
HOL Formalised:

Language and Overview

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

25 October 1993
Revised 27 April 2014

Abstract

This document is the first in a suite of documents which give a formal specification of HOL.
It acts as an overview to the formal treatment and includes the detailed treatment of the HOL
language.

The overview of the specification discusses the theoretical background and some of the deci-
sions which have been taken in approaching the specification task. It also describes briefly the
ProofPower-HOL specification facilities which are used.

The description of the HOL language defines the syntax of types, terms sequents and theories.
Some supporting functions, such as a function to carry out type instantiation, are also defined.

An index to the formal material is provided at the end of the document.

Copyright c© : Lemma 1 Ltd 2014
Reference: DS/FMU/IED/SPC001; issue Revision : 2 .12

1 DOCUMENT CONTROL

1.1 Contents list

1 DOCUMENT CONTROL 1
1.1 Contents list . 1
1.2 Document cross references . 2

2 GENERAL 3
2.1 Scope . 3

3 OVERVIEW OF THE SPECIFICATION 3
3.1 Theoretical Background . 3
3.2 Structure of the Specification . 4
3.3 Approach . 5
3.4 Notation . 5

4 PREAMBLE 7

5 THE SYNTAX OF TYPES AND TERMS 7
5.1 Names . 8
5.2 Types . 8
5.3 Terms . 10
5.4 Instantiation of Types . 13

6 SYNTAX OF SEQUENTS 13

7 THEORIES 14

8 INDEX OF DEFINED TERMS 18

1

1.2 Document cross references

[1] Elliot Mendelson. Introduction to Mathematical Logic. Wadworth and Brook/Cole, third edition,
1987.

[2] DS/FMU/IED/SPC001. HOL Formalised: Language and Overview. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[3] DS/FMU/IED/SPC002. HOL Formalised: Semantics. R.D. Arthan, Lemma 1 Ltd.,
http://www.lemma-one.com.

[4] DS/FMU/IED/SPC003. HOL Formalised: Deductive System. R.D. Arthan, Lemma 1 Ltd.,
http://www.lemma-one.com.

[5] DS/FMU/IED/SPC004. HOL Formalised: Proof Development System. R.D. Arthan, Lemma 1
Ltd., http://www.lemma-one.com.

[6] The HOL System: Description. SRI International, 4 December 1989.

2

2 GENERAL

2.1 Scope

This document is part of a formal specification of the HOL logic. The formal specification is a formal
treatment of the description of the HOL logic and proof development system given in chapters 9 and
10 of [6].

This document contains a brief overview of the specification and also defines the syntax of the HOL
language as used throughout the specification.

3 OVERVIEW OF THE SPECIFICATION

3.1 Theoretical Background

It may be helpful to discuss some generalities about the definition of logics, in order to set in context
the specific constructions we will make to specify the HOL deductive system. Readers who know
what to expect are invited to skip this section. If we apply Occam’s Razor fairly viciously to the sort
of definition found in, e.g., Mendelson’s textbook on logic [1], one finds that a deductive system1 is
given by a set, S , whose elements we will call sentences in this section, and a subset I of

⋃∞
n=1 Sn .

One says that x ∈ S is directly derivable from X ⊆ S if for some n, (X n−1 × {x}) ∩ I 6= ∅. One
then says that x ∈ S is derivable from X ⊆ S , if for some sequence x1 , x2 , . . . , xk of elements of S ,
xk = x and, for each i , xi is either in X or is directly derivable from {x1 , x2 , . . . , xi−1}. One says
that x ∈ S is a theorem if it is derivable from ∅.

In practice, S is usually defined by a decidable “well-formedness” predicate on the free algebra,
F (Ω), over some signature, Ω , and I is given as the union of a set of decidable n-ary relations (the
rules of inference).

