system the inference rules are
functions which take theorems (and other things) as arguments and return theorems. Since we

3

cannot define the type of theorems until we have defined the inference rules we define the rules as
functions taking sequents (and other things) as arguments and returning sequents.

4.1 Free Variables

freevars list returns the free variables of a term listed in order of first appearance (from left to right
in the usual concrete syntax).

HOL Constant

freevars list: TERM → ((STRING × TYPE)LIST)

∀s : STRING ; ty : TYPE ; tm f a vty b : TERM •
freevars list (mk var(s, ty)) = [(s, ty)]

∧
freevars list (mk const(s, ty)) = []

∧
(has mk comb(f , a) tm ⇒ freevars list tm = freevars list f a freevars list a)

∧
((has mk abs(vty , b) tm ∧ mk var(s, ty) = vty) ⇒

freevars list tm = freevars list b � ∼{(s, ty)})

freevars set returns the set of free variables of a term. We use it in cases where the order of appearance
of the free variables in the term is immaterial.

HOL Constant

freevars set: TERM → (STRING × TYPE) SET

∀tm : TERM •freevars set tm = Elems(freevars list tm)

4.2 Object Language Constructs

To define the rules of inference we need to form certain object language types and terms. We have
already defined the function space type constructor. The other definitions needed are given in this
section.

We need to form instances of the polymorphic constant “=”:

HOL Constant

Equality : TYPE → TERM

∀ ty • Equality ty = mk const("=", Fun ty (Fun ty Bool))

The following is our analogue of the derived constructor function for equations in the HOL system.

4

HOL Constant

has mk eq : (TERM × TERM) → TERM → BOOL

∀ lhs rhs tm • has mk eq(lhs, rhs) tm ⇔
∃ tm2 •

has mk comb(Equality(type of term lhs), lhs) tm2

∧ has mk comb(tm2 , rhs) tm

We also need to form implications. The following functions are analogous to those treating equality
above.
HOL Constant

Implication : TERM

Implication = mk const("⇒", Fun Bool (Fun Bool Bool))

HOL Constant

has mk imp : (TERM × TERM) → TERM → BOOL

∀ lhs rhs tm • has mk imp(lhs, rhs) tm ⇔
∃ tm2 •

has mk comb(Implication, lhs) tm2

∧ has mk comb(tm2 , rhs) tm

4.3 Substitution of Equals

In this section we define the inference rule SUBST.

In essence, SUBST says that given a theorem whose conclusion is an equation, A = B, where A
and B are arbitrary terms of the same type, and given any other theorem with conclusion C, we
may obtain a new theorem by substituting B for any subterm of C which is identical with A. This
is subject to the proviso that no variable capture problems arise, i.e. no free variables of B should
become bound in the conclusion of the new theorem. (The assumption set of the consequent theorem
is the union of the assumption sets of the antecedent theorems.)

The inference rule is, in fact, slightly more general. It allows one to use a whole set of theorems
whose conclusions are equations to perform (simultaneous) substitutions for many subterms of C.
Moreover, it is implemented as a functional relation, effectively by renaming any bound variables of
C which would give rise to the capture problem.

The inference rule is parametrised by a template term and a set of some of its free variables, one
for each equation. The actual statement of the rule is, essentially, that, if the result of substituting
the left hand sides of the equations for the corresponding variables in the template term is equal to
C (modulo renaming bound variables), then we may infer the result of substituting the right hand
sides of the equations for the corresponding template variables in the template term (providing we
rename bound variables to avoid the capture problem).

The notions we must formalise are therefore: (i) substituting terms for free variables in a term
according to a given mapping of variables to terms renaming bound variables as necessary to avoid
variable capture; (ii) testing equivalence of terms modulo renaming of bound variables (aka. α-
conversion).

5

4.3.1 Substitution

We will need to choose new names for variables. More precisely, given a variable and a set of same
we will wish to rename the variable, when necessary, to ensure that the result does not lie in the set.
In practice in an implementation we would insist that the new name be derived from the old one in
a specified way.

HOL Constant

variant : ((STRING × TYPE) SET) → (STRING × TYPE) → STRING

∀ vs v ty •
if ¬(v , ty) ∈ vs

then variant vs (v , ty) = v

else ¬(variant vs (v , ty), ty) ∈ vs

Now we can define subst . Given a function R associating free variables with terms, subst R t1 is the
term resulting from replacing every free variable mk var(s, t) in t1 by R(mk var(s, t)) with bound
variables renamed as necessary to avoid capture. Variables which are not to be changed correspond
to pairs (s, t) with R(s, t) = mk var(s, t).

Note R here is intended to respect types, in the sense that ∀sty•type of term(R(s, ty)) = ty , but
this is not checked here (since it is convenient for subst to be a total function). This property should
be checked whenever subst is used.

The only difficult case in subst is when the second argument is an abstraction. In this case we calculate
the variables which must not get captured (this is the value new frees below) and use variant to
give an alternative name for the bound variable if necessary. We then perform the substitution on
the body using a function, RR, which is R modified to send the old bound variable to the new one.

HOL Constant

subst : ((STRING × TYPE) → TERM) → TERM → TERM

∀ R :(STRING × TYPE) → TERM ; tm : TERM ;

s : STRING ; ty : TYPE ; vty : TERM ;

f : TERM ; a : TERM ; b : TERM

•
subst R (mk var(s, ty)) = R(s,ty)

∧
subst R (mk const(s, ty)) = mk const(s, ty)

∧
(has mk comb(f , a) tm ⇒
(subst R tm = εt•has mk comb(subst R f , subst R a)t))

∧
((has mk abs(vty , b) tm ∧ mk var(s, ty) = vty) ⇒
(subst R tm =

let new frees =
⋃

(Graph (freevars set o R) Image

(freevars set b \ {(s, ty)}))
in let s ′ = variant new frees (s, ty)

in let RR x = if x = (s, ty) then mk var (s ′, ty) else R x

6

in

εt•
has mk abs

(mk var(s ′, ty), subst RR b)t

))

The special case of substitution where we simply wish to rename a variable is needed in the definition
of our α-conversion test and elsewhere. The following function rename is used for this purpose.
rename(v , ty)w e is the result of changing the name in every free occurrence of the variable with
name v , and type ty , in the term e, to w , renaming any bound variables as necessary.

