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Abstract

This note presents a statement and proof of the mutilated chessboard theorem in
Z. The formulation is along the lines of the one proposed by McCarthy for a ‘heavy
duty set theory” theorem prover. The theorem and its proof are presented as a Z
specification and a series of Z conjectures all of which have been mechanically verified
using the ProofPower system. For the entertainment of the theorem-proving community,
we conclude by proposing a rather harder challenge problem.

1 INTRODUCTION

The mutilated chessboard theorem was proposed over 40 years ago by John McCarthy as a
“tough nut to crack” for automated reasoning [6]. The theorem is very simple: if a chess board
is “mutilated” by removing two diagonally opposite corner squares, then the result cannot be
tiled with domino-shaped tiles each covering two adjacent squares of the board. Why is this
so? Well, as each domino covers one white square and one black, any such tiling must cover
exactly as many black squares as it does white. However, the two diagonally opposite corner
squares have the same colour, and so the mutilated board contains two more squares of one
colour than it does of the other.

A discussion of why this theorem is a challenge for theorem-proving is outside the scope of
this note. However, as McCarthy [5] points out, the counting argument given above should be
“admitted in any heavy duty set theory”, i.e., any general purpose theorem-proving system
allowing reasoning about sets should be able to handle the proof. The theorem has indeed
been proved in a number of systems including NQTHM [10], Mizar [2, 8], Isabelle [7].

The Z language [4, 9] provides a convenient notation for set theory. The ProofPower system
[1] supports specification and proof in Z. This note presents a formalisation of the mutilated
chess board theorem theorem in Z, prepared and checked using ProofPower. The treatment is
in the spirit of [5], which turns out to admit a very concise rendition in Z.

∗Copyright c© Lemma 1 Ltd. 2012; filed in the ProofPower source code repository as wrk071.doc; 1.22.
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mutilated chessboard thm ?⊢ ¬(∃z: T iling •
⋃
z = MutilatedBoard)

Figure 1: Statement of the Theorem

Adjacent =̂ {x1 , x2 : Z × Z | abs(x1 .1 − x2 .1 ) + abs(x1 .2 − x2 .2 ) = 1}

Domino =̂ {x :F(Z × Z) | #x = 2 ∧ (∀x1 , x2 :x | x1 6= x2 • (x1 , x2 ) ∈ Adjacent)}

T iling =̂ {z :P(P(Z × Z)) | z ⊆ Domino ∧ (∀x , y :z • x = y ∨ x ∩ y = {})}

Board =̂ (0 .. 7 ) × (0 .. 7 )

MutilatedBoard =̂ Board \ {(0 ,0 ), (7 ,7 )}

Figure 2: The Specification

2 STATEMENT OF THE THEOREM

Our statement of the theorem is the Z conjecture shown in figure 1. It involves the sets,
Tiling and MutilatedBoard defined along with the sets Adjacent, Domino and Board in the
little Z specification shown in figure 2. The specification is based on that of [5] with some
simplifications. Let us discuss each of the 5 sets in the order of their introduction in figure 2.

We represent a square on the chessboard as a pair of integers. Two squares are adjacent
iff. the distance between them is 1 (where we can conveniently measure distances using the
Manhattan taxi-cab metric). The set Adjacent represents this relation.

A domino in some position on the board is represented by the set comprising the two adjacent
squares it occupies. The set of all such sets is our set Domino. Unlike McCarthy, we do
not constrain our dominoes to lie on the chessboard, this makes our statement a little more
general than his. (Yes, it is obvious that a tiling that contains dominoes that are not on the
board doesn’t tile the board, but the whole thing is “obvious” so we may as well formalise it
as generally as we conveniently can.)

A tiling is a set of dominoes positioned so that no two dominoes overlap. Our set Tiling is
the set of all such tilings, specified using the obvious and direct translation of that description
into set theory. Paulson [7] argues that it is good to specify this set using induction. Certainly
an inductive definition will be intuitive to someone whose mode of thinking about such things
is to concentrate on the processes whereby they are constructed. The resulting definition in
Z would describe the set Tiling as the smallest set of domino configurations containing the
empty configuration and closed under the operation that adds a non-overlapping domino to a
configuration. This is less general (since it does not allow for infinite tilings) and gives a bias
towards an inductive proof, even though there is no induction in the informal proof.

