ProofPower

Compliance Tool — User Guide

PPTex-2.9.1w2.rda.110727

Copyright © : Lemma 1 Ltd. 2006

Information on the current status of ProofPower is available on
the World-Wide Web, at URL:

http://www.lemma-one.demon.co.uk/ProofPower/index.html

This document is published by:

Lemma 1 Ltd.
2nd Floor

31A Chain Street
Reading
Berkshire

UK

RG1 2HX

e-mail: pp@lemma-one.com

PPTex-2.9.1w2.rda.110727 13:54:16 27/07/2011

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

CONTENTS

0 ABOUT THIS PUBLICATION 5
0.1 Purpose o e e 5
0.2 Readership e)
0.3 Related Publications 5
0.4 Area Covered e 5
0.5 Prerequisites 6
0.6 Acknowledgements 6

1 INTRODUCTION TO THE COMPLIANCE TOOL 7
1.1 The Compliance Notation 7
1.2 The Compliance Tool 7

2 GETTING STARTED 9
2.1 ProofPower Databases 9
2.2 Batch Working 9
2.3 Interactive Working 10

2.3.1 Starting Xpp e e 10
2.3.2 Window Layout 10

3 LITERATE SCRIPT CONVENTIONS 13
3.1 Imitialisation 13
3.2 Theory Hierarchy 14
3.3 Output Commands L 15

4 COMPLIANCE TOOL FUNCTIONS 17
4.1 Loading Scripts e 17
4.2 Generating the Ada Program 17
4.3 Generating and Reloading the Z document 18
4.4 Inspecting the VCs e 19
4.5 Editing and Checking a Scripto 21
4.6 Accessing and Proving VCso 21
4.7 Printing and Previewing Scripts L oo 23

5 EXAMPLE SCRIPT 25
5.1 The Literate Script e 25

5.1.1 Initialisation Commands oo 25
5.1.2 The Compliance Argument 25
5.1.3 Output Commands 26
5.2 The Z Document e e 27
5.3 The Ada Program 29
5.4 The Proofs e 30
5.5 The Theory Listing« . e 32
5.50.1 Parents 32

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

5.5.2 Conjectures e e 32

5.5.3 Theorems e 33

6 EVALUATION GUIDELINES 35
6.1 Introduction e 35
6.2 Scope of a Compliance Argumento 35
6.3 Conformance with the Ada Standard 35
6.4 Formal Development Steps L 35
6.5 Informal Development Steps 36
6.6 Consistency e 36
6.7 Checking for Errors. 37
6.8 Treatment of Real Types. o o 37

7 ProofPower-ML COMPLIANCE TOOL REFERENCE 39
7.1 Controlling the Tool 39
7.2 Custom Proof Facilities 46
7.3 THE Z THEORY cn e e e e e 57
7.3.1 Parents e 57

7.3.2 Global Variables 57

7.3.3 Fixity 62

7.3.4 AXioms 63

7.3.5 Definitions e 72

7.3.6 Theorems e 73
REFERENCES 77
INDEX 79

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

List of Figures

2.1 An Example Compliance Tool Session 12
4.1 Imspecting VCs with xpp« . 20
4.2 Compliance Notation Templates Tool 22

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

4 LIST OF FIGURES

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document describes the use of the Compliance Tool supplied with ProofPower.

0.2 Readership

This document is intended to be read by users of the Compliance Tool. It contains both introductory
material for the new user and reference material for more experienced users.

0.3 Related Publications
A bibliography is given on page 77 of this document.

e Installation of the Compliance Tool is described in:

Compliance Tool — Installation and Operation [13]

e Advice on proving verification conditions generated by the tool is given in:

Compliance Tool — Proving VCs [14]

e The syntax and semantics of the Compliance Notation as supported by the Compliance Tool
is described in:

Compliance Notation — Language Description [15]

e An overview of the of the Compliance notation can be found in the DRA document:

A commentary on the Specification of the Compliance Notation for SPARK and Z [6].

e A description of ProofPower may be found in:
ProofPower Description Manual [8],

which also contains a full list of other ProofPower documentation.

0.4 Area Covered

Once the Compliance Tool is installed on the user’s workstation, by following the procedure de-
scribed in Compliance Tool Installation and Operation [13], this User Guide should enable the user
to undertake the following tasks:

1. Loading a Compliance Notation script into the tool;

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

6 Chapter 0. ABOUT THIS PUBLICATION

2. Generation of the Ada program from a script;

3. Generation of the Z document from a script and reloading the Z document into ProofPower;
4. Preparation and checking of new scripts;

5. Using ProofPower facilities to work with VCs, e.g., to begin an attempt to prove a VC;

6. Evaluation of the rigour of a compliance argument by identifying the informal and formal parts
of the argument and recognising potentially anomalous ways of using the facilities of the tool.

0.5 Prerequisites

This User Guide is not intended to be an introduction to the Z language, or to the Compliance
Notation, or to the use of ProofPower to prepare the Z parts of a script.

Familiarity with the Compliance Notation and some familiarity with ProofPower are very desirable,
although not essential for simple use of the tool to process existing scripts. Some familiarity with the
use of ProofPower for developing Z specifications is required to use the tool to develop new scripts.

The Compliance Notation is described in Compliance Notation — Language Description [15]. There
is also a formally specification of the notation in the DRA technical report [5]. The ProofPower-z
tutorial, [9], gives an introduction to the use of ProofPower for specification and proof in Z.

The ProofPower user documentation is supplied as part of the ProofPower release included with the
Compliance Tool and is available for on-line reference.

The user interface to the tool described in this document is a Motif application running under the
X Windows System. Users who are unfamiliar with X or Motif should consult local or supplier’s
documentation or expertise for further guidance (e.g. see [17]).

0.6 Acknowledgements

Sun Microsystems is a registered trademark of Sun Microsystems Inc. Sun-3, OpenWindows, Sun-4,
SPARCstation, SunOS and Solaris are trademarks of Sun Microsystems Inc.

Motif is a registered trademark of the Open Software Foundation, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

TEX is copyright the American Mathematical Society and by Donald E. Knuth. The TEX 2, distri-
bution tape is copyright the IXTEX 3 project and its individual authors.

The X Windows System is a trademark of the Massachusetts Institute of Technology.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 1 7

INTRODUCTION TO THE COMPLIANCE TOOL

1.1 The Compliance Notation

The Compliance Tool supports a notation for demonstrating the compliance of Ada programs with Z
specifications. The notation is described in detail in Compliance Notation — Language Description
[15]. The Ada parts of the notation belong to the Compliance Notation subset of Ada and will be
referred to as Compliance Notation Ada in the rest of this document. The Compliance Notation was
designed by the Defence Research Agency, Malvern and the ideas behind its design are discussed in
the DRA document [6].

Compliance Notation is prepared and presented in literate scripts containing a mixture of narrative
text, Z and Compliance Notation Ada. Special constructs are provided for two main purposes:

1. to allow the Ada program to be presented and documented in an order independent of that
prescribed by the Ada syntax (in a similar fashion to Knuth’s Web system [2]);

2. to allow the behaviour of the Ada code to be formally specified in Z (using a style based on
Morgan’s refinement calculus [3]).

These constructs allow the user to assert formal connections between the Z parts and the Ada
parts in a Compliance Notation script and permit the compliance of the Ada program against its
7 specifications to be reduced to a set of conjectures known as verification conditions, whose truth
guarantees compliance. The VC generation algorithm is formally specified in the DRA technical
report [5] and explained by example in Compliance Notation — Language Description [15]. The
algorithm maps a Compliance Notation script to a Z document containing the VCs formulated with
7 conjectures together with supporting Z definitions.

1.2 The Compliance Tool

The Compliance Tool described in this document supports the use of the Compliance Notation. It
performs the following principal functions:

1. Checking the syntax of a Compliance Notation script;

2. Generating the Z document including VCs from a script;

3. Extracting the Ada program from a script.
The Compliance Tool is implemented as an application of the ProofPower specification and proof

tool. The tool provides all the facilities offered by ProofPower for developing specifications and
proofs in HOL and Z and for preparing high quality printed output via the IXTEX system. The tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

8 Chapter 1. INTRODUCTION TO THE COMPLIANCE TOOL

includes custom facilities for working with Compliance Notation including, in some installations an
interactive tool called the VC browser and some customised proof procedures.

The use of the tool in the development of a compliance argument will involve several stages, typically
including the following:

1. Initial preparation of the literate scripts using the editing and interactive checking facilities of
the tool. During this stage, the Z documents and Ada program are produced and inspected as
required to assist in the development.

2. Batch processing of the complete literate scripts. If the conventions suggested in this User
Guide are followed, the Z documents and Ada program are produced automatically. The tool
can be used interactively if required, e.g., to help diagnose errors.

3. Further analysis of the Z documents. Depending on circumstances and on the level of formality
required, this might involve either or both of: (a), inspection of the documents, on paper or
using a viewer; (b), use of the VC browser supplied with the tool; and, (¢), machine-checked
proof of some or all of the VCs.

The Compliance Tool offers a range of facilities to help in all of these activities.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 2 9

GETTING STARTED

The task of using of the Compliance Tool to process a script is very similar to that of using Proof-
Power to process a Z specification. Indeed, the Z paragraphs in a Compliance Notation script are
handled using the usual ProofPower mechanisms and the constructs peculiar to the Compliance
Notation are treated in a very similar way.

Simple use of the tool to process existing scripts does not require any great familiarity with Proof-
Power. Using the tool to create new scripts or edit existing ones requires some familiarity with the
preparation of Z specifications using ProofPower (as described in [10]). The rest of this chapter
explains how to make a start with the tool for either of these levels of use. Section 2.1 describes
set-up procedures which are common to batch and interactive working; section 2.2 describes how to
use the tool to process existing scripts using UNIX commands; section 2.3 explains how to start an
interactive session with the tool and gives an overview of its main graphical features.

2.1 ProofPower Databases

As always with a ProofPower application, to use the Compliance Tool you must first pick the
ProofPower database with which you wish to work. A ProofPower database is a file which holds
code and data recording the results of work with ProofPower. These databases are organised in a
hierarchy. To run the Compliance Tool, you use a database which is a descendant in this hierarchy of
the database pp_daz. This database, held in a file called sun4bin/sun4pp_daz.db in the ProofPower
installation directory, contains the code and data required to process Compliance Notation. If you
are starting from scratch, you would create a suitable database, say called mydatabase, using a UNIX
command line such as:

pp_make_database -p daz mydatabase

This creates an empty database, which you will generally refer to as ‘mydatabase’ when using the
system. The database is held in a file called ‘sun4mydatabase.db’ and this is the name you would
use to carry out UNIX file operations on the database, e.g., to delete it with the UNIX command

‘rm’.

2.2 Batch Working

Providing the conventions of chapter 3 have been followed in the development of the scripts, one
or more literate scripts may be processed using the programs docsml and pp to produce the Z
documents and Ada program. For example, assuming a database mydatabase has been set up as
described above, the following UNIX commands will process the script in file wrk501.doc.

docsml wrk501
pp —f wrkb501 -d mydatabase >wrk501.run.log

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

10 Chapter 2. GETTING STARTED

Here the first command produces a file called wrk501.sml, containing the formal material from
wrk501.doc without the narrative text. The second command causes the Compliance Tool proper
to process wrk501.sml, updating the database mydatabase and producing the Z document and
Ada program for the script. If the conventions of chapter 3 have been followed in the development
of the script, the Z document will be in a file called wrk501.zdoc and the Ada program will be
in wrk501.ada. The log produced as the standard output from pp has been directed to a file
wrk501.run.log, since it is likely to contain non-ASCII characters.