The above ideas, while of theoretical value, are not sufficient for a practical proof development system
like HOL, since, in such a system, the user can introduce new constructs into the language S by
modifying the signature Ω , and can assert that certain sentences in the extended language, S (Ω),
are axioms. For example, when a new constant is defined in HOL, the language is extended to
include the new constant and an axiom that the constant is equal to the value given in its definition
is asserted.

Let us assume that the well-formedness predicates and inference rules are defined so as to apply to
sentences over any signature the user can define. This may be achieved by restricting the signatures
to be subsignatures of a signature Σmax . A predicate over F (Σmax) then restricts to a predicate over
F (Ω) for any subsignature, Ω , of Σmax , and, similarly, any set of rules of inference over L(Σmax)
restricts to a set of rules of inference over S (Σmax). Let us assume that a well-formedness predicate
and a set of rules of inference have been defined for some signature Σmax .

Let us define a theory to be a pair (Ω ,X), where Ω is a subsignature of Σmax as above, and X ⊆ S (Ω).
X is the set of axioms of the theory. A theorem in a theory, (Ω ,X), is a sentence in S (Ω) which
is derivable from X (with respect to the rules of inference restricted to S (Ω)). Thus the axioms,
X , act as additional unary rules of inference. Theories form a partially ordered set with respect to
inclusion. We will actually use extension: the relation inverse to inclusion.

(The signature part of a theory can in many cases of interest be omitted. For example, treatments of
first-order logic commonly offer an infinite supply of constant letters and predicate letters for use in

1Mendelson calls it a formal theory. The term formal system and others are also used.

3

constructing sentences. This corresponds to insisting that each signature Ω is equal to Σmax in the
above formulation. The more general treatment discussed here seems more appropriate to HOL.)

The rules of inference over S (Σmax) induce rules of inference on the sentences in the language, L(T),
of a given theory T . The theorems of the theory (Ω ,X) are then precisely the sentences in S (Ω)
which are derivable from X using the induced inference rules.

A theory is consistent if not every sentence in its language is a theorem. Of particular interest
in a practical proof development system are mechanisms for extending a theory which preserve
consistency. A theory T1 is a conservative extension of a theory T if T1 extends T and all sentences
in L(T) which are theorems in T1 are also theorems in T . Clearly conservative extensions preserve
consistency.

A semantics for a theory (Ω ,X) gives meaning to the sentences of the language S (Ω) by assigning
values to them. This is most readily done by selecting on the basis of intuitive or theoretical con-
siderations, some Ω -algebra, V and considering the restriction to S (Ω) of the mapping from F (Ω)
given by the universal property of a free algebra. Such a mapping is called an interpretation of the
theory. If V has sufficient structure for us to view the sentences of S (Ω) as propositions, we may
use an interpretation to reason about the rules of inference and the axioms X . In particular, given
a a model — an interpretation which maps the axioms to true propositions — we may ask whether
the inference rules are valid, i.e. whether they preserve truth.

3.2 Structure of the Specification

The previous section identifies three main topics we have to consider for HOL: its language, its de-
ductive system and its semantics. We also wish to specify, at an abstract level, the critical properties
of a program purporting to support the development of proofs in the logic. We devote a document to
each of these four topics [2, 3, 4, 5]. Each document in the specification contributes an HOL theory.
The theories are briefly described in the following table:

Name Parents Description

spc001 fin set2 This contains our definition of the HOL language. The main
definitions are types TYPE , TERM and THEORY repre-
senting the types, terms and theories described in [6].

spc002 spc001 This specifies the semantics of the HOL language. The main
definitions are of a predicate is set theory which specifies
the sorts of universe in which the semantics can be given and
a predicate is model which specifies what it means to be a
model of a THEORY in some such universe.

spc003 spc001 This specifies the HOL deductive system. That is to say it
defines the notion of derivability (with respect to a formali-
sation of the primitive inference rules of HOL as described in
[6]).

spc004
spc002
spc003

This gives an abstract model of an HOL proof development
system and gives semantic and syntactic formulations of the
critical properties of such a system.