HOL Constant

rename : (STRING × TYPE) → STRING → TERM → TERM

∀ v : STRING ; ty : TYPE ; w : STRING

•
rename (v , ty) w =

subst (λx•if x = (v , ty) then mk var(w , ty) else mk var x)

4.3.2 α-conversion

Our α-conversion test is as follows:

HOL Constant

aconv : TERM → TERM → BOOL

∀t1 t2 : TERM •
aconv t1 t2 ⇔

(t1 = t2)

∨ (∃t1f t1a t2f t2a•
has mk comb(t1f , t1a)t1

∧ has mk comb(t2f , t2a)t2

∧ aconv t1f t2f ∧ aconv t1a t2a)

∨ (∃v1 v2 ty v1ty v2ty b1 b2•
has mk abs(v1ty , b1)t1 ∧ has mk abs(v2ty , b2)t2

∧ mk var(v1 , ty) = v1ty ∧ mk var(v2 , ty) = v2ty

∧ aconv b1 (rename (v2 , ty) v1 b2)

∧ ((v1 = v2) ∨ (¬(v1 , ty) ∈ freevars set b2)))

4.3.3 The Inference Rule SUBST

We can now define the inference rule. Its first argument gives the correspondence between the
template variables and equation theorems. We could take this argument to behave as REFL axiom
o mk var on variables which are not template variables . Note that, to allow implementation as a
partial function, we test up to α-convertibility on the first sequent argument only. Note also that the

7

way that the first argument to subst is constructed by dismantling equations ensures that it respects
types.

HOL Constant

SUBST rule : ((STRING × TYPE) → SEQ) →
TERM → SEQ → SEQ → BOOL

∀ eqs tm old asms old conc new asms new conc•
SUBST rule eqs tm (old asms, old conc) (new asms, new conc) ⇔
(∀v ty •

∃lhs rhs•
has mk eq(lhs, rhs)(concl(eqs(v , ty))) ∧
(type of term lhs = ty))

∧
(aconv old conc (subst(λ(v ,ty)•εlhs•∃rhs•has mk eq(lhs, rhs)(concl(eqs(v ,ty))))tm))

∧
(new conc = subst (λ(v ,ty)•εrhs•∃lhs•has mk eq(lhs, rhs)(concl(eqs(v ,ty))))tm)

∧
(new asms = old asms ∪ ⋃ {asms | ∃vty•asms = (hyp (eqs vty))})

4.4 Abstraction: ABS

Again ABS is a partial function which we specify as a relation:

HOL Constant

ABS rule : (STRING × TYPE) → SEQ → SEQ → BOOL

∀ vty old asms old conc new asms new conc •
ABS rule vty (old asms, old conc) (new asms, new conc) ⇔
(∃ old lhs old rhs new lhs new rhs v•

has mk eq(old lhs, old rhs)old conc ∧
has mk eq(new lhs, new rhs)new conc ∧
mk var vty = v ∧
has mk abs(v , old lhs) new lhs ∧
has mk abs(v , old rhs) new rhs)

∧
(¬vty ∈ ⋃(Graph freevars set Image old asms))

∧
(new asms = old asms)

4.5 Type Instantiation

The ability to prove and use general (polymorphic) theorems is one of the great strengths of the HOL
system. The feature in the inference system which gives this strength is the inference rule INST
TYPE which allows us to instantiate the type variables in the conclusion of a polymorphic theorem.

8

In essence, the inference rule says that, given a theorem with conclusion, A, say, we may infer the
theorem which has the same assumption set and whose conclusion results from instantiating every
type in A according to a given mapping of type variables to types. This is subject to two provisos:
(i) no type variable may be changed which appears in the assumption set for the theorem; (ii) no two
variables in the assumptions or conclusion of the antecedent theorem, which are different, by virtue
of their type, should become identified in the consequent theorem as a result of the transformation.

The first proviso is, we believe, only enforced to preserve a convention of natural deduction systems,
whereby inference rules involve only simple set operations on the assumption sets. It would seem to
be quite in order for the first proviso to be dropped provided we insisted that the type instantiation
be applied to every term in the sequent (we have, of course, not done this).

The second proviso cannot be avoided. Consider for example: λ(x : ∗∗)•λ(x : ∗)•(x : ∗∗). If the
types in this were instantiated according to {: ∗ ∗ 7→ : ∗, : ∗7→ : ∗}, then from:

`∀(y : ∗∗)(z : ∗)•(λ(x : ∗∗)•λ(x : ∗)•(x : ∗∗))yz = y

we could infer that:
`∀(y : ∗)(z : ∗)•(λ(x : ∗)•λ(x : ∗)•(x : ∗))yz = y

whence, by β-conversions:
`∀(y : ∗)(z : ∗)•z = y.

This leads to a contradiction whenever : ∗ is instantiated to a type with more than one inhabitant.

To permit an implementation which is convenient to use, the inference rule is actually formulated
without the second proviso. Instead, variables (both free and bound, in general) in the conclusion of
the consequent theorem, which would violate the rule are renamed to avoid the problem. It is valid
to rename free variables in these circumstances, given the first proviso, since the variables in question
cannot occur free in the assumption set. Note that it would be invalid to rename free variables in
A which are not changed by the type instantiation (since these may appear free in the assumption
set).

Formalising these notions is a little tricky. We present here a highly unconstructive specification,
reminiscent of α-conversion. The notion to be formalised is the predicate on pairs of terms which
says whether one is a type instance of another according to a given mapping of type variables to
types and with respect to a set of variables with which clashes must not occur (this will be the set
of free variables of the assumptions in practice).

It is entertaining and instructive to consider algorithms meeting these specifications.

4.5.1 Instantiation of Terms

Instantiation of terms is a little tricky. The following two functions should be viewed as local to
the function inst. inst loc1 is very similar to an α-convertibility test. Indeed aconv could have been
defined as inst loc1 I . The first TERM argument of inst loc1 and inst loc2 gives the terms whose
types are being instantiated (i.e. it is the “more polymorphic” term).

inst loc1 checks that one term, tm2 , is a type instance of tm1 , according to a mapping from type
variable names to types given by tysubs, under the assumption that the free variable names agree,
i.e. that the first occurrence of each variable which may need renaming will be its binding occurrence
in a λ− abstraction.