As reflected in the definition of the set Board, the complete board is to be represented by
the set of squares with co-ordinates in the range 0 to 7, which we can write as the cartesian
product of the integer interval 0 .. 7 with itself. The set MutilatedBoard is then obtained by
removing the squares (0, 0) and (7, 7).

With our representation of dominoes, the set of squares covered by a tiling z is the union
⋃
z.

So, returning to the conjecture shown in figure 1, we see that it says there is no tiling that
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covers the mutilated board. This is precisely what we want the mutilated chessboard theorem
to state.

3 THE PROOF

We now given a “semiformal” proof of our theorem couched strictly in terms of the Z for-
malisation. The semiformal proof comprises rigorous formal statements of a series of lemmas
interleaved with narrative explanations of these statements and how they relate. The lemmas
are given as Z conjecture paragraphs.

The informal proof uses the notion of the colour of a square that we have not yet formalised.
The following integer-valued function on the squares represents this notion.

Colour : Z × Z → Z

∀x :Z × Z • Colour x = (x .1 + x .2 ) mod 2

This definition and elementary facts about remainders modulo 2 imply that the colour of any
square is either 0 or 1:

ran colour thm ?⊢ ∀u:Z × Z • Colour u ∈ {0 , 1}

The following lemma gives a more explicit characterisation of adjacency saying that two
squares are adjacent iff. their eastings differ by 1 and their northings are equal, or vice versa.
It follows from the definition of adjacency and from elementary properties of the absolute
value function.

adjacent thm ?⊢
∀x1 , x2 :Z × Z •

(x1 , x2 ) ∈ Adjacent
⇔ abs(x1 .1 − x2 .1 ) = 1 ∧ x1 .2 = x2 .2
∨ abs(x1 .2 − x2 .2 ) = 1 ∧ x1 .1 = x2 .1

That every domino comprises two squares is wired into our definition of domino. That these
two square have different colours needs to be proved. Using the definition of the colour
function, case analysis given by adjacent thm and elementary facts about remainders modulo
2, we have that the colours of any two adjacent squares are different:

adjacent colour thm ?⊢ ∀u, v :Z × Z | (u, v) ∈ Adjacent • Colour u 6= Colour v

From the above facts and the definition of Domino, using elementary facts about sets of
cardinality 2, we conclude that every domino comprises two squares, one with colour 0 and
one with colour 1. This is the only fact about dominoes that will be used hereafter.

domino colour thm ?⊢
∀x :Domino • ∃u, v :x • x = {u, v} ∧ Colour u = 0 ∧ Colour v = 1

If z is a tiling then, within the squares it covers, there is a 1-1 correspondence between those
coloured 0 and those coloured 1.

tiling colour thm ?⊢
∀z :Tiling • ∃f :{u:

⋃
z | Colour u = 0} ։ {u:

⋃
z |Colour u = 1} • true

The proof of the above is very simple and direct and does not require z to be finite: using the
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definition of a tiling together with what we have proved about the colour function and ele-
mentary facts about bijections, it is routine to verify that we may take the following definition
for a witness:

f = {d :z ; u, v :Z × Z | d = {u, v} ∧ Colour u = 0 ∧ Colour v = 1 • (u, v)}

It follows that if the set of squares covered by a tiling is finite, then the colour function divides
it into two subsets of equal size:

tiling colour size thm ?⊢
∀z :Tiling |

⋃
z ∈ (F ) • #{u:

⋃
z | Colour u = 0} = #{u:

⋃
z | Colour u = 1}

The proof of the above is immediate from elementary facts about finite cardinalities and the
existence of the bijection between the two sets.