2This is a library theory making available operations on sets, lists, strings etc.

4

3.3 Approach

Initially we had hoped to present something which could specify both the deductive system (i.e.
the formal theory in the sense of a mathematical structure with sentences, inference rules etc.) and
the system (i.e. the program which enable one to calculate theorems). However, in defining the
deductive system we frequently found that attempts to make the specification “constructive” tended
to obscure some issues. We have consequently erred on the side of abstraction in most cases. For
example, many of the functions we need are partial functions: we represent these as binary relations,
rather than approximate them with total functions. This approach was felt to lead to a clearer
specification than would be obtained by using approximating total functions together with checks
on the arguments supplied in each application.

In formalising the system we have, on occasion, felt that certain changes would be desirable for one
reason or another. We have resisted all such urges — what is presented here is meant to be a rigorous
formulation of the logic as described in [6]. Where [6] has proved a little too loose for our purposes
(e.g. in the details of type instantiation), we have tried to follow the spirit of the HOL system.

There are occasionally differences in terminology between our usage and [6]. We have attempted to
indicate these as they arise. This is most evident in the semantics since our treatment is in HOL
rather than ZF set theory as used in [6].

3.4 Notation

The documents which make up the specification are literate scripts containing a mixture of narrative
text and input for the ProofPower system. The theory listings in the documents are obtained
by loading the HOL input from the documents into the HOL system and the listing the theories
produced.

The specification makes much use of the Z-like specification features ProofPower provides. These
features are briefly explained here.

Constants are intoduced using constant definition boxes which have the form:

SML

(∗

HOL Constant

c1 : ty1 ,

c2 : ty2 ,

...

P

SML

∗)

The intention of this is to introduce new constants, c1 , c2 , . . . , satisfying the property P , using
new specification, and, if the consistency proposition required by new specification can be proved
automatically by one of a range of heuristics, then the effect is exactly that. If the consistency
proposition cannot be proved automatically the constants are still introduced but with a defining
property which is consistent and which is equivalent to P if P is consistent. A metalanguage function

5

“specification”, analagous to “definition” may be used to extract the defining property from the
theory database.

Some use is made of an experimental metalanguage function type spec which is an analogue of the
constant definition box for defining types and deferring any proof obligations. It is supported by
object language constants ' and Of . A definition such as:

type spec {rep fun="rep three", def tm =

pTHREE ' mk three Of (λi :N• i < 3)q

};

introduces a new type THREE , with representation function rep three and abstraction function
mk three, which is in one-to-one correspondence with the set of natural numbers less than 3 .

In cases where the proof obligations for introducing a new type are proved, an experimental met-
alanguage function called abs rep spec is used as a convenient way of introducing abstraction and
representation functions for the new type. This takes as parameters a metalanguage labelled record
including components which name the type and the two functions to be introduced.

Other significant differences from Cambridge HOL are: object language terms are quoted using
Strachey brackets, “p” and “q”; type variables are distinguished using a prime rather than an asterisk,
e.g. ′a rather than ∗; and type abbreviations with arguments are supported (any type variables in
the definition of the the abbreviation become arguments).

Largely for historical reasons, the object language described in this formal treatment uses the Cam-
bridge HOL conventions in those places where it is necessary to give concrete syntax.

6

4 PREAMBLE

We introduce the new theory. Its parent is a library theory containing various definitions we need.

SML

open theory"fin set";

new theory"spc001";

push pc"hol";

5 THE SYNTAX OF TYPES AND TERMS

We now embark on defining the language of HOL. The treatment will follow the lines discussed in
section 3.1 above. However, since we are only interested in a particular language we do not do any
general universal algebra. Thus, apart from a minor complication dealt with in section 6 below,
defining our version of F (Σmax) and L(Σmax) amounts to specifying the language of HOL types and
terms.

The language is defined informally in [6] by a grammar essentially the same as the following (in
which the terminal symbols, tyvar , tyop etc., stand for names of various sorts of objects).