9

HOL Constant

inst loc1 : (STRING → TYPE) → TERM → TERM → BOOL

∀
tysubs : STRING → TYPE ;

tm1 tm2 : TERM •
inst loc1 tysubs tm1 tm2 ⇔

(∃s ty1 ty2 mk X •
((mk X = mk var) ∨ (mk X = mk const))

∧ mk X (s, ty1) = tm1 ∧ mk X (s, ty2) = tm2

∧ (ty2 = inst type tysubs ty1))

∨ (∃tm1f tm1a tm2f tm2a•
has mk comb(tm1f , tm1a)tm1 ∧ has mk comb(tm2f , tm2a)tm2

∧ inst loc1 tysubs tm1f tm2f ∧ inst loc1 tysubs tm1a tm2a)

∨ (∃v1 v2 ty1 ty2 b1 b2 v1ty1 v2ty2 •
mk var(v1 , ty1) = v1ty1 ∧ has mk abs(v1ty1 , b1)tm1

∧ mk var(v2 , ty2) = v2ty2 ∧ has mk abs(v2ty2 , b2)tm2

∧ inst loc1 tysubs (rename (v1 , ty1) v2 b1) b2

∧ (ty2 = inst type tysubs ty1)

∧ ¬(∃ ty3 v2ty3 •
mk var(v2 , ty3) = v2ty3

∧ ((v2 , ty3) ∈ freevars set b1)

∧ (ty2 = inst type tysubs ty3)

∧ (¬v2ty3 = v1ty1)))

inst loc2 uses inst loc1 to check that a term tm2 is a type instance of the result of renaming free
variables of a term tm2 according to a mapping given by a list of pairs. It also checks that the
type of the second variable in each pair in the list is a type instance of the type of the first variable
in the pair, and that the second variable in each pair is not in the set, avoid , unless both names
and types agree for that pair. In the application of inst loc2 in inst the list of pairs is obtained by
combining the free variable lists of the two terms side by side. The set avoid is a set of variables
(coming from the assumptions of a sequent) whose free occurrences must not change as a result of
the type instantiation.

HOL Constant

inst loc2 : ((STRING × TYPE) SET) →
(STRING → TYPE) →
(((STRING × TYPE) × (STRING × TYPE)) LIST) →
TERM → TERM → BOOL

∀avoid : (STRING × TYPE) SET ;

tysubs :STRING → TYPE ;

v1 : STRING ; ty1 : TYPE ;

v2 : STRING ; ty2 : TYPE ;

rest : ((STRING × TYPE) × (STRING × TYPE)) LIST ;

tm1 tm2 : TERM •

10

(inst loc2 avoid tysubs [] tm1 tm2 ⇔
inst loc1 tysubs tm1 tm2)

∧
(inst loc2 avoid tysubs (Cons ((v1 , ty1),(v2 , ty2)) rest) tm1 tm2 ⇔

(((v2 , ty2) ∈ avoid) ⇒ ((v1 , ty1) = (v2 , ty2)))

∧ (ty2 = inst type tysubs ty1)

∧ inst loc2 avoid tysubs rest

(rename (v1 , ty1) v2 tm1) tm2)

With the above preliminaries we can now define inst. Note that the condition that the free variable
lists of the two terms have the same length is required to ensure that inst loc2 examines each free
variable of each term.

HOL Constant

inst : ((STRING × TYPE) SET) →
(STRING → TYPE) → TERM → TERM

∀avoid : (STRING × TYPE) SET ;

tysubs :STRING → TYPE ; tm1 : TERM •
let tm2 = inst avoid tysubs tm1

in let fl1 = freevars list tm1

in let fl2 = freevars list tm2

in

((Length fl1 = Length fl2)

∧ inst loc2 avoid tysubs (Combine fl1 fl2) tm1 tm2)

4.5.2 The Inference Rule INST TYPE

Given inst , we need a few simple auxiliaries before we can define the inference rule INST TYPE .

We need to detect the type variables in a term. We use some auxiliary functions to do this:
type tyvars detects the type variables in a type.

HOL Constant

type tyvars : TYPE → (STRING SET)

(∀s• type tyvars (mk var type s) = {s})
∧ (∀s tl• type tyvars (mk type(s, tl)) =

⋃
(Elems (Map type tyvars tl)))

term types detects the types in a term.

11

HOL Constant

term types : TERM → (TYPE SET)

∀ tm : TERM ; s: STRING ; ty : TYPE ;

f : TERM ; a : TERM ; v : TERM ; b: TERM •
term types (mk var(s, ty)) = {ty}
∧
term types (mk const(s, ty)) = {ty}
∧
(has mk comb(f , a) tm ⇒ (term types tm = term types f ∪ term types a))

∧
(has mk abs(v , b) tm ⇒ (term types tm = term types v ∪ term types b))

term tyvars detects all the type variables in a term using the previous two functions.

HOL Constant

term tyvars : TERM → (STRING SET)

∀tm • term tyvars tm =
⋃

(Graph type tyvars Image (term types tm))

INST TYPE rule is now readily defined:

HOL Constant

INST TYPE rule : (STRING → TYPE) → SEQ → SEQ → BOOL

∀ tysubs old asms old conc new seq•
INST TYPE rule tysubs (old asms, old conc) new seq ⇔
(∀ tyv •

(tyv ∈ ⋃ (Graph term tyvars Image old asms)) ⇒
(tysubs tyv = mk var type tyv))

∧
let asms frees =

⋃
(Graph freevars set Image old asms)

in

new seq = (old asms, inst asms frees tysubs old conc)

4.6 Discharging an Assumption: DISCH

DISCH is, in essence, the usual rule of natural deduction which allows one to infer from a proof of B
on the assumption A, that A⇒B on no assumption. The actual rule is suitably generalised to cover
sequents and their assumption sets. It is not required that A be in the assumption set, and the logic
would probably not be complete otherwise.

12

HOL Constant

DISCH rule : TERM → SEQ → SEQ → BOOL

∀ tm old asms old conc new seq •
DISCH rule tm (old asms, old conc) new seq ⇔
(type of term tm = Bool) ∧
(new seq = ((old asms \ {tm}), εt•has mk imp(tm, old conc)t))

4.7 Modus Ponens: MP

This is the usual rule: from A⇒B and A, infer B. This generalises to sequents by taking the union
of the assumption sets.

HOL Constant

MP rule : SEQ → SEQ → SEQ → BOOL

∀ imp asms imp conc ant asms ant conc new asms new conc •
MP rule (imp asms, imp conc) (ant asms, ant conc) (new asms, new conc) ⇔
(has mk imp(ant conc, new conc)imp conc) ∧
(new asms = imp asms ∪ ant asms)

5 THE AXIOM SCHEMATA

5.1 The Axiom Schema ASSUME

ASSUME allows us to infer for any boolean term A, that A holds on the assumptions {A}. This is
straightforward to formalise. We must check that the term being assumed is of the right type.

HOL Constant

ASSUME axiom : TERM → SEQ → BOOL

∀ tm seq • ASSUME axiom tm seq ⇔
(type of term tm = Bool) ∧
(seq = ({tm}, tm))

5.2 The Axiom Schema REFL

REFL says that for any term A, we may infer that A = A without assumptions.

HOL Constant

REFL axiom : TERM → SEQ

∀ tm • REFL axiom tm = ({}, εt•has mk eq(tm, tm)t)

13

5.3 The Axiom Schema BETA CONV

BETA CONV says that, without any assumptions, any β-redex is equal to its β-reduction. This
is straightforward to define, given the apparatus we used to define SUBST. Note that the way we
construct the first argument to subst by dismantling a combination ensures that it respects types.