We now need to show that the mutilated board is not divided into two equal subsets by the
colour function. To do this, we will first show that the unmutilated board can be so divided,
which we can conveniently prove using tiling colour size thm. To apply that lemma, we must
show that the unmutilated board is finite:

board finite thm ?⊢ Board ∈ (F )

. . . and that it can be tiled:

board tiling thm ?⊢ ∃z :Tiling •
⋃
z = Board

For the witness in the above lemma, one can observe that {(i , 2 ∗ j ), (i , 2 ∗ j + 1 )} is a
domino and that two distinct dominoes of this form cannot overlap and so take:

z = PBoard ∩ {i , j : Z • {(i , 2∗j ), (i , 2∗j+1 )}}

Thus we may apply tiling colour size thm and conclude that the unmutilated board is indeed
divided into equal size subsets by the colour function:

colours on board thm ?⊢
#{u:Board | Colour u = 0} = #{u:Board | Colour u = 1}

The mutilated board is obtained by removing two squares of colour 0, and so we have:

colours on mutilated board thm ?⊢
#{u:MutilatedBoard |Colour u = 0} = #{u:Board | Colour u = 0} − 2

∧ #{u:MutilatedBoard |Colour u = 1} = #{u:Board | Colour u = 1}

The mutilated chessboard theorem now follows, since tiling colour size thm says that if a
tiling of the mutilated board existed then the colour function would divide the mutilated
board into two sets of equal size, whereas colours on board thm and colours on mutilated
board thm show this is not the case.

4 THE MECHANIZED PROOFS

The source text of this document is actually a script from which all the formal material can
be extracted and checked using ProofPower

1. The source text also includes a proof script
giving the commands to prove all the conjectures mechanically. The proof script has not been

1See http://www.lemma-one.com/ProofPower/index/ for more information on ProofPower.
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included in the printed form of the document for brevity (it comprises some 11 pages of ML
code).

Case studies like this are useful for pointing up areas in the mathematical library that need
more supporting theory. As Paulson [7] points out, finite cardinalities are tricky to reason
about. Fortunately, all the groundwork for this had already been done in ProofPower and the
present argument only required a few extras. The supporting theory that had to be developed
comprised a lemma about absolute values, 4 lemmas about remainders modulo 2 and 6 lemmas
about finite cardinalities, see appendix A for more details.

The proof of the mutilated chessboard theorem as given in section 3 and the proofs of the
supporting theory discussed in appendix A comprise about 270 and 95 lines of proof commands
respectively. The proof script also includes a few dozen lines of “boiler-plate”, e.g., code to
collect statistics on the numbers of inference steps. The proofs themselves are quite routine.

The specification was originally formulated to correspond very closely with the treatment
given in [5] and inductive methods were used for the proofs as in [7]. This was done for
comparative reasons with the expectation that the inductive approach was likely to be harder
than what we present above. Including time taken on supporting theory, this approach took
about 10 hours’ work spread over three afternoons. The result is longer and more complicated
than what we have presented above.

The main complications are that you have to prove that the tilings of interest are finite2. to
justify proof by induction over them and then use induction to prove tiling colour size thm.
This requires more work in the proof itself and more supporting theory (e.g., to reason about
the finiteness of finite powersets).

The proof was then reworked to use the argument given in section 3 above. This amounted
to proving what we have called tiling colour thm and using it to replace the relatively long
inductive proof of tiling colour size thm with a simple derivation based on elementary prop-
erties of finite cardinalities. This took about 2 hours and reduces the amount of supporting
theory required to what is presented above. A final hour or so was then spent simplifying and
abbreviating the specification and adopting the proofs to accommodate.

The de Bruijn factor3 for the mutilated chessboard theorem as presented here is, in my opinion,
quite good. The same is true for the NQTHM, Mizar and Isabelle treatments. To estimate
fairly, I feel that one must compare the formal treatment with a reasonably detailed exposition
of the discrete mathematics along the lines of section 3 above. For the treatment in this
document, the de Bruijn factor turns out to be roughly 3 measured either in terms of A4
pages (6.5:3) or in terms of lines of ML code versus lines of LATEX source (270:110).