In a compliance argument involving more than one script, the docsml-pp command sequence above
is entered in turn for each script. Note that the order of the scripts is important, and providers
of compliance arguments must indicate the required order (e.g., by supplying a make file or a shell
script containing the necessary sequence of commands).

The Ada program is an Ada source file which may be examined with any text editor. The Z document
contains non-ASCII characters and is best examined either using the xpp editor or using the program
docpr to print it. The log file is best examined in the same way. The following UNIX command will
print the Z document in our example:

docpr wrkb01.zdoc

Basic use of the xpp editor is described in section 2.3.1. To use it to examine the Z document in this
example, one would use the UNIX command:

xpp —file wrkb501.zdoc

2.3 Interactive Working

2.3.1 Starting xpp

To start an interactive session with the Compliance Tool, you use the UNIX command xpp. xpp com-
prises a custom editor for working on your scripts together with a command interface for executing
ProofPower commands and for loading Z and Compliance Notation constructs into the database.

The xpp command has options to identify the file containing the script you want edit and to give
the ProofPower command options (including the database to use). To begin work on the script
‘wrk501.doc’ with the database ‘mydatabase’, you might use the UNIX command line:

xpp —file wrkb501.doc -command pp -d mydatabase

This will create a Motif window similar to the one shown in figure 2.1. This is referred to as the xpp
Main Window. If you omit the -command option, then you will get a so-called edit-only session, in
which the lower part of the window will be missing.

2.3.2 Window Layout

This section describes briefly the main elements of the xpp Main Window. Further information may
be obtained either from the tool’s help system or from the ProofPower documentation.

In overview, the top part of the window acts as an editor for literate scripts. Material from the editor
can be transferred into the ProofPower-ML system for processing (e.g. to type check a specification
paragraph or initiate a proof step). The journal of the transactions with ProofPower occupies the
bottom part of the window. Figure 2.1 also shows a popup window (in this case a palette of special
symbols). The size and position of all the windows can be adjusted using standard Motif techniques.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

2.3. Interactive Working 11

Sections 2.3.2.1 to 2.3.2.4 below describe the principal features of the xpp Main Window.

2.3.2.1 Menu Bar

The menu bar is at the top of the window shown in figure 2.1. The menus are all pulldown menus
operated in the usual Motif fashion. The functions they perform are briefly described below.

File Menu This menu is for common file operations including: loading and saving the literate
script; creating a new literate script; deleting a file.

Tools Menu This menu is used to create popup windows to perform various tasks. An example
is the palette window shown in figure 2.1.

Edit Menu This menu provides script editing operations: ‘Cut’, ‘Copy’, ‘Paste’ and ‘Undo’.

Command Menu This menu is primarily used to cause text from the script window to be executed
by the ProofPower-ML system. It also provides various control functions for the ProofPower-ML
System.

Help Menu This menu provides help on various topics. Its ‘Tutorial’ item may be consulted for
more information on basic operation of xpp.

2.3.2.2 File Name Bar

This displays the name of the file containing the script which is being edited in the Script Window.

2.3.2.3 Script Window

The Script Window is the upper large Motif text window in the xpp Main Window. It provides a
general purpose editor for viewing and modifying scripts. In figure 2.1 on page 12, a Compliance No-
tation script containing definitions of a Z global variable, ‘primed’, and an Ada procedure, ‘primes’,
is being displayed in the Script Window.

Part of the Script Window in figure 2.1 is hidden behind a window containing a ‘palette’ of symbols.
This palette has been selected from the Tools Menu and can be used to enter the symbols into
the literate script. Pushing one of the buttons on the palette causes the symbol to appear in the
document as if it had been typed at the keyboard.

Note that the Z and Ada constructs in the Script Window are delimited using special mark-up
sequences: ‘©Z”, ‘©CN’ and ‘0. A tool called the Templates Tool is available from the Tools
Menu allowing easy entry of these mark-up sequences.

2.3.2.4 Journal Window

The Journal Window is the lower large Motif text window in the xpp Main Window. When Proof-
Power commands are executed the resulting responses from the ProofPower system are displayed

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

12 Chapter 2. GETTING STARTED

in the Journal Window. The Journal Window is a read-only text window — you cannot alter its
contents by typing into it.

In 2.1, the user has just issued a command to process the procedure primes. This is done by
selecting the procedure and its delimiting mark-up sequences in the Script Window and then using
the ‘Execute’ item in the Command Menu. The absence of error messages in the Journal Window
and the prompt (‘:>’) indicate that the procedure has been processed and accepted.

Figure 2.1: An Example Compliance Tool Session

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 3 13

LITERATE SCRIPT CONVENTIONS

Literate scripts are held in UNIX files, each file holding one or more scripts. Typically, each script
contains exactly one compilation unit (such as a package specification or package body) together
with any 7 definitions needed to support the specification of that compilation unit. A script need
not contain any Ada code at all, in which case the script just provides Z definitions for use in other
scripts. A script may not contain more than one compilation unit.

Processing a script has three main goals: production of a Z document; production of the Ada program
(i.e., the source code contained in the script); and modifications to the state of a database maintained
by the tool and used in processing subsequent scripts. The literate scripts making up a complete
compliance argument must be presented to the tool in some order, compatible with any dependencies
between the scripts.

In addition to narrative text, Z paragraphs and Compliance Notation clauses, each script contains
commands which direct the tool, e.g., to tell it to output the Ada program to a particular file. In
this chapter, we recommend some conventions for these commands which are intended to make the
script easy to process both interactively and in batch. A complete example of a script following these
conventions is given in chapter 5.

The conventions described below are not enforced by the tool, and some users may wish to adapt
them to their own needs. However, other sections of this user guide are written on the assumption
that these conventions have been followed (e.g., section 2.2). The conventions are designed to make
compliance arguments easy to assess. If you need to adopt different conventions, please refer to
section 6 for further guidance on assessing a compliance argument.

3.1 Initialisation

The formal material in each literate script should be preceded by an initialisation section giving a
name to the script in which it is to be processed. This is done with a ProofPower-ML command,
new_script. Execution of new_script introduces a new ProofPower theory whose name is the name
of the script and prepares the Compliance Tool to accept an Ada compilation unit. For example:

new_script{name = " Utils", unit_type = "spec"};

Here the name is the name of the compilation unit and unit_type indicates its type, which must be one
of "spec" (package specification), "body" (package body), "proc" (procedure) or "func" (function).

Dependencies on ProofPower theories that come from Ada constructs such as context clauses are
handled automatically by the tool. However, in some circumstances, you may need to inform the
tool that a script depends on one or more theories in the initialisation for the script. This might
happen if you have an existing library of Z theories containing definitions that you want to use in the
script. A variant of new_script, called new_scriptl allows you to give a list of library theories that
become parents of the script theory. For example, if script3 depends on the Z paragraphs stored in
mytheoryl and mytheory2, then you can use the command:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

14 Chapter 3. LITERATE SCRIPT CONVENTIONS

‘ new_script! {name = " Utils", unit_type = "spec",

‘ library_theories=["mytheoryl", "mytheory2"]};

In some circumstances, you may want to write Z paragraphs referring to the types, constants or
functions in a package, P say, before giving the Ada compilation unit containing the context clause
identifying P as a dependency. In this case, you can identify the package specification theory, Pspec,
as a library theory in the script initialisation.

3.2 Theory Hierarchy

For each compilation unit, the corresponding new_script (or new_script! command introduces a
ProofPower theory. For example, associated with a package body utils there will be a theory called
UTILS body.

For each each subprogram body inside a package or subprogram body, and for each package or
subprogram stub, the Compliance Tool automatically creates a ProofPower theory whose name is
derived from the expanded name of the package or subprogram. These theories are referred to as
subprogram or stub theories.

A subprogram or stub theory is created with an automatically generated parent theory which is
a duplicate of the theory associated with the enclosing body as it was at the point where the
subprogram body or stub was processed (but with any VCs removed). This parent theory is called
the context theory for the subprogram or stub. For example, if a package body Utils contains a
procedure sort, a context theory called UTILSoSORT context is created as a duplicate of the the
script theory UTILS body

The subprogram theories are used to hold the Z paragraphs representing the types and constants
defined in the declarative part of the subprogram body and to hold VCs associated with the state-
ment part. The Compliance Tool requires you to work in the appropriate theory when processing
Compliance Notation clauses. The command open_scope, which takes as its argument the expanded
name of the subprogram or package, is used to do this. For example, to refine a specification state-
ment in the body of the procedure sort in the example mentioned above, you would need to make
the following call:

open_scope " Utils.sort";

Stub theories are used to provide a context for processing the corresponding subunit. When a subunit
is processed, the stub theory is automatically made a parent of the script theory.

For example, if the package utils contains the body of a procedure called sort, the tool will create
a subprogram theory called UTILSoSORT proc. If the package utils contains a stub for a package
called strings, the tool will create a stub theory called UTILSoSTRINGS stub. The list of all the
theories associated with a script can be found using the function get_script_theories. For example:

get_script_theories " UTILS body";
might result in the following output:

Compliance Tool Output

val it = ["UTILS body", "UTILSoSORT proc", "UTILSoSTRINGS'stub"] : string list

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

3.3. Output Commands 15

3.3 Output Commands

The formal material in a literate script should be followed by directions for the production of the Z
document and of the Ada program. This should be as in the following example:
‘ output _z_document{script=""UTILS' spec", out_file="utils_ads.zdoc"};
‘ output _ada_program{ script=""UTILS" spec", out_file="utils_ads.ada"};

Here UTILS' spec is the script name, and conventional file name suffixes have been added to it for
the Z document and the Ada program.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

16 Chapter 3. LITERATE SCRIPT CONVENTIONS

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 4 17

COMPLIANCE TOOL FUNCTIONS

Sections 4.1 to 4.7 below describe basic use of the main functions of the Compliance Tool.

You invoke many of these functions by executing ProofPower-ML commands. This may conveniently
be done interactively using the Command Line Tool which can be started using the Tools Menu. An
instance of the Command Line Tool may be seen in figure 4.1 on page 20. This tool allows single line
ProofPower-ML commands to be entered and executed without changing the script which is being
edited. The tool also has a scrollable list which you can use as a memory for common commands.

Some functions are provided as UNIX commands or as a combination of UNIX and ProofPower-ML
commands.

4.1 Loading Scripts

To load a script, the UNIX command docsml must first be used to extract the formal material. For
example, the UNIX command:

docsml wrk501
copies the formal material from the file wrk501.doc into a file called wrk501.sml.
The .sml file produced by docsml may then be loaded using the ProofPower-ML command:
use_file "wrk501";

By default, the tool will raise an exception and stop processing a script if it detects an error.
However, while preparing a compliance argument for a large program, it can be convenient to
have the tool continue processing when errors are detected. This can be controlled using the flag
cn_stop_on_exceptions. The tool maintains a record of the errors that have been detected which
can be manipulated using the ProofPower-ML commands, print_exception_log, output_exception_log
and delete_exception_log. See section 7 for more information.

4.2 Generating the Ada Program

The Ada program is output to a file using the ProofPower-ML command output_ada_program. This
command is normally included at the end of each literate script as described in section 3.3 and may
also be called at any time during the development of the script.

A function print_ada_program is also provided for displaying the compilation units os the Ada
program on the standard output. It takes a string parameter giving the name of the script in which
the compilation unit was introduced. A minus sign may be used as a short-hand for the name of the
current script. For example, in an interactive session with xpp, the ProofPower-ML command:

‘ print_ada_program" —"

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

18 Chapter 4. COMPLIANCE TOOL FUNCTIONS

will cause the Ada program for the current script to be displayed in the journal window.

Some errors, in particular illegal redeclaration of names, are not detected until the Ada program is
generated, so generation of the Ada program is an important part of processing a script. Even if
these errors are detected, the Ada program is displayed or output to the file before the errors are
reported. This allows a script containing informally developed code in which redeclaration of names
is required to be processed by the tool (some redeclarations are legal Ada, but not legal Compliance
Notation Ada).