HOL Constant

BETA CONV axiom : TERM → SEQ → BOOL

∀ tm new seq•
BETA CONV axiom tm new seq ⇔
∃ v ty vty b abs a •
mk var(v , ty) = vty ∧
has mk abs(vty , b)abs ∧
has mk comb(abs, a)tm ∧
(new seq =

let subs: ((STRING × TYPE) → TERM) =

(λ(vx , tyx)•if vx = v ∧ tyx = ty then a else mk var(vx , tyx))

in

({}, (εt•has mk eq(tm, subst subs b)t)))

6 DERIVABILITY

In this section we will define derivability. This is a relation between sets of sequents and sequents.
As usual, we first define direct derivability. We include instances of the axiom schemata as valid
direct derivations from no premisses. This is merely for convenience, we could equally well include
all instances of the axiom schemata as axioms in every theory when theories are defined.

HOL Constant

directly derivable from : SEQ → (SEQ SET) → BOOL

∀ seq seqs •
directly derivable from seq seqs ⇔
(∃ eqs tm old seq •
Ran (Graph eqs) ⊆ seqs ∧ old seq ∈ seqs ∧ SUBST rule eqs tm old seq seq)

∨
(∃ vty old seq • old seq ∈ seqs ∧ ABS rule vty old seq seq)

∨
(∃ tysubs old seq • old seq ∈ seqs ∧ INST TYPE rule tysubs old seq seq)

∨
(∃ tm old seq • old seq ∈ seqs ∧ DISCH rule tm old seq seq)

∨
(∃ imp seq ant seq •
imp seq ∈ seqs ∧ ant seq ∈ seqs ∧ MP rule imp seq ant seq seq)

∨
(∃ tm • ASSUME axiom tm seq)

14

∨
(∃ tm • seq = REFL axiom tm)

∨
(∃ tm • BETA CONV axiom tm seq)

Proofs will just be lists of sequents. Any non-empty list is a valid proof (of the sequent at its head)
on the premisses given by those elements of the list which are not directly derivable from elements
later in the list. There is little point in making the relevant type definition for a syntactic class of
proofs in this sense, since they contain so little information. We simply define the function which
extracts the set of premisses.

HOL Constant

premisses : (SEQ LIST) → (SEQ SET)

∀ seq rest •
premisses [] = {}
∧
premisses (Cons seq rest) =

if directly derivable from seq (Elems rest)

then premisses rest

else {seq} ∪ premisses rest

HOL Constant

derivable from : SEQ → (SEQ SET) → BOOL

∀ seq seqs •
derivable from seq seqs =

∃ seql • premisses (Cons seq seql) ⊆ seqs

7 NORMAL THEORIES

In [1] a type THEORY is defined to represent the idea of a theory comprising signatures governing
the formation of types and terms and a set of axioms. However the type THEORY is too general
for our present purposes, since we have formulated rules of inference on the assumption that the
nullary type “:bool” and the constants “=” and “⇒” are available. In this section we define a
predicate normal theory which selects the theories in which the inference rules are intended to be
valid. (The normal theories correspond to those whose type structures and signatures are standard
in the terminology of [3]. Unfortunately the term standard theory is used for a stronger notion in
[3].)

7.1 Object Language Constructs

To define the type of all well-formed HOL theories we need two further object language constructs:
the choice function “ε” and the type of individuals“: ind”. These are required since we will follow
[3] in insisting on the presence of the equality, implication and choice functions in each theory. It

15

is noteworthy however that neither the rules of inference nor the standard conservative extension
mechanisms require choice or the individuals; they are only used in the axioms given in section 11.

HOL Constant

Star : TYPE

Star = mk var type "∗"

HOL Constant

Choice : TERM

Choice = mk const(("ε", Fun (Fun Star Bool) Star))

HOL Constant

Ind : TYPE

Ind = mk type("ind", [])

7.2 Normal Thoeries

We now wish to define the predicate normal theory . It is natural to say that the normal theories
are those which extend the minimal normal theory which contains only “:bool”, “=” etc. Thus we
must define this minimal normal theory and also the notion of extension of theories.

MIN is the minimal normal theory. It is represented by the triple MIN REP :

HOL Constant

MIN REP : TY ENV × CON ENV × SEQS

MIN REP = (

{("bool", 0); ("→", 2); ("ind", 0)},
{("=", Fun Star (Fun Star Bool));

("⇒", Fun Bool (Fun Bool Bool));

("ε", Fun (Fun Star Bool) Star)},
{}

)

HOL Constant

MIN : THEORY

MIN = abs theory MIN REP

Extension for objects of type THEORY is the following binary relation:

SML

declare infix (200 , "extends");

16

HOL Constant

$extends : THEORY → THEORY → BOOL

∀ thy1 thy2•
thy1 extends thy2 ⇔
(types thy2 ⊆ types thy1) ∧
(constants thy2 ⊆ constants thy1) ∧
(axioms thy2 ⊆ axioms thy1)

The normal theories are those which extend the minimal theory MIN. Note that we do not exclude
inconsistent theories here. (This corresponds to the possibility of introducing inconsistent axioms in
the HOL system).

HOL Constant

is normal theory : THEORY SET

∀thy•thy ∈ is normal theory = thy extends MIN

8 THEOREMS

We can, at last, define the type of all HOL theorems. A theorem will consist of a sequent and a
theory. The type is the subtype of the type of all such pairs in which the sequent is well-formed
with respect to the type and constant environments of the theory and in which the sequent may be
derived from the axioms of the theory.

HOL Constant

is thm : (SEQ × THEORY) SET

∀seq thy•
(seq , thy) ∈ is thm ⇔
thy ∈ is normal theory

∧
seq ∈ sequents thy

∧
derivable from seq (axioms thy)

Note that if (seq , thy) is a theorem in this sense, the derivation of seq from the axioms of thy may
involve sequents which are not well-formed with respect to thy (i.e. which contain type operators
or constants which are not in thy). This is allowed since it simplifies the definition of derivability
and makes no difference to the set of theorems in a given theory (this is essentially the fact that the
extension mechanisms new type and new constant are conservative).

Proving that ∃thm•thm∈is thm involves rather more work than has been involved in previous type
definitions. (A witness is easy to supply, e.g. (REFL axiom (mk var(‘x ,Star)),MIN) would do.
However, to show that it is a witness we need to compute sequents MIN and to do this we must
show that MIN REP is indeed the representative of a theory and checking the conditions on the
two environments is rather long-winded). For the time being we therefore defer this proof task and
use type spec to define the type, THM , of theorems.