BNF

type = tyvar (∗ Type Variable ∗)
| ‘(‘, type, {‘,‘, type}, ‘)‘, tyop; (∗ Compound Type ∗)

term = var , ‘:‘, type (∗ Variable ∗)
| con, ‘:‘, type (∗ Constant ∗)
| term, term (∗ Application ∗)
| ‘λ‘, var , ‘:‘, type, ‘•‘, term; (∗ λ−abstraction ∗)

Here the atomic types and function types of [6] are subsumed by the compound types (an atomic
type being a compound type with no parameters and a function type being one with exactly two
parameters and with the type operator ‘→’).

The type and term languages are subject to well-formedness rules of two sorts: context-sensitive
rules governing conformance of the type of a constant or the arity of a type with a definition of the
constant or type contained in a theory; and the “local” rule that the operator of a combination be of
an appropriate type to apply to its operand. To avoid a mutual recursion between the types TYPE ,
TERM and THEORY which we are going to define, we will not impose the context-sensitive rules as
part of the definitions of TYPE and TERM . Instead, when we define the type THEORY , we insist
that any types or terms which appear in a theory satisfy appropriate conditions. In the following
subsections we therefore only consider the local well-typing rule.

If machinery were available to define the recursive types we need automatically, we would probably
use it (to define the free algebra of types and a free algebra which would have the type of terms as
a subset). Unfortunately, the type TYPE involves a recursion through the list type constructor and
this is not currently supported by T. Melham’s system for defining recursive types (and no suitable
analogue is currently available for ProofPower). Consequently we work here with an explicit concrete
representation of types and terms using strings.

7

5.1 Names

We could, in priniciple, take the names which appear in types and terms from some arbitrary type.
However the extra generality would add complexity and does not seem to offer any benefit over the
natural representation of names as strings.

It is, however, technically convenient to allow arbitrary strings to be used as names (since this lets
us formulate and use the constructor functions for types and terms in a natural way). To enable this
we use an encoding of names in the concrete representation which allows an arbitrary string to be
viewed as a name. To do this we use an escape character to protect any occurrences of the characters
which act as delimiters in the concrete representation of types or terms.

We use ‘$’ as the escape character (in fact any character other than ‘(’, ‘)’, ‘,’, ‘:’, ‘λ’ or ‘•’ would
do). The encoding is then given by the following function:

HOL Constant

encode : STRING → STRING

∀ch : CHAR; s : STRING •
encode "" = ""

∧ encode (Cons ch s) =

if ch ∈ {‘$‘; ‘(‘; ‘)‘; ‘,‘; ‘:‘; ‘λ‘; ‘•‘}
then Cons ‘$‘ (Cons ch (encode s))

else Cons ch (encode s)

The range of the function encodeencode will comprise the strings produced by the following grammar:
BNF

name = ""

| (char − ("$" | "(" | ")" | "," | ":" | "λ" | "•")), name

| "$", char , name;

5.2 Types

Our concrete representations for types are the strings which satisfy a predicate, is type, defined
below. This is satisfied only by the strings produced by the following grammar:
BNF

type = name

| "(‘, [type, {‘,‘, type}], ‘)‘, name;

The following utility function is used to construct the argument lists of compound types.
HOL Constant

comma list : STRING LIST → STRING

comma list [] = ""

∧ ∀x t • comma list (Cons x t)

= if t = []

then x

else x @ (Cons ‘,‘ (comma list t))

8

The operations on strings which will represent the constructor functions of the type TYPE are the
following:

HOL Constant

mk var type rep: STRING → STRING

∀s•mk var type rep s = encode s

HOL Constant

mk type rep: STRING × STRING LIST → STRING

∀s tl•mk type rep(s, tl) = "(" @ comma list tl @ ")" @ encode s

We may now define is type as the smallest set which is closed under the constructors type rep and
mk type rep.