When loading scripts, detection of an error will normally cause the tool to raise an exception and
stop processing. You can override this behaviour selectively by using a ProofPower-ML exception
handler. For example, the following ProofPower-ML command will output the Ada program to
the file SCRIPT.ada and continue without raising an exception even if the program contains illegal
redeclarations:

‘ output_ada_program{script="—"=, out_file="SCRIPT.ada"}
‘ handle Fail - => ();

The subset of Ada accepted by the Compliance Tool includes a number of features, e.g., use clauses,
that are not supported in the SPARK subset of Ada (see [1] for the definition of the SPARK subset
of Ada). You may ask for Ada comments highlighting constructs that do not conform to the SPARK
syntax to be inserted in the Ada program uinsg the flag cn_spark_syntax_warnings. See section 7
for more information.

4.3 Generating and Reloading the Z document

The Z document is output to a file using the ProofPower-ML command output_z_document. This
command is normally called at the end of each literate script as described in section 3.3 and may
also be called at any time during the development of the script.

A function print_z_document is also provided for displaying the Z document on the standard output.
For example, in an interactive session with xpp, the ProofPower-ML command:

print_z_document "SCRIPT",

will cause the Z document for the script called SCRIPT to be displayed in the journal window.

In many situations, there is no actual need to reload the Z document, since it is automatically loaded
as a a side-effect of processing the literate script. Thus work on proof of VCs, for example, can begin
immediately after the script is processed. The Z document can be reloaded into the tool, if required,
simply by treating it in the same way as a .sml file produced by running docsml on an ordinary Z
specification. Thus one can use either a ProofPower-ML command such as:

use_file"SCRIPT .zdoc",
or a UNIX command such as:
pp -f SCRIPT.zdoc -d database

to load in the Z document. The following points should be noted in connection with reloading Z
documents produced by the Compliance Tool:

1. the Z document requires the presence of the theory cn, which is not provided as standard in
ProofPower-Z databases so that database in the example above should refer to a Compliance
Tool database;

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

4.4. Inspecting the VCs 19

2. loading the Z document attempts to create ProofPower theories which will already exist in a
database in which the literate script giving rise to the Z document has already been processed
(so that these theories must be deleted, or a fresh Compliance Tool database created, if the
loading is to succeed);

3. loading the Z document does not recreate the information about the Ada program which is
computed and stored when the literate script is processed (so that facilities such as print_ada-
program which require this information will no longer be useful).

4.4 Inspecting the VCs

Figure 4.1 on page 20 gives another example of an xpp Main Window. In this example, the user
has used the Command Line Tool to issue commands to load an entire script into the tool and then
display the Z document in the Journal Window. The Search-and-Replace Tool has been used to
carry out a textual search in the Script Window for the refinement step which introduced the VC at
the end of the Z document.

Using an editor to correlate the script with the VCs can be a useful technique but is often time
consuming. The VC Browser is an interactive tool for examining the VCs and relating them to the
Compliance Notation clauses which produced them. The VC Browser is provided in the ProofPower
database xdaz on implementations of the Compliance Tool built with the Poly /ML compiler. To use
it you must ensure that X Windows and Motif support is compiled into the Poly /ML driver program
poly. See the Poly/ML documentation for more information.

To use the VC browser, you carry out your Compliance Notation work in an X Windows environ-
ment using the xdaz database rather than the daz database. l.e., using pp -d xdaz rather than
pp -d xdaz. The VC Browser is started by running the ProofPower-ML command ‘browse_vcs()’.
This brings up a window which can be used to inspect the VCs that have been generated and the
Compliance Notation clauses which gave rise to them. Press the VC Browser’s “Help” button for
more information.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

20 Chapter 4. COMPLIANCE TOOL FUNCTIONS

Figure 4.1: Inspecting VCs with xpp

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

4.5. Editing and Checking a Script 21

4.5 Editing and Checking a Script

The xpp Script Window provides a general purpose editor for use in preparing scripts. The Proof-
Power document [7] or the xpp help system may be consulted for an introduction to its use. The
easiest way to begin constructing a new script is to adapt an existing one, and a number of examples
are supplied with the Compliance Tool for this purpose.

Just as with a ProofPower-Z specification, a Compliance Notation script may be entered a clause at a
time so that errors can be detected and corrected interactively. Note however, that the initialisation
section of the script as described in section 3.1 has to be entered first of all, and that clauses will
generally need to be entered in the correct order.

If a Compliance Notation clause has been rejected because of an error, the clause can normally be
re-entered once the error has been corrected. However, if a clause has been accepted, it cannot
normally be re-entered. If you have loaded a script and wish to modify and reload it, the function
delete_script may be used to avoid having to start again from scratch. delete_script takes as its
parameter the name of the script to be deleted. It prints out a report of what it has deleted to
help you determine what must be reloaded. A call of delete_script would normally be followed by a
new_script command to begin work on the revised version of the script.

To make entry of Compliance Notation constructs easier, the Templates Tool in xpp has been cus-
tomised so that you can enter a template for any of the following constructs with one button-press:

1. Replacement Step;

2. Refinement Step;

3. Compilation Unit;

4. Specification Statement;

5. Each of the 8 Z Paragraph forms.

The customised Templates Tool may be seen in figure 4.2 on page 22. The four buttons at the
bottom are for the four Compliance Notation constructs listed above. In the figure the user has just
pressed the refinement step button and has started to fill in the template at the bottom of the Script
Window — the label has been filled in and the ellipsis, ‘...’, has been selected ready to be replaced
by the statement part of the refinement.

4.6 Accessing and Proving VCs

VCs are represented in the tool using Z’s conjecture paragraph form. A conjecture paragraph asso-
ciates a name with a Z predicate, and is used in specifications to record properties which the specifier
believes to be true of the objects specified. In ProofPower the function get_conjecture retrieves a
conjecture from a specification by name. The conjecture is retrieved as a Z term which can be used,
e.g., to form a goal for proof with the ProofPower Subgoal Package.

The tool assigns a name to each Compliance Notation clause in the script being processed and this
name is used as the basis for the names of any VCs generated by the clause. In the case of clauses
containing a package or similar named Ada object, the name is taken from the object name; for other
clauses the name is derived from the implicit or explicit numeric label associated with the clause.

Examples of VC names can be seen in 4.1 on page 20. Here the clause name 5 on the left refers to
the refinement step refining label 5 as shown in the following extracts from the file wrk501.doc:

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

22 Chapter 4. COMPLIANCE TOOL FUNCTIONS

Figure 4.2: Compliance Notation Templates Tool

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

4.7. Printing and Previewing Scripts 23

Compliance Notation

c

|A MULT [mult_inv, mult_inv A MULT (N) > J]

|A JPRIME [mult_inv A MULT (N) > J,

‘ mult_inv AN MULT (N) > J N JPRIME = MULT (N) noteq J| (5)

Compliance Notation

(5) €

‘jprime = mult(n) /= 7;

The VCs corresponding to the clause named 5 are named ve5_1, ve5_2, ete. (in this case there is
only one). A clause name like 4_11 is used for the 17-th unlabelled refinement step in the script,
with the / indicating that this refinement step comes after the one labelled 4.

To access the VC in the example, one would use the ProofPower-ML function call:

‘ get_congecture "PRIMES' proc" "ve5_1";

Here the first parameter gives the name of the literate script which gave rise to the VC. Proof of
a VC will normally need to be carried out within the theory corresponding to the literate script
in question. Thus, to begin work on a proof of the VC with the Subgoal Package, the following
commands would be used:

‘ open_theory "PRIMES' proc;
‘ set_goal([], get_conjecture "PRIMES' proc" "vc5_1");

As ordinary Z goals, VCs may be proved using all of the normal facilities provided by ProofPower for
proof in Z. Some extensions to the Z toolkit are used in many VCs. These extensions are contained
in the theory cn. Some custom support is provided in the Compliance Tool to assist with reasoning
in this theory, most notably the proof contexts enl and cni_ext. These proof contexts (amongst
others) and the other custom proof tools are described in section 7.2 of this document. The user
interface to the conversions etc. described there is via the proof contexts, so that most users will
only need to be familiar with the proof contexts. An example of a complete proof script for a literate
script is included in chapter 5

4.7 Printing and Previewing Scripts

You can produce a IWTEX document from a Compliance Notation script using ProofPower’s document
preparation facilities, which are described in detail in ProofPower Tutorial [7]. The UNIX command
doctex is used to produce the IXTEX file which you can then run through ITEX using the UNIX
command texdvi. You can then print or preview the resulting DVI file using the programs provided
with your BTEX installation.

So for example, to print the script in file wrk507.doc on a PostScript printer, you might use the
following UNIX commands:

doctex wrk507
texdvi wrk507
dvips wrk507

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

24 Chapter 4. COMPLIANCE TOOL FUNCTIONS

You can also generate a DVI file with embedded hypertext links, which help you relate k-slots and
specification statements with the corresponding replacement steps and refinement steps. To do this,
you use a Compliance Tool function which generates an edit script which can be used by doctex to
make the links. For example, the example script wrk507 .doc, contains the following ProofPower-ML
command at the end:

output_hypertext_edit_script{out_file="wrk507.ex"};

When the script has been loaded, the DVI file with hypertext links can be produced using the UNIX
commands:

‘ doctex —e wrk507.ex wrkd07
‘ texdvi wrk507

The resulting DVI file, wrk507 .dvi, can then be viewed with a hypertext viewer such as xhdvi. You
can navigate around the script by clicking on the underlined arrows which appear in the margins
near k-slots, specification statements, refinement steps and replacement steps.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 5 25

EXAMPLE SCRIPT

In this chapter, we give an example literate script, following the conventions recommended in chap-
ter 3. The script shows the initial part of the compliance argument for an Ada procedure for
computing integer square roots.

Section 5.1 contains the script and associated ProofPower commands. Sections 5.2 and 5.3 shows
the corresponding Z document and Ada Program. Section 5.4 contains proofs of the VCs produced
by the script and section 5.5 shows the listing of the resulting ProofPower theory.

5.1 The Literate Script

5.1.1 Initialisation Commands

We give the script the name SQRT’proc following the conventions for a script containing a compila-
tion unit comprising a function named SQRT":

SML

new_script{name = "SQRT", unit_type = "proc"};

5.1.2 The Compliance Argument

For simplicity, we present the square root function as a top-level procedure. The procedure has a
specification statement requiring that for non-negative input values of X, the output value of Y is
the integer part of the square root of X.

Compliance Notation
procedure SQRT (X : INTEGER; Y : out INTEGER)

AY[X>0,Y % 2<X < (Y + 1) % 2]

15
LO : INTEGER;

(local vars) (2)
begin
LO = 0;

ALO[X >0ANLO =0,L0 % 2 <X < (LO + 1) % 2]

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

26 Chapter 5. EXAMPLE SCRIPT

Y .= LO;
end SQRT;

Compliance Notation

(2) =

HI : INTEGER;

Compliance Notation

C
ALO,HI [X >0 ANLO=0,L0 % 2<X < (LO + 1) #* 2]

Compliance Notation

C
HI =X + 1;
$till [LO xx 2 < X < (LO + 1) #x 2]

loop

A LO, HI [LO xx 2 < X < HI #x 2, LO xx 2 < X < HI *x 2]

end loop;

Compliance Notation

cC

erit when LO + 1 = HI;

A LO, HI [LO xx 2 < X < HI #x 2, LO *x 2 < X < HI *x 2]

Note the development is not complete at this point. However, we can still output the Z document
and the Ada program as if it were, and begin to do proofs. The fact that the development is not
complete is made manifest in the Ada program which will contain null statements corresponding to
the omissions, see section 5.3.