17

SML

type spec {rep fun="rep thm", def tm = p
THM ' mk thm Of is thm

q
};

The components of a theorem are extracted using the following functions:

HOL Constant

thm seq : THM → SEQ

∀ thm •
thm seq thm = Fst(rep thm thm)

HOL Constant

thm thy : THM → THEORY

∀ thm •
thm thy thm = Snd(rep thm thm)

9 CONSISTENCY AND CONSERVATIVE EXTENSION

A theory is consistent if not every sequent which is well-formed in it can be derived from the axioms:

HOL Constant

consistent theory : THEORY SET

∀ thy •
thy ∈ consistent theory ⇔
∃ seq •
(seq ∈ sequents thy)

∧
¬(derivable from seq (axioms thy))

An extension of a theory is conservative if no sequent of the smaller theory is provable in the larger
but not in the smaller.

SML

declare infix (200 , "conservatively extends");

18

HOL Constant

$conservatively extends : THEORY → THEORY → BOOL

∀ thy1 thy2•
thy1 conservatively extends thy2 ⇔
(thy1 extends thy2) ∧
(∀ seq •
(seq ∈ sequents thy2) ⇒
(derivable from seq (axioms thy1)) ⇒
(derivable from seq (axioms thy2)))

10 DEFINITIONAL EXTENSIONS

10.1 Object Language Constructs

A theory LOG in which more of the standard logical apparatus is available will be needed to define
some of the definitional extension mechanisms. For example, new type definition works with a
theorem whose conclusion must be an existentially quantified term of a particular form. To define
LOG we need some more object language types and terms and these are defined in this section. (It
is convenient to leave the definition of LOG itself until we have defined new definition.)

The formulation of the various logical connectives follows the HOL manual, [3].

It is helpful now to have the following term constructor functions. Note that we are now using
total functions to approximate partial ones; we must, therefore, be careful only to apply them to
appropriate arguments.

HOL Constant

mk comb : (TERM × TERM) → TERM

mk comb = $ε o has mk comb

HOL Constant

mk abs : (TERM × TERM) → TERM

mk abs = $ε o has mk abs

HOL Constant

mk eq : (TERM × TERM) → TERM

mk eq = $ε o has mk eq

HOL Constant

mk imp : (TERM × TERM) → TERM

mk imp = $ε o has mk imp

19

We can now define the object language constructs needed. (These could be defined via our explicit
representations of types and terms using strings. This has not been done since the explicit concrete
syntax used is very hard to read.)

10.1.1 Truth

The constant T : bool is defined by the following equation:

T = ((λ(x : bool)•x) = (λ(x : bool)•x))

HOL Constant

Truth : TERM

Truth = mk const("T", Bool)

HOL Constant

Truth def : TERM

Truth def =

let x = mk var("x", Bool)

in

mk eq(mk abs(x , x), mk abs(x , x))

10.1.2 Universal Quantification

The constant ∀ : (∗→bool)→bool is defined by the following equation:

$∀ = (λ(P : ∗→bool)•P = (λ(x : ∗)•T)

HOL Constant

Forall : TYPE → TERM

∀ ty•Forall ty = mk const("∀", Fun (Fun ty Bool) Bool)

HOL Constant

Forall def : TERM

Forall def =

let P = mk var("P", Fun Star Bool)

in let x = mk var("x", Star)

in

mk abs(P , mk eq(P , mk abs(x , Truth)))

HOL Constant

mk forall : (TERM × TERM) → TERM

∀ tm1 tm2•mk forall(tm1 , tm2) =

mk comb(Forall (type of term tm1), mk abs(tm1 , tm2))

20

10.1.3 Existential Quantification

The constant ∃ : (∗→bool)→bool is defined by the following equation, which defines ∃ in terms of
the choice function ε : (∗→bool)→∗:

$∃ = λ(P : ∗→bool)•P(εP)

(This may be a little perplexing at first sight. In the intended interpretations, given a predicate
P : ∗→bool , if there is some x : ∗ for which P is true (i.e. for which Px = T), then εP is such an
x . I.e. taking as known the intuitive notion of “whether or not something with a given property
exists”, ε chooses something with a given property if such a thing exists. The above definition can
be viewed as taking as known the informal notion of “choosing something with a given property”
and defining ∃ to determine whether or not something with a given property exists by attempting
to choose something with the given property and checking whether the attempt succeeded.)

HOL Constant

Exists : TYPE → TERM

∀ ty • Exists ty = mk const("∃", Fun (Fun ty Bool) Bool)

HOL Constant

Exists def : TERM

Exists def =

let P = mk var("P", Fun Star Bool)

in let PchoiceP = mk comb(P ,mk comb(Choice, P))

in

mk abs(P , PchoiceP)

HOL Constant

has mk exists : (TERM × TERM) → TERM → BOOL

∀ tm1 tm2 tm3 •
has mk exists(tm1 , tm2) tm3 =

has mk comb(Exists (type of term tm1), mk abs(tm1 , tm2))tm3

HOL Constant

mk exists : (TERM × TERM) → TERM

∀ tm1 tm2•mk exists(tm1 , tm2) =

mk comb(Exists (type of term tm1), mk abs(tm1 , tm2))

10.1.4 Falsity

The constant F : bool is defined by the following equation:

F = ∀(x : bool)•x

21

(Again this may seem perplexing. The type bool is intended to contain the truth values. The above
definition says that false is the truth value of the proposition that every truth value is true!)

HOL Constant

Falsity : TERM

Falsity = mk const("F", Bool)

HOL Constant

Falsity def : TERM

Falsity def =

let x = mk var("x", Bool)

in

mk forall(x , x)

10.1.5 Negation

The constant ¬ : bool→bool is defined by the following equation:

$¬ = λ(b : bool)•b⇒F

HOL Constant

Negation : TERM

Negation = mk const("¬", Fun Bool Bool)

HOL Constant

Negation def : TERM

Negation def =

let b = mk var("b", Bool)

in

mk abs(b, mk imp(b, Falsity))

10.1.6 Conjunction

The constant ∧ : bool→bool→bool is defined by the following equation:

$∧ = λb1•λb2•∀b•(b1⇒(b2⇒b))⇒b

(I assume, but do not know, that the above formulation has some practical advantage in the present
context over the more obvious definition in terms of ¬ and ⇒.)

The name of the constant is a slash, /, followed by a backslash, \. The backslash character must be
escaped by another backslash character within an HOL string.