HOL Constant

is type : STRING SET

is type =
⋂
{X :STRING SET |

(∀s• mk var type rep s ∈ X)

∧ (∀pars tycon•
Elems pars ⊆ X

⇒ mk type rep(tycon, pars) ∈ X)}

We prove that is type is non-empty and use the result to define a new type, TYPE .

SML

val thm1 = save thm("thm1", (

set goal([], p∃ty•ty ∈ is typeq);

a(∃ tacpencode sq);

a(rewrite tac (map get spec[pis typeq, p
⋂
q, pmk var type repq]));

a(REPEAT strip tac THEN asm rewrite tac[]);

pop thm()

));

The definition of the new type follows the usual pattern:

SML

val type def = new type defn (["TYPE"], "TYPE", [],

(tac proof (([], p∃ty•(λty•ty ∈ is type) tyq),

rewrite tac[thm1])));

val abs type rep type def = abs rep spec

{type def name = "TYPE",

abs fun = "abs type",

rep fun = "rep type",

def conv = Value (rewrite conv [])};

9

The constructor functions for the new type are:

HOL Constant

mk var type: STRING → TYPE

∀s•mk var type s = abs type (mk var type rep s)

. . . and:
HOL Constant

mk type: STRING × TYPE LIST → TYPE

∀s tl•mk type(s, tl) = abs type(mk type rep(s, Map rep type tl))

We will also need a destructor function for types:

HOL Constant

dest type: TYPE → STRING × (TYPE LIST)

∀s tyl•dest type(mk type(s, tyl)) = (s, tyl)

. . . and the constant type “:bool ”:

HOL Constant

Bool : TYPE

Bool = mk type("BOOL", [])

. . . and a function to extract the set of type variables of a type:

HOL Constant

type ty vars: TYPE → STRING SET

(∀x s• x ∈ type ty vars (mk var type s) ⇔ x = s)

∧ (∀x s tyl•
x ∈ type ty vars (mk type (s, tyl))

⇔ ∃ty• ty ∈ Elems tyl ∧ x ∈ type ty vars ty)

5.3 Terms

The representation type for the well-formed terms will be string×TYPE . The string component
gives the concrete representation of the term according to the following grammar:

BNF

term = ‘V ‘, name, ‘:‘, type

| ‘C‘, name, ‘:‘, type

| ‘(‘, term, ‘)(‘, term, ‘)‘

| ‘λV ‘, name, ‘:‘, type, ‘•‘, term;

10

The TYPE component gives the type of the term. This representation is analogous to the terms
subscripted with their types one finds in [6]. (Note that the types which appear in the string
components are not redundant. Without them it would not in general be possible to recover the
types of the constituents of a combination, so that the constructor, mk comb, for combinations would
not be injective.)

The constructor functions for the type of terms will be represented by the following operations on
strings.

HOL Constant

mk var rep : STRING × TYPE → STRING

∀s ty • mk var rep (s, ty) = "V " @ encode s @ ":" @ rep type ty

HOL Constant

mk const rep : STRING × TYPE → STRING

∀s ty • mk const rep (s, ty) = "C" @ encode s @ ":" @ rep type ty

HOL Constant

mk comb rep : STRING × STRING → STRING

∀tm1 tm2 • mk comb rep (tm1 , tm2) = "(" @ tm1 @ ")(" @ tm2 @ ")"

HOL Constant

mk abs rep : STRING × TYPE × STRING → STRING

∀s ty tm • mk abs rep (s, ty , tm) = "λV " @ s @ ":" @ rep type ty @ "•" @ tm

The following utility for forming function types is useful:

HOL Constant

Fun : TYPE → TYPE → TYPE

∀ ty1 ty2•Fun ty1 ty2 = mk type("→", [ty1 ; ty2])

The following predicate picks out the well-formed terms, by imposing the appropriate typing rules.