5.1.3 Output Commands

SML
‘ output_z_document{script="SQRT proc", out_file="wusr501.zdoc"};
‘ output_ada_program{script="SQRT'proc", out_file="usr501.ada"};

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

5.2. The Z Document 27

5.2 The Z Document

The following shows the Z document produced by the example script.

SML

‘ new_theory "SQRT' spec";

z

veSQRT_1 7+
VX :INTEGER | X >0 e X >0N0=20

z

veSQRT_2 T+
YV LO : INTEGER; X : INTEGER
| X > 0ANLO *x2<XANX<(LO+1)x*2
e LO *xx 2 < X ANX < (LO+ 1)x*x2

Z
ve2_1_1 7+
V LO : INTEGER; X : INTEGER | X > 0 NLO =0 X >0 N LO =10

(X >0ANLOg=0)ALO s+ 2<XAX< (LO+ 1) %2

‘ V LO, LOy : INTEGER; X : INTEGER
‘ ¢ LO #x 2 < X NX < (LO + 1) *x 2

‘ V LO : INTEGER; X : INTEGER
| | X >0ANLO=0
‘ ¢ LO*x 2 < X NX < (X +1)x*2

‘ V HI : INTEGER; LO, LOy : INTEGER; X : INTEGER
‘ | (X >0 ANLOp=0)ANLO xx 2<XANX < HI % 2
‘ e LO *xx 2 < X N X < HI xx 2

| (X >0ANLOp=0)ANLO*x 2<XANX<(LO+1)x*x2

‘ VY LO, LOy : INTEGER; X : INTEGER
‘ e LO *x 2 < X ANX < (LO+1)x*2

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

28 Chapter 5. EXAMPLE SCRIPT

ve2_8_1 7+

Y HI : INTEGER; LO : INTEGER; X : INTEGER
| (LO +% 2 < X A X < HI % 2) A LO + 1 eq HI = TRUE
e LO *x 2 < X ANX < (LO+1)x*x2

VA

ve2_8_2 7+
V HI : INTEGER; LO : INTEGER; X : INTEGER

| (LO #x 2 < X N X < HI xx 2) AN LO + 1 eq HI = FALSE
e LO *xx 2 < X N X < HI xx 2

Z

ve2_8_8 7+
V HI, HIy : INTEGER; LO, LOy : INTEGER; X : INTEGER

| (LOg #x 2 < X N X < Hlp % 2) N LO #x 2 < X N X < HI »x 2
e LOxx 2 < X ANX < HI %x 2

VA

SML

‘(* Number of VCs in theory "SQRT’spec" : 10 x)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

5.3. The Ada Program 29

5.3 The Ada Program

The following shows the Ada program produced by the example script. Note the NULL statement
the tool has introduced because the development was not complete. The comment on the NULL
statements means that the unlabelled specification statement to which the tool has assigned label
2_4 has not been refined.

PROCEDURE SQRT (X : IN INTEGER; Y : OUT INTEGER)
-- Spec ...
IS
LO : INTEGER;
HI : INTEGER;
BEGIN
LO := 0;
HI =X + 1;
LOOP
EXIT WHEN LO + 1 = HI;
NULL; -- 2_4
END LOOP;
Y := LO;
END SQRT;

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

30 Chapter 5. EXAMPLE SCRIPT

5.4 The Proofs

To embark on the proofs of the VCs, we first open the theory for the literate script:

SML

open_theory" SQRT' spec";

We will work in the proof context cnl most of the time:

SML

set_pc"cnl";

The statements of the VCs may be seen in the Z document in section 5.2 or in the theory listing in
section 5.5.

All but one of the VCs are little more than tautologies, and will be proved by repeating strip_tac.
SML

set_goal([], get_conjecture "SQRT’spec" "vcSQRT_1");

a(REPEAT strip_tac);

val veSQRT_1_thm = save_pop_thm"vcSQRT _1_thm™";

SML

set_goal([], get_conjecture "SQRT'spec" "vcSQRT_2");
a(REPEAT strip_tac);

val veSQRT_2_thm = save_pop_thm"vcSQRT _2_thm";

SML

set_goal([], get-conjecture "SQRT'spec" "vc2_1_1");
a(REPEAT strip_tac);

val ve2_1_1_thm = save_pop_thm"vc2_1_1_thm";

SML

‘set_goal([], get_conjecture "SQRT'spec" "vc2_1_2");
‘a(REPEAT strip_tac);

‘val ve2_1_2_thm = save_pop_thm"vc2_1_2_thm";

Before proving the next VC, we need to prove some simple facts about exponientation, namely:
x xk 1 = x and = *x 2 = z * x. The proofs require little more than specialising the definition of
(_xx_) appropriately.
SML
set_goal([], ZVz: Ze x *x 1 = z7);
a(REPEAT strip_tac);
a(rewrite_tac[rewrite_rule[](
z_¥V_elimz(z = z, y = 0)7 (A_right_elim(z_get_specy (_x*_)")))]);

val star_star_1_thm = pop_thm();

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

5.4. The Proofs 31

SML
set_goal([], GTVz: Ze x xx 2 = x % 17);
a(REPEAT strip_tac);
a(rewrite_tac[star_star_1_thm, rewrite_rule[](
zV_elimz(z =z, y = 1)7 (A-right_elim(z_get_specy (-*x*_)")))]);
val star_star_2_thm = pop_thm();

The meat of the next VC is that for non-negative X, X < (X + 1) *x 2. Induction is used to prove
this, together with the above lemmas and the automatic prover for linear arithmetic.

SML

set_goal([], get_conjecture "SQRT spec" "vec2_2_1");

a(REPEAT strip_tac THEN asm_rewrite_tac[star_star_2_thm));

a(DROP_NTH_ASM_T 2 ante_tac THEN DROP_ASMS_T discard_tac THEN strip_tac);
a(z-<_induction_tacy, X THEN PC_T1 "z_lin_arith" asm_prove_tac||);

val ve2_2_1_thm = save_pop_thm"vc2_2_1_thm";

The remaining VCs are straightforward:

SML

‘set_goal([], get_conjecture "SQRT' spec" "vc2_2_2");
‘a(REPEAT strip_tac);

‘val ve2_2_2_thm = save_pop_thm"vc2_2_2_thm";

SML

‘set_goal([], get_conjecture "SQRT'spec" "vc2_2_3");
‘a(REPEAT strip_tac);

‘val ve2_2_8_thm = save_pop_thm"vc2_2_3_thm";

SML

set_goal([], get_conjecture "SQRT spec" "vec2_3_1");
a(rewrite_tacl]);

a(REPEAT strip_tac);

a(all_var_elim_asm_tacl);

val ve2_83_1_thm = save_pop_thm"vc2_3_1_thm";

SML

set_goal([], get_conjecture "SQRT spec" "vc2_3_2");
a(REPEAT strip_tac);

val ve2_8_2_thm = save_pop_thm"vc2_3_2_thm";

SML

‘set_goal([], get_conjecture "SQRT'spec" "vc2_3_3");
‘a(REPEAT strip_tac);

‘val ve2_8_3_thm = save_pop_thm"wvc2_3_5_thm";

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

32 Chapter 5. EXAMPLE SCRIPT

5.5 The Theory Listing

The following is the listing of the theory usr501 produced by the example script and the proofs in
the previous section.

5.5.1 Parents

cache’ daz cn

5.5.2 Conjectures

veSQRT _1

VX :INTEGER | X >0 X >0AN0 =20
veSQRT_2

V LO : INTEGER; X : INTEGER

| X >0 ANLO *x 2<XANX<(LO+1)x*2

e LO xx 2 < X ANX < (LO+ 1) %« 2
ve2_1_1 V LO : INTEGER; X : INTEGER

| X >0ANLO =0

e X >0ANLO =0

ve2_1_2 V LO, LOy : INTEGER; X : INTEGER
(X =0
AN LOy = 0)

ANLO xx 2 < X
ANX < (LO +1)#x2
e LO *x 2 < X ANX < (LO+ 1) %« 2
ved_2_1 V LO : INTEGER; X : INTEGER
| X >0ANLO =0
e LO xx 2 < X NX < (X + 1) %2
ve2_2_2 V HI : INTEGER; LO, LOy : INTEGER; X : INTEGER
(X >0ALOy=0)ALO %2 <X AX < HI # 2
e LO xx 2 < X ANX < HI % 2

ve2_2_8 V LO, LOy : INTEGER; X : INTEGER
(X =20
AN LOy = 0)

ANLO xx 2 < X
ANX <(LO +1)%2
0 LO #x 2 < X NX < (LO + 1) %2
ve2_8_1 V HI : INTEGER; LO : INTEGER; X : INTEGER
| (LO #x 2 < X N X < HI xx 2) AN LO + 1 eq HI = TRUE
e LO xx 2 < X ANX < (LO+ 1) %2
ve2_3_2 V HI : INTEGER; LO : INTEGER; X : INTEGER
| (LO #x 2 < X N X < HI %% 2) A LO + 1 eq HI = FALSE
e LO xx 2 < X NX < HI #x 2
ve2_3_3 VY HI, HIy : INTEGER; LO, LOy : INTEGER; X : INTEGER
AN X < HIp *x 2)
ANLO xx 2 < X
AN X < HI xx 2
o LO xx 2 < X NX < HI %x 2

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

5.5. The Theory Listing 33

5.5.3 Theorems

veSQRT _1_thm
FYX:INTEGER | X > 0e¢ X >0AN0=10
veSQRT_2_thm
FVY LO : INTEGER; X : INTEGER
| X > 0ANLO %2 < XANX<(LO+1)x%x2
¢ LO*xx 2 < X NX < (LO+ 1)=x*x2

ve2_1_1_thm
FV LO : INTEGER; X : INTEGER
| X >0ANLO =0
e X >0NLO =0
ve2_1_2_thm
FV LO, LOy : INTEGER; X : INTEGER
[(X =0
AN LOy = 0)
ANLO xx 2 < X
ANX <(LO +1)%x2
¢ LO #x 2 < X NX < (LO + 1)%x2
ve2_2_1_thm
FV LO : INTEGER; X : INTEGER
| X >0ANLO =0
¢ LO*xx 2 < X NX < (X 4+ 1)x*2
ve2_2_2_thm
FV HI : INTEGER; LO, LOy : INTEGER; X : INTEGER
| (X > 0ANLOp=0)NLO xx 2 <X ANX < HI % 2
e LO #x 2 < X NX < HI #x 2
ve2_2_8_thm
FV LO, LOy : INTEGER; X : INTEGER
| (X =0
AN LOy = 0)
ANLO xx 2 < X
ANX < (LO+1)xx2
¢ LO*xx 2 < X NX < (LO+ 1)=%*x2
ve2_8_1_thm
FV HI : INTEGER; LO : INTEGER; X : INTEGER
| (LO %%« 2 < X AN X < HI xx 2) AN LO + 1 eq HI = TRUE
e LO*xx 2 < X NX < (LO+ 1)=x*x2
ve2_83_2_thm
FV HI : INTEGER; LO : INTEGER; X : INTEGER
| (LO xx 2 < X
AN X < HI #x 2)
AN LO + 1 eq HI = FALSE
e LOxx 2 < X ANX < HI % 2
ve2_83_8_thm

FV HI, HIy : INTEGER; LO, LOy : INTEGER; X : INTEGER
| (LOp #x 2 < X
N X < Hlp *x 2)
ANLO xx 2 < X
AN X < HI %% 2
e LO #x 2 < X NX < HI #x 2

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

34 Chapter 5. EXAMPLE SCRIPT

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 6 35

EVALUATION GUIDELINES

6.1 Introduction

The Compliance Notation gives considerable flexibility in the degree of formal rigour applied at each
stage in the presentation of a compliance argument. This chapter gives some guidelines for assessing
a compliance argument.