22

HOL Constant

Conjunction : TERM

Conjunction = mk const("/\\", Fun Bool (Fun Bool Bool))

HOL Constant

Conjunction def : TERM

Conjunction def =

let b = mk var("b", Bool)

in let b1 = mk var("b1", Bool)

in let b2 = mk var("b2", Bool)

in

mk abs(b1 , mk abs(b2 , mk forall(b, mk imp(mk imp(b1 , mk imp(b2 , b)), b))))

A derived constructor function for conjunctions is useful.

HOL Constant

mk conj : (TERM × TERM) → TERM

∀ tm1 tm2•
mk conj (tm1 , tm2) = mk comb(mk comb(Conjunction, tm1),tm2)

10.1.7 Disjunction

The constant ∨ : bool→bool→bool is defined by the following equation:

$∨ = λb1•λb2•∀b•((b1⇒b)⇒(b2⇒b))⇒b

(As for conjunction I assume this has some advantage over a definition from the propositional cal-
culus.)

The name of the constant is a backslash, \, followed by a slash, /. The backslash character must be
escaped by another backslash character within an HOL string.

HOL Constant

Disjunction : TERM

Disjunction = mk const("\\/", Fun Bool (Fun Bool Bool))

23

HOL Constant

Disjunction def : TERM

Disjunction def =

let b = mk var("b", Bool)

in let b1 = mk var("b1", Bool)

in let b2 = mk var("b2", Bool)

in

mk abs(b1 , mk abs(b2 , mk forall(b, mk imp(mk imp(b1 , b),

mk imp(mk imp(b2 , b), b)))))

A derived constructor function for disjunctions is useful later.

HOL Constant

mk disj : (TERM × TERM) → TERM

∀ tm1 tm2•
mk disj (tm1 , tm2) = mk comb(mk comb(Disjunction, tm1),tm2)

10.1.8 ONE ONE

The definition of Type Definition below requires the notion of a one-to-one function. The constant
ONE ONE is defined by the following equation:

ONE ONE = λ(f : ∗→ ∗ ∗)•∀(x1 : ∗)•∀(x2 : ∗)•(f x1 = f x2)⇒(x1 = x2)

HOL Constant

StarStar : TYPE

StarStar = mk var type "∗∗"

HOL Constant

One One : TERM

One One = mk const("ONE ONE", Fun(Fun Star StarStar)Bool)

HOL Constant

One One def : TERM

One One def =

let f = mk var("f ",Fun Star StarStar)

in let x1 = mk var("x1",Star)

in let x2 = mk var("x2",Star) in

mk abs(f , mk forall(x1 , mk forall(x2 ,

mk imp(mk eq(mk comb(f , x1), mk comb(f , x2)),

mk eq(x1 , x2)))))

24

10.1.9 ONTO

The axiom of infinity requires the notion of an onto function. The constant ONTO is defined by the
following equation:

ONTO = λ(f : ∗→ ∗ ∗)•∀(y : ∗∗)•∃(x : ∗)•y = f x

HOL Constant

ONTO : TERM

ONTO = mk const("ONTO", Fun(Fun Star StarStar)Bool)

The name is all upper case to avoid conflict with the actual constant Onto used in the metalanguage
system.

HOL Constant

ONTO def : TERM

ONTO def =

let f = mk var("f ",Fun Star StarStar)

in let x = mk var("x",Star)

in let y = mk var("y",StarStar) in

mk abs(f , mk forall(y , mk exists(x , mk eq(y , mk comb(f , x)))))

10.1.10 Type Definition

Type Definition may be new to some readers. It is a term asserting that a function represents one
type as a subtype of another. It is used in defining new type definition. It has type (∗∗→bool)→(∗→∗
∗)→bool and is defined by the following equation:

Type Definition = λ(P :∗∗→bool)•(rep:∗→∗∗)•ONE ONE rep

∧ ∀(x :∗∗)•P x = ∃(y :∗)•x = rep y

It is useful later to have a version of Type Definition parameterised over the types involved.

HOL Constant

Type Definition : TYPE → TYPE → TERM

∀ ty1 ty2 •
Type Definition ty1 ty2 =

mk const("Type Definition", (Fun (Fun ty2 Bool) (Fun(Fun ty1 ty2)Bool)))

25

HOL Constant

Type Definition def : TERM

Type Definition def =

let P = mk var("P",Fun StarStar Bool)

in let rep = mk var("rep",Fun Star StarStar)

in let x = mk var("x",StarStar)

in let y = mk var("y",Star) in

mk abs(P , mk abs(rep,

mk conj (mk comb(One One, rep),

mk forall(x , mk eq(mk comb(P , x), mk exists(y ,

mk eq(x , mk comb(rep, y))))))))

10.2 new type and new constant

The first two definitional extension mechanisms, new type and new constant are conservative, but
not very powerful.

new type is used to declare a name to be used as a type constructor. No axioms about the type are
introduced so that only instances of polymorphic functions may be applied to it. The only constraint
is that the name should not be a type constructor in the theory to be extended.

To see, syntactically, that new type is conservative observe that, given a proof in which the new
type does not appear in the conclusion, distinct applications of the new type operator could be
replaced by distinct type variables not used elsewhere in the proof. The result would be a proof in
the unextended theory with the same conclusion as the original proof.

HOL Constant

new type : N → STRING → THEORY → THEORY → BOOL

∀ arity name thy1 thy2 •
new type arity name thy1 thy2 ⇔
¬ name ∈ Dom(types thy1) ∧
types thy2 = types thy1 ∪ {(name, arity)} ∧
constants thy2 = constants thy1 ∧
axioms thy2 = axioms thy1

new constant is used to declare a name to be used as a constant of a given type. No axioms about
the constant are introduced so that it behaves as a value which we cannot determine. The only
constraint is that the name should not be a constant in the theory to be extended and that the type
of the constant should be well-formed.

HOL Constant

new constant : STRING → TYPE → THEORY → THEORY → BOOL

∀ name type thy1 thy2 •
new constant name type thy1 thy2 ⇔
¬ name ∈ Dom(constants thy1) ∧

26

type ∈ wf type (types thy1) ∧
constants thy2 = constants thy1 ∪ {(name, type)} ∧
types thy2 = types thy1 ∧
axioms thy2 = axioms thy1

Again it is easy to see syntactically that this is conservative. Simply replace distinct instances of the
new constant in a proof by distinct variables not used elsewhere in the proof to obtain a proof in the
unextended theory.

10.3 new axiom

new axiom is both powerful and dangerous! It allows a sequent with no hypotheses and a given
conclusion to be taken as an axiom. The only constraint is that the sequent be well-formed with
respect to the environments of the theory being extended.

It is convenient, for technical reasons, in [2] to have the more general operation of adding a set of
new axioms. We therefore define new axiom in terms of the more general new axioms.