HOL Constant

is wf term : (STRING × TYPE) SET

is wf term =
⋂
{X :(STRING × TYPE) SET |

(∀s ty•(mk var rep(s, ty), ty) ∈ X)

∧ (∀s ty•(mk const rep(s, ty), ty) ∈ X)

∧ (∀f a tya ty•((f , Fun tya ty) ∈ X ∧ (a, tya) ∈ X) ⇒ (mk comb rep(f , a), ty) ∈ X)

∧ (∀s b tys tyb• (b, tyb) ∈ X ⇒ (mk abs rep(s, tys, b), Fun tys tyb) ∈ X)}

We prove that well-formed terms exist according to the above condition using a variable as a witness:

11

SML

val thm2 = save thm("thm2", (

set goal([], p∃tm•tm ∈ is wf termq);

a(∃ tac p(mk var rep(s, ty), ty)q);

a(rewrite tac (map get spec[pis wf termq, p
⋂
q]));

a(REPEAT strip tac THEN asm rewrite tac[]);

pop thm()

));

The definition of the new type follows the usual pattern:

SML

val term def = new type defn (["TERM "], "TERM ", [],

(tac proof (([], p∃tm•(λtm•tm ∈ is wf term) tmq),

rewrite tac[thm2])));

val abs term rep term def = abs rep spec

{type def name = "TERM ",

abs fun = "abs term",

rep fun = "rep term",

def conv = Value (rewrite conv [])};

We can now define a function which assigns to any term its type:

HOL Constant

type of term : TERM → TYPE

∀ tm • type of term tm = Snd(rep term tm)

The constructor functions for the type TERM , namely mk var , mk const , mk comb and mk abs,
could be defined as composites of mk cand var etc. and the abstraction and representation functions
for TERM . Unfortunately the resulting functions mk comb and mk abs are not total functions3 .
Attempts to use an approximating total function turn out to lead to difficulties when we wish to
define functions on terms by cases. Thus we must use relations to represent these constructors.
Implementations exploit the fact that the relations corresponds to a partial function.

In our informal discussions below we will often use the name mk comb and mk abs to refer to these
relations viewed as partial functions (i.e. with applicative notation).

The names chosen for the relations are intended to be suggestive of phrases like: (‘x:num’, “1”) has
mk abs “λx:num•1”.

HOL Constant

mk var : (STRING × TYPE) → TERM

∀ s ty • mk var (s, ty) = abs term (mk var rep(s, ty), ty)

3mk abs could be reparameterised to be total quite simply, but we prefer to follow the treatment of [6]. mk comb,
however, is of necessity partial.

12

HOL Constant

mk const : (STRING × TYPE) → TERM

∀ s ty• mk const (s, ty) = abs term (mk const rep(s, ty), ty)

HOL Constant

has mk comb : (TERM × TERM) → TERM → BOOL

∀ f a tm •
has mk comb (f , a) tm ⇔
∃ty• rep term tm = (mk comb rep(Fst(rep term f), Fst(rep term a)), ty)

∧ type of term f = Fun (type of term a) ty

HOL Constant

has mk abs : (TERM × TERM) → TERM → BOOL

∀v b tm • has mk abs (v , b) tm ⇔
(∃ s tys• mk var(s, tys) = v

∧ rep term tm =

(mk abs rep(s, tys, Fst(rep term b)), Fun tys (type of term b)))

5.4 Instantiation of Types

When we define the type of HOL theories we will need the following function to formulate some of
context-sensitive conditions that we will wish to impose.

HOL Constant

inst type : (STRING → TYPE) → TYPE → TYPE

∀(f : STRING → TYPE) •
(∀s• inst type f (mk var type s) = f s)

∧ (∀s tl•inst type f (mk type(s, tl)) =

mk type(s, Map (inst type f) tl))

6 SYNTAX OF SEQUENTS

The minor complication mentioned in the previous section is that HOL is defined as a sequent
calculus. It is the sequents which make up our L(Σmax).