6.2 Scope of a Compliance Argument

A compliance argument will contain one or more specification statements acting as the starting points
of the formal argument. These are the specification statements that give the top level statement of
critical properties of the code.

For a subprogram library, the formal starting points might comprise the specification statements for
each of the subprograms in a suite of package specifications defining the external interface of the
library.

For a complete application, the formal starting point might comprise a single specification statement
appearing in the body of the main subprogram of the application. The formal starting points will
generally be explicitly identified as such in the narrative parts of the script.

6.3 Conformance with the Ada Standard

While the Compliance Tool detects many types of error, it does not detect all the types of error that
an Ada implementation is required to detect during the compilation process. A compliance argument
is only valid if the Ada code it contains can be compiled without error using an Ada implementation
that conforms either to the 1995 version of the standard [12] or to the 1983 version [11]. Providing
there are no compilation errors, the checks made by the tool ensure that the formally developed code
is not sensitive to the difference between the two versions of the standard.

The predefined type CHARACTER was changed in the 1995 standard: the value CHARACTER’LAST
was increased from 127 to 255. The tool takes 127 as a lower bound on CHARACTER’LAST. If the
compliance argument includes an axiom that further constrains the value of CHARACTER’LAST,
then the argument should include informal justification that the axiom is compatible with the in-
tended Ada implementation.

6.4 Formal Development Steps

The formal argument for each starting point will comprise a chain, or tree, of formal steps each of
which may produce one or more verification conditions (VCs). Type definitions may also give rise to

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

36 Chapter 6. EVALUATION GUIDELINES

VCs. The various sorts of VC that may be generated are described in detail in Compliance Notation
— Language Description [15]. There are several sorts of formal development step:

e Explicit refinements: in these the refinement symbol (C) is used to assert that a sequence of
statements correctly implements a specification statement.

e Implicit refinements: these occur when the semantics of the Compliance Notation require one
specification statement to refine another (e.g., this happens when a formal subprogram in a
package body is implemented: the specification statement of the formal subprogram in the
package body must correctly implement the specification statement for the subprogram given
in the package specification).

e Declaration replacements: these occur when a k-slot used as a declaration is expanded using
the replacement symbol (=).

A complete formal development comprises a sequence of steps of the above three sorts in which
all specification statements have been refined to code. Given such a complete formal development,
the VC generation algorithm is designed so that truth of the VCs entails “partial” or “algorithmic”
correctness of the implementation, i.e., so that truth of the VCs implies that the code meets its
specification providing it terminates and does not raise any exceptions. Truth of the VCs does not
of itself guarantee either that the code terminates or that the code will not raise exceptions.

Note that the tool can only check the correctness of code that it has actually processed. For example,
the VC generation algorithm assumes that the subprograms in an external package meet their speci-
fications in the package specification. A formal development of the package body must be processed
to ensure that this is the case.

6.5 Informal Development Steps

Other sorts of development step break the chain of formality. These informal development steps are
as follows:

e Arbitrary replacements: these are introduced by the arbitrary replacement symbol (=) and
enable a k-slot or refinement step to be expanded to an arbitrary fragment of Ada code in an
unchecked fashion.

e Statement replacements: these occur when a k-slot as a statement or specification statement
as a statement is expanded using the statement replacement symbol (!C) rather than the
refinement symbol (C).

If either of these sorts of step occurs in a script then the VCs do not give a formal guarantee that the
code is correct. An informal justification of the correctness of the informal step must be provided
and evaluated in this case.

6.6 Consistency

An inconcistent axiom allows any property to be proved. ProofPower supports two modes of dealing
with a Z axiomatic description: in the conservative mode, the defining property is replaced by
a property which is guaranteed consistent and is equivalent to the desired property if the latter

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

6.7. Checking for Errors 37

is provably consistent; in the axiomatic mode, the defining property is asserted as an axiom. If
consistency is a concern, then ProofPower should be put into its conservative mode of working by
setting the system flag z_use_azioms to false. This may be done by:

‘ set_flag("z_use_azioms", false);

This will ensure that all axiomatic descriptions include a consistency caveat. Consistency proofs may
then be carried out using the usual ProofPower mechanisms.

6.7 Checking for Errors

When an error is detected during loading of a script, the normal behaviour of the tool is to raise an
exception and stop processing. To check that a script has been processed without error, the output
from loading the script can be examined. Alternatively, the function print_exception_log can be used
to print a log of all the errors and potential soundness problems that have been detected in a script.
ProofPower-ML exception handlers and certain control flags can be used to make the tool continue
processing after an error has been detected. There is also a flag cn_stop_on_exceptions defined as
part of the Compliance Tool that may be used for this purpose (see section 7 below). The script may
be checked for occurrences of the handle keyword or the set_flag command to see if error reporting
has been suppressed inappropriately. See ProofPower Description Manual [8] for a description of the
ProofPower control flags.

Some errors are only detected when the Ada program is generated (see section 4.2). Thus each
script should include a command to generate the Ada program. This command should come after
all the Ada code in the script. Errors detected during Ada program generation are logged even if
the command is protected by a ProofPower-ML exception handler. In some cases, these errors may
refer to informal parts of the Ada program and so may be considered acceptable.

The process of generating and reloading the Z document as described in section 4.3 is not intended
to give rise to errors except in unusual circumstances. However, it does provide an extra layer of
checking (by passing all the generated Z through the Z parser and type inferrer) and should increase
confidence that the script has been processed correctly by the tool. For example, it ensures that all
the names of Z objects that have been generated conform to the lexical rules for Z identifiers.

6.8 Treatment of Real Types

Ada floating point and fixed types are mapped by the Compliance Tool to the real numbers of pure
mathematics as represented in the Z theory of real numbers. This is an idealisation and means outside
the scope of the tool must be used to justify the approximations inherent in the use of computer
arithmetic when the code is executed.

For fixed point types, the accuracy of the idealisation is heavily dependent on careful use of the
Ada features for controlling the accuracy of the arithmetic. If used carefully, a fixed point type
will represent a subset of the mathematical real numbers with complete accuracy (e.g., by using
a representation clause, if necessary, to make “small” the precise value needed by the application
and by restricting operations to addition, subtraction and multiplication by integers). On the other
hand, a fixed point type whose “delta” is specified as 2™ — I for a large integer n and which has no
representation clause to define “small” will give a particularly bad approximation.

For floating point types, the accuracy of the idealisation can be heavily dependent on the compiler
used if the Ada features for writing portable floating code are not used carefully.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

38 Chapter 6. EVALUATION GUIDELINES

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

Chapter 7 39

ProofPower-mL COMPLIANCE TOOL REFERENCE

The following sections give reference documentation for the principal ProofPower-ML commands
which are specific to the Compliance Tool, followed by the theory listing of “cn”. Consult the
ProofPower reference manual for further information on ProofPower-ML commands mentioned in
this document which are not mentioned here.

7.1 Controlling the Tool

SML

‘signature ComplianceTool = sig

Description This is the signature for the commands which a user requires to operate the
compliance tool.

SML

‘val print_exception_log : string —> bool;

‘val output_exception_log : {script : string, out_file : string} —> bool;
‘Ual delete_exception_log : string —> unit;

Description print_exception_log causes the exception log for the named script to be printed to
standard output. output_exception_log prints the exception log to a file. Both of these functions
return true if some exceptions have been logged for the script. If no exceptions have been logged
a message to that effect is output and the functions return false. Both functions will raise an
exception if the named script has not been processed.

delete_exception_log deletes the exception log for the named script.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

40 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML
val new_script : {name : string, unit_type : string} —> unit
val new_scriptl :
{name : string, unit_type : string,
library_theories : string list} —> unit
val new_continuation_script : {name : string, unit_type : string} —> unit
val new_continuation_scriptl :
{name : string, unit_type : string,
library_theories : string list} —> unit
val delete_script : {name : string, unit_type : string} —> unit;

val delete_deferred_subprogram : string —> unit;

Description new_script takes as an argument the name of an Ada compilation unit and a string
indicating the type of compilation unit, which must be one of "spec" (package specification),
"body" (package body), "proc" (procedure) or "func" (function). It creates a new ProofPower
theory, into which the Z document generated by the subsequent literate script is placed. The
name of the theory is derived from the compilation unit name and type. The data structure
containing the SPARK program is set to its initial empty value.

new_scriptl acts the same as new_script except that its list of library theories will be made the
parents of the script theory, and any theory produced during processing the script.

new_ continuation_script and new_continuation_script are just like new_script and new_scripti,
except that the data structure containing the SPARK program is retained.

delete_script removes a script from the Compliance Tool state together with any associated theories
and other items in the state dependent on the script so that the script can be reloaded. It prints
a report of what has been deleted.

delete_deferred_subprogram allows the part of a script associated with a deferred subprogram to
be re-entered. It deletes all theories associated with the deferred subprogram and undoes the
effects of any refinement or replacement steps associated with the deferred subprogram.

SML

val open_scope : string —> unit

Description With each declarative region in an Ada program, there is a Z theory to hold
definitions and verification conditions that are needed in the scope of the declarative region. The
scope is initially set by new_script to correspond to the declarative region of the compilation unit.
The open_scope command is then used to navigate into the scope of nested subprogram bodies.
The argument of open_scope is the expanded name of the package or subprogram. For example,
if the body of a package named Utils defines a subprogram named sort, then before expanding a
k-slot or specification statement in the body of sort, the following call is required:
open_scope "Utils.sort" ;

open_scope may also be used to return to the scope of the compilation unit after opening the
scope of a package or subprogram contained in it.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.1. Controlling the Tool 41

SML
‘val print_ada_program : string —> unit
‘Ual output_ada_program : {script : string, out_file : string} —> unit

Description The call print_spark_program name generates and prints the Ada program con-
tained in the script with the specified name. A minus sign may be used for the name to specify the
current script. The Ada program is created by filling in the k-slots and specification statements
in a literate script with their expansions. The result is printed on the standard output channel in
Ada syntax such that it could be subsequently compiled using an Ada compiler.

output_spark_program does the same as print_spark_program but allows the user to specify a file
to which the program will then be written.

Uses For example, if a literate script called “primes” has just been entered into the Compliance
Tool then the following command will output the corresponding Ada to a file called primes.ada.
output_ada_program{script = "-", out_file="primes.ada"}

SML

‘Ual print_z_document : string —> unit

‘val output_z_document : {script : string, out_file : string} —> unit
‘Ual get_script_theories : string —> string list

Description print_z_document prints the Z document from the named script to the standard
output. The listing is in a format suitable for its re-entry into a ProofPower session.

output_z_program is similar to print_z_document, but the the Z document is written to the named
output file out_file.

Uses For example, if a literate script called “primes” has been entered into the Compliance Tool
then the following command will output the corresponding Z document to a file called primes.zdoc.
output_z_document{script="primes", out_file="primes.zdoc"}

get_script_theories n returns a list of all the ProofPower theories associated with the Compliance
Notation script n.

SML
type EVAL_REPORT
val get_eval_report :
{title : string, theories : string list} —> EVAL_REPORT,
val print_eval_report : EVAL_REPORT —> unit;
val output_eval_report : {report : EVAL_.REPORT, out_file : string} —> wunit;
val output_eval_reportl : {report : EVAL_.REPORT, out_file : string} —> unit;

Description These functions are used to create a report for assistance in evaluating a compli-
ance argument. The type FVAL_REPORT is an abstract type representing the logical contents of
the report. To create a report first use get_eval_report to give a title to the report specifying the
theories to be included in the report. The report can then be output to the screen using print_
eval_report or to a file, either in LaTeX format using cn_output_eval_report or in raw ProofPower
text format using cn_output_eval_reportl.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

42 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML
val browse_vcs : unit —> unit

Description On systems with support for X/Windows and Motif enabled, this command in-
vokes an interactive browsing tool for mapping VCs onto web clauses, and vice versa.