HOL Constant

new axioms : (TERM SET) → THEORY → THEORY → BOOL

∀ tms thy1 thy2 •
new axioms tms thy1 thy2 =

let seqs = {(x , tm) | x = {} ∧ tm ∈ tms}
in

seqs ⊆ sequents thy1∧
types thy2 = types thy1 ∧
constants thy2 = constants thy1 ∧
axioms thy2 = axioms thy1 ∪ seqs

HOL Constant

new axiom : TERM → THEORY → THEORY → BOOL

∀ tm thy1 thy2 •
new axiom tm thy1 thy2 = new axioms {tm} thy1 thy2

10.4 new definition

new definition is useful and conservative. It allows the simultaneous introduction of a new constant
and an axiom asserting that the new constant is equal to a given term. The constraints imposed are
(a) the name must satisfy the check made in new constant, (b) the term must be closed and (c) the
term must contain no bound variables whose types contain type variables which do not appear in the
type of the new constant. Condition (c) ensures that different type instances of the term result in
different instances of the constant; this avoids a possible inconsistency (see [2] for an example which
arises in the course of this specification).

27

HOL Constant

new definition : STRING → TERM → THEORY → THEORY → BOOL

∀ name tm thy1 thy2 •
new definition name tm thy1 thy2 ⇔
let ty = type of term tm

in

∃ thy1a •
new constant name ty thy1 thy1a ∧
freevars set tm = {} ∧
term tyvars tm ⊆ type tyvars ty ∧
new axiom (mk eq(mk const(name, ty), tm)) thy1a thy2

10.5 new specification

new specification allows the simultaneous introduction of a set of new constants satisfying a given
predicate provided that a theorem asserting the existence of some set of values satisfying the constants
is given. An axiom asserting the predicate for the new constants is introduced. Like new definition,
new specification is useful and conservative.

The constraints imposed are analogous to those imposed in new definition: (a) the constant names
must be pairwise distinct and different from any constant name in the theory being extended, (b)
the predicate must have no free variables apart from those corresponding to the new constants, (c)
any type variable contained in a bound variable of the predicate must appear as a type variable of
each of the new constants. Also, of course, the theorem must have the right form.

Since we now need to work with existential quantifiers it is necessary to introduce the theory LOG.
We impose the restriction that new specification may only be used to extend theories which extend
LOG.

HOL Constant

LOG : THEORY

∃ thy1 thy2 thy3 thy4 thy5 thy6 thy7 thy8 thy9•
let Name = λcon•εs•∃ty•mk const(s, ty) = con

in

(new definition (Name Truth) Truth def MIN thy1

∧ new definition (Name (Forall Star)) Forall def thy1 thy2

∧ new definition (Name (Exists Star)) Exists def thy2 thy3

∧ new definition (Name Falsity) Falsity def thy3 thy4

∧ new definition (Name Negation) Negation def thy4 thy5

∧ new definition (Name Conjunction) Conjunction def thy5 thy6

∧ new definition (Name Disjunction) Disjunction def thy6 thy7

∧ new definition (Name One One) One One def thy7 thy8

∧ new definition (Name ONTO) ONTO def thy8 thy9

∧ new definition (Name (Type Definition Star StarStar)) Type Definition def thy9 LOG)

28

To define new specification we need the relation has list mk exists, and the relation new constants
which is like new constant but handles a set of new constants.

HOL Constant

has list mk exists : (TERM LIST) → TERM → TERM → BOOL

(∀tm1 tm2• has list mk exists [] tm1 tm2 ⇔ tm1 = tm2)

∧
(∀ v rest tm1 tm2 •
has list mk exists (Cons v rest) tm1 tm2 ⇔
∃ rem • has mk exists(v , rem) tm2 ∧

has list mk exists rest rem tm1)

HOL Constant

new constants : ((STRING × TYPE) SET) → THEORY → THEORY → BOOL

∀ cons thy1 thy2 •
new constants cons thy1 thy2 ⇔
Dom cons ∩ Dom (constants thy1) = {} ∧
Ran cons ⊆ wf type(types thy1) ∧
constants thy2 = constants thy1 ∪ cons ∧
types thy2 = types thy1 ∧
axioms thy2 = axioms thy1

We can now define new specification.

HOL Constant

new specification : ((STRING × (STRING × TYPE)) LIST) →
TERM → THM → THEORY → THEORY → BOOL

∀ pairs tm thm thy1 thy2 •
new specification pairs tm thm thy1 thy2 =

let conl = Fst(Split pairs)

in let varl = Map mk var (Snd(Split pairs))

in let tyl = Map Snd (Snd(Split pairs))

in let subs = λ(s, ty) •
if ∃ c • (c, (s, ty)) ∈ Elems pairs

then mk const((εc•(c, (s, ty)) ∈ Elems pairs), ty)

else mk var(s, ty)

in let axiom = subst subs tm

in (∃ conc•
has list mk exists varl tm conc

∧ thy1 extends LOG

∧ (freevars set conc = {})
∧ conl ∈ Distinct

29

∧ varl ∈ Distinct

∧ thm seq thm = ({}, conc)

∧ thy1 extends thm thy thm

∧ (∀ ty• ty ∈ Elems tyl ⇒ term tyvars conc ⊆ type tyvars ty)

∧ (∃ thy1a •
new constants (Elems (Combine conl tyl)) thy1 thy1a ∧
new axiom axiom thy1a thy2))

10.6 new type definition

new type definition allows the introduction of a new type in one-to-one correspondence with the
subset of an existing type satisfying a given predicate, given a theorem asserting that the subset is
not empty. A new axiom asserting the existence of a representation function for the new type is
introduced. Like new definition, new type definition is useful and conservative.

For simplicity, we have made the list of type variable names to be used as the parameters of the
type being defined, a parameter to new type. The constraints imposed are (a) that the list of
type parameter names contain no repeats, (b) the theorem must have the right form and (c) all
type variables contained in the predicate must be contained in the list of type parameters names.
Condition (c) ensures that different type instances of the new axiom involve different type instances
of the new type.

HOL Constant

new type definition :

STRING → (STRING LIST) → THM → THEORY → THEORY → BOOL

∀ name typars thm thy1 thy2 •
new type definition name typars thm thy1 thy2 ⇔
∃ p xty x ty px thy1a axiom •
let newty = mk type(name, Map mk var type typars)

in let f = mk var("f ", Fun newty ty)

in thy1 extends LOG

∧ hyp (thm seq thm) = {}
∧ has mk exists (xty , px) (concl (thm seq thm))

∧ mk var (x , ty) = xty

∧ has mk comb (p, xty) px

∧ freevars set p = {}
∧ term tyvars p ⊆ Elems typars

∧ typars ∈ Distinct

∧ has mk exists(f , mk comb(mk comb(Type Definition newty ty , p), f)) axiom

∧ new type (# typars) name thy1 thy1a

∧ new axiom axiom thy1a thy2

30

11 THE THEORY INIT

By extending the theory LOG with five axioms we will arrive at the theory INIT . In a typical HOL
proof development system all theories will be extensions of this theory.