2Even closer to the approach of [7] would be to define the set of tilings as an intersection giving the smallest
set of domino configurations containing the empty configuration and closed under the operation that adds a
non-overlapping domino to a configuration. This saves having to prove that the resulting tilings are finite, but
at the expense of making the specification more complicated and less intuitive and the results less general. It
still results in a longer proof than the one presented above.

3This term, due to Freek Wiedijk, denotes the ratio between the size of a formal mathematical text and
the size of its informal original.
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5 CONCLUDING REMARKS

Further work, of course, remains to be done! Putting aside certain methodological issues in
the formalisation, a significant shortfall is that both the informal and the formal accounts deal
only with dominoes that lock into place over two adjacent squares of the board. I.e., both
accounts tacitly make a discrete abstraction of what is intuitively a continuous problem. One
must surely consider the possibility of a tiling of the board in which dominoes can be placed
at arbitrary positions and orientations.

The more general problem can be reduced to the discrete one, e.g., using the observation
that no bounded subset of the plane can be tiled in more than one way using like squares.
Here, by “tiling”, I mean simply a decomposition into squares whose interiors do not overlap.
The tiling is not assumed to have any regularity and two squares may overlap along their
boundaries in any way. To those whose systems support enough real analysis to consider it, I
commend the geometric challenge of this reduction as food for thought.
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A SUPPORTING THEORY

In the narrative in section 3 above, we have appealed to elementary properties of the
absolute value function, of remainders modulo 2 and of finite cardinalities. In this appendix
we state the lemmas that were needed in the mechanised proof in addition to what is
already provided in ProofPower.

A.1 Absolute Values

The absolute value function is not defined in the standard Z toolkit but is available in the
ProofPower Z library. In addition to the existing theorems about it, we need the following:

z abs eq 1 thm ?⊢
∀i , j :Z • abs (i − j ) = 1 ⇔ i < j ∧ j = i + 1 ∨ j < i ∧ i = j + 1

The proof is immediate by arithmetic after a case analysis on the sign on the operand
allowing the absolute value function to be eliminated.

A.2 Remainders modulo 2

Our first fact about remainders modulo 2 just specialises an existing theorem characterising
remainders modulo d for any non-zero d. The other results are easy consequences of this.

z mod 2 thm ?⊢ ∀i , j :Z • i mod 2 = j ⇔ j ∈ {0 , 1} ∧ (∃d :U• i = 2∗d + j )

z mod 2 thm1 ?⊢ ∀i :Z • (2∗i) mod 2 = 0 ∧ (2∗i + 1 ) mod 2 = 1

z ran mod 2 thm ?⊢ ∀i :Z • i mod 2 ∈ {0 , 1}

z plus 1 mod 2 thm ?⊢ ∀i :Z • ¬i mod 2 = (i + 1 ) mod 2

A.3 Finite Cardinalities

The basics of the theory of finite cardinality are already provided, including the fundamental
fact that if a and b are finite sets then a ∪ b and a ∩ b are also finite and one has
#(a ∪ b) + #(a ∩ b) = #a+#b. From this material, we derive the following facts:

z size pair thm ?⊢ ∀x , y :U | ¬x = y • {x , y} ∈ (F ) ∧ #{x , y} = 2

z size eq thm ?⊢ ∀a, b:(F ) | a ⊆ b ∧ #a = #b • a = b

z size 2 thm ?⊢ ∀a:(F ) • #a = 2 ⇔ (∃x , y :U•¬x = y ∧ a = {x , y})

z finite subset thm ?⊢ ∀a:(F ); b: U | b ⊆ a • b ∈ (F )

The following are the only theorems in this note that are proved by induction.

z size product thm ?⊢ ∀a : (F ); b:(F ) • a × b ∈ (F ) ∧ #(a × b) = #a ∗ #b

z finite size thm1 ?⊢ ∀a: (F ) • (∃f :1 .. #a ։ a •true)
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