Errors

‘516201 The VC browser is not available on this ProofPower system

SML

‘val output_hypertext_edit_script : {out_file : string} —> unit

Description This function produces an edit script from a processed literate script. The edit
script is placed in a file with name out_file.

The edit script will introduce hypertext links between specification statements or K-Slots, and
their corresponding expansion paragraphs.

SML

‘(* Flag cn_use_let_in_vecs — boolean control, default false x)

Description This is the name of flag (see set_flag in ProofPower Reference Manual [16]). The
flag controls the way substitution of expressions for variables is treated during VC generation.

If the flag is false (the default), then the substitution is carried out using the HOL subst function
and then conversions are used to transform the result into Z: this results in a Z term in which the
variables have actually been replaced by their substitutes, and declarations and other constructs
have been adjusted as necessary to avoid variable capture.

If the flag is set true (using set_flag), then a Z let construct is used to give the semantics of
substitution without actually replacing any variables with their substitutes. This can help to
abbreviate the VC and make its structure clearer.

SML

‘(* Flag cn_show_typing_context — boolean control, default false x)

Description This is the name of a flag (see set_flag in ProofPower Reference Manual [16]). It
controls a diagnostic display which may be of help in understanding problems with type-checking.

When set to true the flag will cause the tool to display the typing context used when type-checking
each Z expression encountered in Compliance Notation clauses. The display gives a list of the
theories that are in scope (omitting z_library and its ancestors) and a list of the variables that are
have their type fixed by the context (e.g., variables corresponding to SPARK program variables).

This flag is primarily a diagnostic aid for developers of the tool, but may be of help to a general
user in some difficult cases.

SML

‘(* cn_case_of_ada_keywords — string control, default "lower" x)

Description This is the name of a string control (see set_string_controlin ProofPower Reference
Manual [16]). Tt controls the case of Ada reserved words in the output from print_ada_program
and output_ada_program. There are three allowed values for the string control: "upper", "lower"
and "as input". The values "upper" and "lower" makes the tool generate upper-case and lower-
case reserved words respectively; the value "as input" makes the tool use the same case for a
reserved word as was used at its first appearance in the original Compliance Notation script.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.1. Controlling the Tool 43

SML

* cn_automatic_line_splitting — integer control declared by new_int_control, default 80 x)

(
‘(* cn_tab_width — integer control declared by new_int_control, default 2 x)
‘(* cn_left_margin — integer control declared by new_int_control, default 0 x)

Description These controls define parameters for output from format_web_clause,
print_web_clause, print_spark_program, output_spark_program and strings_from_fmtl.

These functions always split lines at logical break points (e.g. at semicolons at the end of state-
ments). However, they will also split lines that are longer than the value set by the control cn_
automatic_line_spliting (if it is non-zero), chosing to split at a syntactically allowed location. If
the control is set to 0 then no automatic line-splitting is done (except in Z terms, which will be
split during formatting to match the current line length setting). The default value of the control
is 80.

en_tab_width controls the number of spaces used to indent a nested structure such as the statement
in the then part of an if statement. cn_left_margin specifies an indentation to be applied on every
line and is given in the units specified by cn_tab_width. E.g., if cn_tab_width is 2 and cn_left_
margin is 4, every line will be indented by at least 8 spaces, and each nested structure will be
indented 2 spaces more than the structure immediately containing it.

SML

‘(* Flag cn_compactify_terms — boolean control, default true x)

Description This is the name of a flag (see set_flag in ProofPower Reference Manual [16]). Tt
controls a feature for optimising the memory space occupied by the Z terms stored in the internal
data structures of the Compliance Tool.

Since this space optimisation involves some processing overhead, it is optional, but it is enabled
by default. The space optimisation can be disabled by setting the flag cn_compactify_terms to
false and enabled by setting it to true.

SML

‘(* Flag cn_syntax_check_only — boolean control, default false x)

Description This is the name of a flag (see set_flag in ProofPower Reference Manual [16]). Tt
allows you to carry out check that a script complies with the syntax of the Compliance Notation.

When the flag is set false, all stages of processing are carried out on each Compliance Notation
clause entered.

When the flag is set true, all processing relating to the production of VCs and the Z paragraphs
that support them is suppressed. The Ada program may still be produced and all the literate
programming language features may be used.

Note that this flag only controls processing of Compliance Notation clauses. 7 paragraphs will be
processed regardless of the value of this flag.

SML

‘(* Flag cn_stop_on_exceptions — boolean control, default true x)

Description This flag controls the handling of exceptions when a Compliance Notation clause
is processed. If the flag is true, then if processing a Compliance Notation clause will cause ML
exceptions when errors are detected. If the flag is false, the an error message will be printed but
an exception will not be raised. In either case, the error message will be recorded in a log that
can be inspected using print_exception_log, q.v.

The processing of Z paragraphs is not affected by this flag.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

44 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML

(* en_domain_conds: integer control; 3 values allowed as follows)
val cn_no_domain_conds : int;

val cn_standard_domain_conds : int;

val cn_all_domain_conds : int;

Description c¢n_domain_conds is the name of an integer control (see set_int_control in Proof-
Power Reference Manual [16]). It controls the generation of domain conditions, i.e., additional
hypotheses that are added to VCs to help make them provable in cases where the compliance
argument depends for its validity on the program not raising an exception. The control should
be given one of the three integer values given by the three ML bindings above. The effect of the
control is shown in the following table:

cn_no_domain_conds No domain conditions are generated.

en_standard_domain_conds | Only domain conditions corresponding to ex-
ceptions that are guaranteed by ALRM [4] are
generated.

cn_all_domain_conds Domain conditions are generated as for
cn_standard - domain_conds together with do-
main conditions corresponding to real arith-
metic exceptions.

SML

‘(* cn_spark_syntax_warnings — flag declared by new_flag; default false *)

Description This flag controls whether or not Ada comments are to be inserted in the out-
put produced by the functions format_web_clause, print_web_clause, print_ada_program, and
output_ada_program to warn about uses of Ada syntax that is not in the SPARK subset. Note
that the checks are only made on the Ada concrete syntax, ignoring comments, there is no check-
ing that required SPARK annotations are present or correct and no context-sensitive checks are
made. The checks are based on the syntax given in John Barnes’ book High Integrity Ada The
SPARK Approach ISBN 0-201-17517-7.

SML

‘(* Flag cn_ignore_spark_annotations — boolean control, default false)

Description This flag controls the treatment of Ada comments having the form of SPARK
annotations, i.e., comments beginning with “~-#" (but see also cn_spark_annotation-char below).
If the flag is false, the default, then such comments are treated as SPARK annotations and
may only appear in syntactic positions where the SPARK syntax accepts an annotation. The
annotations are remembered for inclusion in the output when the program is printed. If the flag
is true, then such comments are treated as ordinary Ada comments and ignored.

SML
‘(* Flag cn_spark_annotation_char — string control, default "#")
Description By default SPARK annotations are Ada comments beginning with “--#" This

string control may be used to specify an alternative to “#” for the character that distinguishes
SPARK annotation from other Ada comments.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.1. Controlling the Tool 45

SML

val array_agg_def : int —> unit

Description This function is used to generate the definitions that support multidimensional
array aggregates. These definitions are built-in for arrays of up to 20 dimensions, so you do not
need to use this function unless you have array aggregates of more than 20 dimensions. The
function should be called after first opening either the theory “cn” or the cache theory for your
database.

Errors

508059 the argument to array-agg-def must be at least 2

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

46 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

7.2 Custom Proof Facilities

SML

‘signatur@ CNToolkitExtensions = sig

Description This is the signature for the toolkit extensions required by the Compliance Tool.
It is specified in DRA/CIS/CSE3/TR/94/27/3.0.

SML

val cn_boolean_cases_thm : THM,
val cn_boolean_clauses : THM;

val cn_boolean_clausesl : THM;

val cn_boolean_clauses2 : THM;

val cn_and_then_or_else_clauses : THM;
val cn_boolean_pos_thm : THM,
val cn_boolean_pred_thm : THM;
val cn_boolean_succ_thm : THM;
val cn_boolean_thm : THM;

val cn_boolean_c_boolean_thm : THM,;
val cn_boolean_val_thm : THM,;

val cn_relational_clauses : THM;
val cn_relational_clausesl : THM;
val cn_—_true_eq_false_thm : THM;
val cn_intdiv_0_thm : THM,

val cn_intdiv_thm : THM,

val cn_rem_thm : THM;

val cn_intmod_thm : THM,

val z_succ™_g_thm : THM,;

val cn_integer_to_real _thm : THM;

13 b

Description These are the ML names for the theorems in the theory “cn”, which contains
extensions to the Z toolkit required to support the Compliance Notation.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.2. Custom Proof Facilities 47

SML

val mk_cn_intdiv : TERM « TERM —> TERM,
val mk_cn_rem : TERM « TERM —> TERM,

val mk_cn_intmod : TERM « TERM —> TERM,
val mk_cn_star_star : TERM « TERM —> TERM,
val dest_cn_intdiv : TERM —> TERM % TERM;
val dest_cn_rem : TERM —> TERM x TERM;

val dest_cn_intmod : TERM —> TERM x« TERM;
val dest_cn_star_star : TERM —> TERM x TERM;
val is_cn_intdiv : TERM —> bool;

val is_cn_rem : TERM —> bool,;

val is_cn_intmod : TERM —> bool,;

val is_cn_star_star : TERM —> bool;

Description These are constructor, destructor and discriminator functions for the operators
which support the numeric operations of the Compliance Notation.

Errors

50900170 does not have type 7

50900270 is not of the form i intdiv j°
50900370 is not of the form %i rem j7
509004 70 is not of the form i intmod j7
50900570 is not of the form i %% j

SML

val cn_intdiv_conv : CONV;
val cn_rem_conv : CONV;
val cn_intmod_conv : CONYV;

val cn_star_star_conv : CONV;

Description These conversions perform evaluation of expressions with constant operands
formed using the operators which support the numeric operations of the Compliance Notation.

Each conversion expects an expression of the form 7 op j where op is one of intdiv, rem, intmod,
or *k, and where 7 and j are signed integer literals (i.e., either numeric literals or of the form ~£k,
where k is a numeric literal). The resulting theorem has conclusion i opj = r, where r is the
signed literal resulting from evaluating the expression.

Errors

‘509011 70 is not of the form 51 intdiv j where 31" and 577 are numeric literals
‘509012 70 is not of the form i rem 5 where Li' and Lj ' are numeric literals
‘509013 70 is not of the form 51 intmod j ' where Li' and j are numeric literals

‘509014 70 is not of the form i xx 77" where Li' and Lj ' are numeric literals

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

48 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML

‘val cn_mod_and_conv : CONV;
‘Ual cn_mod_or_conv : CONV;
‘val cn_mod_xor_conv : CONV;
‘val cn_mod_not_conv : CONV;

Description These conversions perform evaluation of expressions with constant operands
formed using the operators which support the numeric operations of the Compliance Notation.

Each conversion expects an expression of the form 7 op j or mod_not i, where op is one of mod_and,
mod_or, mod_zor and where i and j are signed integer literals (i.e., either numeric literals or of
the form ~Fk, where k is a numeric literal). The resulting theorem has conclusion iopj = r,
where r is the signed literal resulting from evaluating the expression.