11.1 The Axioms

11.1.1 BOOL CASES AX

This is the law of the excluded middle:

BOOL CASES\ AX ` ∀(b:bool)•(b = T) ∨ (b = F)

HOL Constant

BOOL CASES AX : TERM

BOOL CASES AX =

let b = mk var("b", Bool)

in mk forall(b, mk disj (mk eq(b, Truth), mk eq(b, Falsity)))

11.1.2 IMP ANTISYM AX

This says that implication is an antisymmetric relation:

IMP ANTISYM AX ` ∀(b1 :bool)•∀(b2 :bool)•(b1 ⇒ b2) ⇒ (b2 ⇒ b1) ⇒ (b1 =b2)

HOL Constant

IMP ANTISYM AX : TERM

IMP ANTISYM AX =

let b1 = mk var("b1", Bool)

in let b2 = mk var("b2", Bool)

in mk forall(b1 , mk forall(b2 ,

mk imp(mk imp(mk imp(b1 , b2), mk imp(b2 , b1)), mk eq(b1 , b2))))

11.1.3 ETA AX

This says that an η-redex is equal to its η-reduction.

ETA AX ` ∀(f :∗ → ∗∗)•(λ(x :∗)•f x) = f

HOL Constant

ETA AX : TERM

ETA AX =

let f = mk var("f1", Fun Star StarStar)

in let x = mk var("x", Star)

in mk forall(f , mk eq(mk abs(x , mk comb(f , x)), f))

31

11.1.4 SELECT AX

This is the defining property of the choice function ε.

SELECT AX ` ∀(P :∗→bool)•∀(x :∗)•P x ⇒ P(ε P)

HOL Constant

SELECT AX : TERM

SELECT AX =

let P = mk var("P", Fun Star Bool)

in let x = mk var("x", Star)

in mk forall(P ,mk forall(x ,

mk imp(mk comb(P , x), mk comb(P , mk comb(Choice, P)))))

11.1.5 INFINITY AX

This is the axiom of infinity. It asserts that the type ind is in one-to-one correspondence with a
proper subset of itself:

INFINITY AX ` ∃(f :ind→ind)•ONE ONE f ∧ ¬ONTO f

HOL Constant

INFINITY AX : TERM

INFINITY AX =

let f = mk var("f ", Fun Ind Ind)

in mk conj (mk comb(One One, f), mk comb(Negation, mk comb(ONTO , f)))

11.2 The Theory

HOL Constant

INIT : THEORY

∃ thy1 thy2 thy3 thy4 thy5 thy6 •
new axiom BOOL CASES AX LOG thy1

∧ new axiom IMP ANTISYM AX thy1 thy2

∧ new axiom ETA AX thy2 thy3

∧ new axiom SELECT AX thy4 thy5

∧ new type 0 (Fst(dest type Ind)) thy5 thy6

∧ new axiom INFINITY AX thy6 INIT

11.3 DEFINITIONAL EXTENSIONS

We will say that a theory thy1 is a definitional extension of a theory thy2 if one may go from thy2
to thy1 by some sequence of extensions by the functions new type, new constant , new definition,

32

new specification and new type definition. It is stressed that definitional extensions in this sense
comprise significantly more than just extension by adjoining a defining equation for a new constant.

HOL Constant

definitional extension : THEORY → THEORY SET

∀thy•definitional extension thy =
⋂{thyset |

thy ∈ thyset

∧ (∀thy1 thy2 arity name•
thy1 ∈ thyset ∧
new type arity name thy1 thy2 ⇒ thy2 ∈ thyset

) ∧ (

∀thy1 thy2 name type•
thy1 ∈ thyset ∧
new constant name type thy1 thy2 ⇒ thy2 ∈ thyset

) ∧ (

∀thy1 thy2 name tm•
thy1 ∈ thyset ∧
new definition name tm thy1 thy2 ⇒ thy2 ∈ thyset

) ∧ (

∀thy1 thy2 pairs tm thm•
thy1 ∈ thyset ∧
new specification pairs tm thm thy1 thy2 ⇒ thy2 ∈ thyset

) ∧ (

∀thy1 thy2 name typars thm•
thy1 ∈ thyset ∧
new type definition name typars thm thy1 thy2 ⇒ thy2 ∈ thyset

)}

Of particular importance are theories which may be obtained from INIT by definitional extension.
These theories are of interest since, we assert, they form a sound formalism in which much of the
practical machine-checked proof work one might wish to do can be carried out.

33

12 INDEX OF DEFINED TERMS

ABS rule . 8
aconv . 7
ASSUME axiom . 13
BETA CONV axiom 14
BOOL CASES AX . 31
Choice . 16
Conjunction def . 23
Conjunction . 23
conservatively extends 19
consistent theory . 18
definitional extension 33
derivable from . 15
directly derivable from 14
DISCH rule . 13
Disjunction def . 24
Disjunction . 23
Equality . 4
ETA AX . 31
Exists def . 21
Exists . 21
extends . 17
Falsity def . 22
Falsity . 22
Forall def . 20
Forall . 20
freevars list . 4
freevars set . 4
has list mk exists . 29
has mk eq . 5
has mk exists . 21
has mk imp . 5
Implication . 5
IMP ANTISYM AX 31
Ind . 16
INFINITY AX . 32
INIT . 32
inst loc1 . 10
inst loc2 . 10
INST TYPE rule . 12
inst . 11
is normal theory . 17
is thm . 17
LOG . 28
MIN REP . 16
MIN . 16
mk abs . 19
mk comb . 19
mk conj . 23

mk disj . 24
mk eq . 19
mk exists . 21
mk forall . 20
mk imp . 19
mk thm . 18
MP rule . 13
Negation def . 22
Negation . 22
new axioms . 27
new axiom . 27
new constants . 29
new constant . 26
new definition . 28
new specification . 29
new type definition . 30
new type . 26
One One def . 24
One One . 24
ONTO def . 25
ONTO . 25
premisses . 15
REFL axiom . 13
rename . 7
SELECT AX . 32
spc003 . 3
StarStar . 24
Star . 16
SUBST rule . 8
subst . 6
term types . 12
term tyvars . 12
thm seq . 18
thm thy . 18
THM . 18
Truth def . 20
Truth . 20
Type Definition def . 26
Type Definition . 25
type tyvars . 11
variant . 6

34