A sequent is simply a set of assumptions and a conclusion. Assumptions and conclusion alike are just
terms. The following definition allows infinite assumption sets, since they are easier for us to define.
However the axioms with which we shall work all have finite sets of assumptions and the inference
rules will preserve this property. Another pleasant property of sequents is for their constituent terms
to have type “:bool ”. This property, too, holds of our axioms and is preserved by our inference rules
and when we define theories we insist that the sequents in them have it.

13

SML

declare type abbrev("SEQ", [], p:(TERM SET) × TERM q);

The following functions on sequents are useful for reasons of clarity. Their names are as in the HOL
system.
HOL Constant

concl : SEQ → TERM

concl = Snd

HOL Constant

hyp : SEQ → (TERM SET)

hyp = Fst

7 THEORIES

In this section we define a type THEORY whose elements are what we shall think of as the well-
formed HOL theories. In our case, the signature part of a theory amounts to two “environments”,
one giving the arity of the type constructors in the theory and the other giving the types of the
constants4 .

The following type abbreviations help us to formalise the context-sensitive aspects of the well-
formedness of terms, which we have avoided until now. Once this is done we can define the type of
all well-formed HOL theories.
SML

declare type abbrev("TY ENV ", [], p:STRING ↔ Nq);

declare type abbrev("CON ENV ", [], p:STRING ↔ TYPEq);

declare type abbrev("SEQS", [], p:SEQ SETq);

We can now define the well-formedness of types and terms with respect to a type environment. We
assume that the names for type variables and type constructors are in distinct lexical classes, and
so all we check is the arity of constructors. (HOL implementations may impose additional lexical
constraints on the names.)
HOL Constant

wf type : TY ENV → TYPE SET

∀ tyenv •
wf type tyenv =

⋂
{tyset |

(∀s • mk var type s ∈ tyset)

∧
∀s tyl • s 7→ Length tyl ∈ tyenv ∧ (∀ t • t ∈ Elems tyl ⇒ t ∈ tyset)

⇒ mk type(s, tyl) ∈ tyset}

4These correspond to the type structures and signatures respectively in [6].

14

For terms we place no restrictions on the names of variables. (The HOL system tries to prevent
constant names being used as variable names but does not always succeed, e.g, if the constant is
declared after a theorem using a variable with the same name has been saved on a theory). The
polymorphic nature of constants in HOL becomes apparent here in that we may instantiate type
variables appearing in the constant environment.

HOL Constant

wf term: TY ENV → CON ENV → TERM SET

∀ tyenv conenv •
wf term tyenv conenv =

⋂
{tmset |

(∀s ty•ty ∈ wf type tyenv ⇒ mk var(s, ty) ∈ tmset)

∧
(∀s ty•(ty ∈ wf type tyenv ∧ ∃ty ′ tysubs• s 7→ ty ′ ∈ conenv ∧ inst type tysubs ty ′ = ty)

⇒ mk const(s, ty) ∈ tmset)

∧
(∀f a tm•(has mk comb(f , a) tm ∧ f ∈ tmset ∧ a ∈ tmset) ⇒ tm ∈ tmset)

∧
(∀v b tm•(has mk abs(v , b) tm ∧ v ∈ tmset ∧ b ∈ tmset) ⇒ tm ∈ tmset)}

The well-formedness of terms extends straightforwardly to sequents and to sets thereof. We impose
an additional constraint for sequents: they must be made up from terms of type “:bool ”.

HOL Constant

wf seq: TY ENV → CON ENV → SEQ SET

∀ seq tyenv conenv•
seq ∈ wf seq tyenv conenv ⇔
let ok = {tm | tm ∈ wf term tyenv conenv ∧ type of term tm = Bool}
in concl seq ∈ ok ∧ ∀tm• tm ∈ hyp seq ⇒ tm ∈ ok

The SEQS component of a theory is well formed if it is a subset of the set of sequents which are
well-formed with respect to the type and constant environments:

HOL Constant

wf seqs: TY ENV → CON ENV → SEQS SET

∀tyenv conenv•
wf seqs tyenv conenv = P (wf seq tyenv conenv)

For the constant environments, we insist that the type associated with each name be well-formed
and that at most one type is associated with each name (i.e. the environment must be a functional
relation). Overloaded constant names could, in principle, be allowed, as an extension to the system.
This function would then be modified to impose some weaker condition.