Errors

‘509021 70 is not of the form i mod_and j ' where 5i"' and j7 are numeric literals
‘509022 70 is not of the form i mod_or j' where i and %j7 are numeric literals

‘509023 70 is not of the form 51 mod_xor j where Li" and %j7 are numeric literals

‘509024 70 is not of the form Lmod_not i where 4,17 is a numeric literal

SML
‘(* Proof Context: 'cn x)
‘(* Proof Context: 'enl x)

Description Component proof context for the theory cn which supports the Compliance No-
tation. ‘cnl is a slightly improved version of the original 'cn.

The main purpose of these proof contexts is to automate the elimination of the vocabulary of the
theory c¢n in favour of plain Z toolkit constructs wherever this is possible without introducing
excessive complexity.

Expressions and predicates treated by the proof contexts are constructs formed from:

not _, _and _, _ or _, _ xor _, , _ and_then _, _ or_else _,
_ mem _, - notmem _, _ eq _, _ noteq _,

_less _, _ less_eq _, _ greater _, _ greater_eq _,

_intdiv _, _ rem _, _ %k _, _ mod_and _, _ mod_or _,

_ mod_xor _, _mod_not

Contents

Rewriting:

en_boolean_thm (cn only), cn_boolean_succ_thm, cn_boolean_pred_thm,
cn_boolean_pos_thm, cn_boolean_val_thm,

cn_boolean_ clauses, cn_relational_clauses,

cen_intdiv_conv, cn_rem_conv, cn_intmod_conv, cn_star_star_conv
cn_boolean_e_boolean_thm (cnl only)

z_size_dot_dot_conv (cnl only)

cn_and_then_or_else_clauses

Stripping theorems: (none)

See Also c¢n, cn_ext

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.2. Custom Proof Facilities 49

SML

‘(* Proof Context: 'cn_reals x)

Description Component proof context for the theory cn which supports the Compliance No-
tation treatment of Ada fixed and floating point types.

The purpose of the proof context is to automate the elimination of the vocabulary of the theory
cn concerned with real numbers in favour of plain Z toolkit constructs wherever this is possible
without introducing excessive complexity.

Expressions and predicates treated by the proof contexts are constructs formed from the
Z real arithmetic operators and the Compliance Notation operators _e_, integer_to_real and
integer_to_real.

This proof context will typically be used in conjunction with one of the other Compliance Notation
proof contexts and the proof context for the Z real numbers. E.g.,

set_merge_pcs[" en_reals", " z_reals", "cn"];
Contents

Rewriting:

‘cn-e-O-thm

‘ cn_relational_clausesl
‘ cn_integer_to_real_thm

Stripping theorems:

‘ cn_relational - clausesl

See Also ’cn, 'cenl

SML

‘(* Proof Context: cn)

‘(* Proof Context: cn_ext x)
‘(* Proof Context: cnl x)

‘(* Proof Context: cnl_ext)

Description Complete proofs context for the theory cn which supports the Compliance Nota-
tion. cnl is the recommended proof context for normal use while reasoning about VCs generated
by the compliance tool. cn is still provided for backwards compatibility.

cnl is the merge of the component proof contexts 'cnl and z_libraryl. cnl_ext is the merge of
the component proof contexts 'cn and z_libraryl _ext.

cn is the merge of the component proof contexts '¢cn and z_library. cn_ext is the merge of the
component proof contexts 'cn and z_library_ext.

See Also ’cnl,’cn, z_libraryl, z_libraryl _ext

SML

signature CNTactics = sig

Description This is the name of a metalanguage structure containing tactics etc. supporting
proof of the VCs generated by the Compliance Tool.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

50 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML

val cn_ve_simp_tac : THM list —> TACTIC;

Description This tactic performs simplifications which are often appropriate at the beginning
of the proof of a VC goal generated by the Compliance Tool. It should generally be used in the
proof context cn or ¢nl or in some proof context incorporating one of these. It attempts to carry
out the following steps (and fails if none of them succeeds in changing the goal):

1. Rewrite the conclusion of the goal with: the theorems supplied in the parameter (if
any); the rewriting rules built into the current proof context; and, z_plus_assoc_-thm and
z_times_assoc_thm.

2. Remove any outer universal quantifiers (using z_V_tac), typically leaving an implication
whose operands are conjunctions.

3. Remove any redundant conjuncts from the result of step 2. At this stage, the goal will be
proved automatically if the antecedents of the implication subsume the succedents.

For example, using the proof context cni1, cn_vc_simp_tac, will transform the goal:

7+ v x : INTEGER; y : INTEGER; z : INTEGER
] (r+y)+1ez=TRUEN(z>0Ny>0)ANz>0
. x> 0 N z greater_eq 0 = TRUE
into:
i x € INTEGER N y € INTEGER N z € INTEGER
A r+y+1=2N0<zxzN0<y
= 0 <z

Errors

518003 Could not simplify the goal 70

SML
val current_pc_z_c€_net : unit —> (TERM —> THM) NET
val set_pc_z_€_rules : (TERM * (TERM —> THM)) list —>

string —> unit;

val get_pc_z_€_rules : string —>
((TERM = (TERM —> THM)) list % string) list;
val pc_z_€_rules_of _thms : string list —>

THM list —> (TERM x (TERM —> THM)) list;

Description These are tools used to construct proof contexts for use in conjunction with the
tactic cn_hc_tac.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.2. Custom Proof Facilities 51

SML

val cn_€_type_tac : THM list —> TACTIC

Description This is a tactic for proving assertions of the form e € T where T is the represen-
tation in Z of a SPARK type and e is the translation into Z of a SPARK expression.

The heuristic approach used by the tactic works best with the proof contexts that are generated by
cn_make_script_support. It will also work with the proof context c¢nl! if only predefined SPARK
types are involved.

The tactic uses the assumptions of the goal, together with any theorems supplied as an argument
as ground facts in an attempt to reduce assertions of the form e € T according to the structure of
e. For example, an assertion of the form f(z) € T is reduced to the two assertions f € X — T
and z € X and, if the ground facts provide a suitable candidate for the variable X, then the
original assertion is proved.

For example, given the SPARK declarations:
type ABC is (A, B, C);
type BYTE is range 0 .. 255;

‘ type MARKED_BYTE is record B : BYTE; F : BOOLEAN; end record,
\ type ARR is array (ABC) of MARKED_BYTE:;

cn_€_type_tac will prove goals such as:

| W € ARR ; I € ABC 7+ (W I).B € BYTE

SML

‘signature CNTheoryProofSupport = sig

Description This is the signature for the Theory Proof Support Tools.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

52 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML

val z_norm_sig_h_schema_conv : CONV;

Description Given an arbitrary horizontal schema, % [sig|body], this conversion will return the
theorem that states that the original horizontal schema is equal to one with the signature variables
placed in z_sig_order in a list of declarations (SDECLs) each with only a single variable. Items
in the signature that are not simple declarations will be placed as a list after the sorted simple
declarations, in their original order of occurrence. E.g.

will become
(v:Z;w:Z;z: X;y: Y, 2: X1, 8| (v, w, z, 2z, y, w) € p |
Conversion

z_norm_sig_h_schema_conv
-

F [sig | pred | = [sig’ | pred] 2 sig | pred]

and

Conversion

z_norm_sig_h_schema_conv
F [sig] =] sig’] 2[sig |

where sig’ is the normalised form of sig. It is possible for this conversion to cause no change.

Errors

‘47940 70 is not a Z schema

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.2. Custom Proof Facilities 53

SML

val cn_simplify_canon : THM —> THM list;

Description This does some Compliance Notation-specific simplifications, if the appropriate
definitions are available. In the following examples the likely constant name suffixes are used, but
are not required by the canonicalisation function.

F namevSUCC = (name \ {namevLAST}) < succ
becomes =V i : name; .. names + ~ 1 o namevSUCC i = i + 1
and = namevSUCC € name; .. (nameg + ~ 1) — name; + 1 .. namey
where name; is the bottom, and names is the top expression of the

range that is translated from name

F namevPRED = namevSUCC ~
becomes =V i : name; + 1 .. nameys ® namevPRED i = i + ~ 1
and - namevPRED € name; + 1 .. nameg — name; .. (nameg + ~ 1)
where name; is the bottom, and namey is the top expression of the
range that is translated from mname

F namevPOS = id name
becomes =V 1 : name o namevPOS i = i
and = namevPOS € name — name

F namevVAL = namevPOS ~
becomes -V 1 : name o namevVAL i = i
and = namevVAL € name — name

F name = {u : master | dom u = index}

becomes = name = (index — comp) N master

F name = [sig |
becomes + name = [sig’]

where sig’ is the normalised form of sig, via z_norm_sig_z_schema_conv

F name = [sig | pred |
becomes b+ name = [sig’ | pred]

where sig’ is the normalised form of sig, via z_norm_sig_z_schema_conv

The canonicalisation may also do some limited simplification to theorems that partially match
the patterns given above. If none of simplifications apply then the canon returns the empty list.

Errors

517006 Theory cn is not an ancestor of the current theory

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

54 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML
‘val cn_script_support_thms : string —> THM list;
‘Ual list_cn_script_support_thms : string list —> THM list;

Description cn_script_support_thms takes a theory name as argument. Assuming the theory
is in scope it will examine each of the definitions and axioms in the theory that declare generic
variables, and perhaps save some theorems for each in the current theory, as below.

As a default Z paragraphs saved as axioms or definitions initially will be processed as if retrieved
by z_get_spec, and rewritten according to the rules of proof context z_libraryl. Some of the
paragraph forms can define more than one value, and the function will save theorems for each of
the values defined. The description below assumes that a single item is defined, called ‘name”,
with th obvious extensions for multiple declarations. Non-alphanumeric names may be normalised
to fit in with ML variable name rules.

Abbreviation Definitions If cn_simplify_canon applies, then its results will be saved. The first
theorem, if any, returned by cn_simplify_canon will be saved with name cn_name_thm; the
second theorem returned will be saved with name cn_name_sig_thm; and if it returns no
theorems then the generic form of the theorem will be saved with name cn_name_thm.

Free Type Definitions The signature part will be saved with name cn_name_sig_thm (for
each constructor); the body, if non-trivial, with name cn_name_thm (for each construc-
tor). A theorem for free type name, of the form name = U, will be saved with name
cn_name_sig_thm.

Axiomatic Box The signature part will be saved with name cn_name_sig_thm, the body, if
non-trivial, with name cn_name_thm. No theorem will be saved if there is no signature.

Given Sets A theorem stating that the given set is equal to U will be saved with name
cn_name_thm.

Constraint No theorem will be generated, as constraints do not define a generic variable (though
they may well constrain an existing variable).

Saved theorems will also be bound to an ML variable of the same name. If a theorem is already
saved with the chosen theorem name then it is assumed to be for an earlier use of the support
tool, and will be replaced, and a warning issued. Finally, a list of the theorems generated will be
returned by the function.

list_cn_script_support_thms acts like cn_script_support_thms mapped over a list of theory names,
except that duplicate names in the list will be ignored.

See Also cn_make_script_support, list_cn_spec_rule, cn_spec_rule,

Errors

517001 Theorem 70 in theory 71 has been replaced by a new Compliance Notation
support theorem

517002 Cannot force the saving of theorem 70 in theory 71

517006 Theory cn is not an ancestor of the current theory

517007 LHS of Abbreviation Definition, 70, not a generic variable

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.2. Custom Proof Facilities 55

SML

val list_cn_spec_rule : THM list —> THM list;

Description [ist_cn_spec_rule takes a list of theorems and analyses those that are Z paragraphs
as if by cn_script_support_thms, saving and returning the list of created theorems.

Note that in particular this means that the function can be applied to the results of get_spec, but
not those of z_get_spec.