15

HOL Constant

wf con env: TY ENV → CON ENV SET

∀ conenv tyenv•
conenv ∈ wf con env tyenv

⇔ conenv ∈ Functional

∧ ∀ con ty• con 7→ ty ∈ conenv ⇒ ty ∈ wf type tyenv

We insist that at most one arity be associated with each name in a well-formed type environment
(i.e. that the environment is a functional relation) :

HOL Constant

wf ty env: TY ENV SET

wf ty env = Functional

We will consider a triple consisting of a type environment, a constant environment and a set of
sequents to be a well-formed theory if each constituent is well-formed with respect to its predecessors:

HOL Constant

is theory: (TY ENV × CON ENV × SEQS) SET

∀ty env con env axioms•
(ty env , con env , axioms) ∈ is theory ⇔
ty env ∈ wf ty env ∧
con env ∈ wf con env ty env ∧
axioms ∈ wf seqs ty env con env

Note that a theory can contain infinitely many types, constants, or axioms. This possibility occurs
in practice, at least for constants and axioms. The theory N of natural numbers is an example, since
it contains an axiom defining the decimal representation of each positive number.

SML

val thm3 = save thm("thm3", (

set goal([], p∃thy•thy ∈ is theoryq);

a(∃ tac p({}:TY ENV , {}:CON ENV , {}:SEQS)q);

a(rewrite tac (map get spec[pis theoryq, pwf ty envq,

pwf con envq, pwf seqsq,

pDomq, pAtq, p 7→q, p$↔q, pFunctionalq]));

pop thm()

));

16

SML

val theory def = new type defn (["THEORY "], "THEORY ", [],

(tac proof (([], p∃thy•(λthy•thy ∈ is theory) thyq),

rewrite tac[thm3])));

val abs theory rep theory def = abs rep spec

{type def name = "THEORY ",

abs fun = "abs theory",

rep fun = "rep theory",

def conv = Value (rewrite conv [])};

We will use the following functions to extract the components of theories:

HOL Constant

axioms : THEORY → SEQS

∀ thy • axioms thy = Snd(Snd(rep theory thy))

HOL Constant

types : THEORY → TY ENV

∀ thy • types thy = Fst(rep theory thy)

HOL Constant

constants : THEORY → CON ENV

∀ thy • constants thy = Fst(Snd(rep theory thy))

The following function which returns the set of sequents which are in the language associated with
a theory is also useful:

HOL Constant

sequents : THEORY → SEQS

∀ seq thy •
seq ∈ sequents thy ⇔
seq ∈ wf seq (types thy) (constants thy)

17

8 INDEX OF DEFINED TERMS

abs term . 12
axioms . 17
Bool . 10
comma list . 8
concl . 14
constants . 17
CON ENV . 14
dest type . 10
encode . 8
Fun . 11
has mk abs . 13
has mk comb . 13
hyp . 14
inst type . 13
is theory . 16
is type . 9
is wf term . 11
mk abs rep . 11
mk comb rep . 11
mk const rep . 11
mk const . 13
mk type rep . 9
mk type . 10
mk var rep . 11
mk var type rep . 9
mk var type . 10
mk var . 12
rep term . 12
SEQS . 14
sequents . 17
SEQ . 14
spc001 . 7
thm1 . 9
thm2 . 12
thm3 . 16
types . 17
type of term . 12
type ty vars . 10
TY ENV . 14
wf con env . 16
wf seqs . 15
wf seq . 15
wf term . 15
wf type . 14
wf ty env . 16

18