Errors

‘517001 Theorem 70 in theory 71 has been replaced by a new Compliance Notation
‘ support theorem

‘517002 Cannot force the saving of theorem 70 in theory 71

‘51 7006 Theory cn is not an ancestor of the current theory

SML

‘val cn_spec_rule : THM —> (string « THM) list;

Description cn_spec_rule analyses its single theorem as if by cn_script_support_thms, except
that it does not save the resulting theorem, or bind it to an ML variable. The function instead
returns the name or names that cn_script_support_thms would have used, and the theorem or
theorems it would have saved, except that unchanged theorems will result in an empty list being
returned.

Errors

‘517004 Theorem 70 cannot be processed by Compliance Notation simplification tools

‘517006’ Theory cn is not an ancestor of the current theory

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

56 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SML

‘val cn_make_script_support : string —> string —> THM list;

‘Ual list_cn_make_script_support : string list —> string —> THM list;

Description c¢n_make_script_support thyname pcname will first try to act as
cn_script_support_thms thyname. It will then create a complete proof context called pcname

(any previous version will be overwritten). As with cn_make_script_support_thms, it returns the
list of theorems generated.

list_cn_make_script_support thynames pcname will first try to act as list_cn_script_support_thms
thynames. It will then create a complete proof context called pcname (any previous version will
be overwritten).

The proof context created will be “cnl” extended by:
Contents Rewriting: all saved support theorems (except equations with U);

Stripping theorems: bi-implications from support theorems, plus support theorem equations of
sets promoted to bi-implications of memberships (except where U elimination will apply).

Stripping conclusions: as stripping conclusions.
Rewriting canonicalisation: no change;

Automatic proof procedures: appropriate support theorems will be noted as to be used in type
inference tools, otherwise no change.

Existence prover: no change.

The U simplification material will be extended by appending to the equation context the one
formed from the equations of the form nm = U, via set_u_simp_eqn_cxt.

Usage Notes The new proof context requires theory “cn”, its creation theory and theory
thyname to be in scope. It is not intended to be mixed with HOL proof contexts.

The new proof context is built using proof context “cnl”.

Errors

‘51’7001 Theorem 70 in theory 71 has been replaced by a new Compliance Notation
‘ support theorem

‘51 7002 Cannot force the saving of theorem 70 in theory 71

‘517006 Theory cn is not an ancestor of the current theory

SML

‘Ual all_cn_make_script_support : string —> THM list;

Description all_cn_make_script_support pcname will determine all the theories that are par-
ents of the current one, but that are not also ancestors of “cn” (i.e. this does not include “cn”),
and will execute list_cn_make_script_support on this list.

That is, this will create supporting theorems and a proof context based on all the in scope
Compliance Notation packages.

Usage Notes The new proof context requires theory “cn”, its creation theory and theory
thyname to be in scope. It is not intended to be mixed with HOL proof contexts.

The new proof context is built using proof context “cnl”.

Errors

‘51’7006 Theory cn is not an ancestor of the current theory

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn

57

7.3 THE Z THEORY cn

For brevity, the global variables array-agg6, array-agq7, ...

the theory listing.

7.3.1 Parents

z_reals z_library

7.3.2 Global Variables

FALSE Z
TRUE Z
BOOLEAN PZ
BOOLEANvVFIRST

A
BOOLEANvVLAST Z
BOOLEANvSUCC Z «— 7
BOOLEANvVPRED 7 «— 7
BOOLEANvVPOS 7 «— 7
BOOLEANvVVAL 7 «— 7
(- and) VAR
(_or) 7 X7 «— 7
(- xor _) VARSY/REW/
(not _) 7 — 7
(- and_then _)

7 X 7 — 7
(- or_else _)

7 X 7 — 7
(- eq -)[X] X x X 7Z
(_ noteq)[X]

X x X7
(_mem _)[X] X xPX < 2Z
(- notmem _)[X]

XxPX —Z

(- array_and _)[X]

(X —oZ)x (X —oZ) X7
(- array_or _)[X]

(X —oZ)x (X —oZ) X7
(- array_xor _)[X]

(X —oZ)x (X —Z) X7
(array_not _)[X]

(X —=Z2)— X oL

(- less _) Z X717
(_ less_eq)

Z XL~ 17
(- greater _)

7 X 7 — 7
(- greater_eq -)

7 X 7 — 7

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

, array-agg20 have been suppressed from

58 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

(- real_less)

R xR« Z
(- real_less_eq)

R xR« Z
(- real_greater _)

RXR—Z
(- real_greater_eq)

RXR— Z
(- array_less _)

(Z —7Z) x (Z < Z) < Z
(- array_less_eq _)

(Z —7Z) x (Z — Z) — Z
(- array_greater _)

(Z —7Z) x (Z — Z) < Z
(_ array_greater_eq _)

(Z —7Z) x (Z — 7Z) < Z

(_ intdiv _) 7 X1« 7
(- rem _) VARSY/REW
(_intmod) Z X Z < Z
(= %% _) Z X7 — Z
integer_to_real

7 «— R
real_to_integer

R« Z
(- mod_and)

7 X 7 — 7
(. mod.or) Z xZ < Z
(- mod_xor _)

Z X7~ 7

(mod_not) Z xZ < Z
INTEGER PZ

INTEGERvSUCC 7 — 7
INTEGERvVPRED Z — 7
INTEGERvPOS 7 — 1
INTEGERVVAL 7 — 7
INTEGERVFIRST

Z
INTEGERVLAST Z
NATURAL PZ
NATURALvVFIRST

Z
NATURALvVLAST Z
NATURALvSUCC 7 «— 7
NATURALvVPRED 7 — 7
NATURALvVPOS 7 — 1
NATURALvVVAL Z — 7
POSITIVE P Z
POSITIVEVFIRST

Z
POSITIVEVLAST

Z

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 59

POSITIVEvSUCC

7 — 7
POSITIVEvPRED

7 — 7
POSITIVEvVPOS Z — 7
POSITIVEvVAL 7 — 7
LONG_INTEGER P Z
LONG_INTEGERvSUCC

7 — 7
LONG_INTEGERvVPRED

7 — 7
LONG_INTEGERvVPOS

7 — 7
LONG_INTEGERvVVAL

7 — 7
LONG_INTEGERvVFIRST

Z
LONG_INTEGERVLAST

7
SHORT_INTEGER

P Z
SHORT_INTEGERvSUCC

7 «— 7
SHORT_INTEGERvVvPRED

7 — 7
SHORT_INTEGERvVPOS

7 — 7
SHORT_INTEGERvVVAL

7 — 7
SHORT_INTEGERVFIRST

Z
SHORT_INTEGERvVLAST

7
universal_discrete

P Z
universal_discretevSUCC

7 — 7
universal_discretevPRED

7 — 7
universal_discretevPOS

7 — 7
universal_discretevVAL

7 — 7
universal_discretevFIRST

Z
universal_discretevLAST

Z
FLOAT PR
FLOATvDIGITS 7
FLOATvVFIRSTR

FLOATvVLAST R

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

60 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

SHORT_FLOAT PR
SHORT_FLOATvDIGITS

/
SHORT_FLOATvVFIRST

R
SHORT_FLOATvVLAST

R
LONG_FLOATPR
LONG_FLOATvVDIGITS

Z
LONG_FLOATVFIRST

R
LONG_FLOATVLAST

R
CHARACTERVFIRST

Z
CHARACTERVLAST

Z
CHARACTER P Z
CHARACTERvSUCC

7 — 7
CHARACTERVPRED

7 «— 7
CHARACTERvVPOS

7 — 7
CHARACTERVVAL

7 — 7
STRING P(Z < Z)
Z_CHAR P (Z < S)
Z_STRING P (Z < S)
dest_char S — Z
(string_lit _)

(Z - S) =717
(char_lit _ (Z —~S) — Z

)
Informal_Function
P Informal_Function

(&2_)[X] XX(Z(—)X)HZ(—)X
(&1_)[X] (Z - X)x X o Z- X

(- 2)[X] (Z — X)x (Z— X)—Z-X
sllde[XY] X o V)XPX o X oV
Boolean B« Z

VRElIsfInd P VREIsfInd
VREIsfTrue VRElsfInd
VRElsfFalse VRElsfInd
VC_Route P VC_Route
(VRAny) VC_Route < VC_Route
(VRNull _) VC_Route «— VC_Route
(VRAssign _) VC_Route — VC_Route
(VRSpecVia _)

VC_Route «— VC_Route
(VRSpecToSide _)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 61

VC_Route «— VC_Route
VRSpecPrelntro

VC_Route
(VRSemi _) VC_Route «— VC_Route
(VREndSemi _)

VC_Route < VC_Route
(VRIfThen _) VREIsfInd x VC_Route < VC_Route
(VRIfElse _) VREIsfInd x VC_Route < VC_Route
(VREndIf _) VC_Route < VC_Route
(VRCaseBranch _)

Z x VC_Route < VC_Route
(VRCaseOthers _)

VC_Route < VC_Route
(VREndCase _)

VC_Route < VC_Route
(VRLoopUndecVia _)

VC_Route < VC_Route
VRLoopUndecPrelntro

VC_Route
VRLoopUndecPreToSide

VC_Route
(VRLoopUndecToSide)

VC_Route «— VC_Route
(VRWhileVia _)

VC_Route «— VC_Route
VRWhilePrelntro

VC_Route
(VRWhileWPToSide _)

VC_Route «— VC_Route
(VRWHhileToSide)

VC_Route
(VRForVia _) VC_Route
VRForPrelntro

VC_Route
VRForPreToSide

VC_Route
(VRForToSide)

VC_Route «— VC_Route
(VRForExitToSide _)

VC_Route «— VC_Route
VRExitTilllntro

(Z < S) < VC_Route
(VRExitVia _)

VC_Route «— VC_Route
VRReturnlntro

VC_Route
(VRProcCall _)

VC_Route «— VC_Route
(VRProcCallEnd _)

VC_Route < VC_Route
VRProcCallRngIntro

VC_Route
VC_Route

!

!

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

62 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

VC'_Route
(VRLogConToSide _)

VC_Route <« VC_Route
VRLogConPrelntro

VC'_Route
VRLogConTypeMemlntro

VC'_Route
(VRRefinementBegin _)

VC_Route < VC_Route
VRRefinementIntro

VC_Route
array-agg2(gl, g2, g|

(g]HgQHg)Hgl X g2 «— g
array_agg3|gl, g2, g3, g|

(g1 < g2 < g3 < g) < gl X g2 X g3 < g
array_aggd(gl, g2, g3, g4, g|

(91 < g2 < g3 < g4 < g) < gl X g2 X g3 X g4 < ¢
array_aggb[gl, g2, g3, g4, g5, g]

(91 < g2 < g3 < g4 < g5 < g)

— gl X g2 X g3 X g4 X gb < g

7.3.3 Fixity

fun 0 rightassoc

(char_lit _) (VRIfElse) (VRWhileVia _)
(string_lit) (VRIfThen _) (VRWhileWPToSide _)
(VRAny _) (VRLogConToSide _) (- and _)
(VRAssign -) (VRLoopUndecToSide _) (- and_then _)
(VRCaseBranch _) (VRLoopUndecVia _) (- array_and _)
(VRCaseOthers _) (VRNull) (- array-or _)
(VREndCase _) (VRProcCallEnd) (- array-zor _)
(VREndIf _) (VRProcCall) (- mod_and _)
(VREndSemi _) (VRRefinementBegin _) (- mod_or _)
(VREzitVia _)(VRSemi _) (- mod_zor _)
(VRForExitToSide _) (VRSpecToSide _) (- or.)
(VRForToSide _) (VRSpecVia _) (- or_else)
(VRForVia _) (VRWhileToSide _) (- zor _)

fun 10 rightassoc
(- eq -) (- mem _) (- noteq -) (- notmem _)

fun 20 rightassoc

_ array_greater _)

_ array_greater_eq _) (- less_eq -)
array_less _) (_ real_greater _)

_ array_less_eq) (- real_greater_eq _)

_ greater _) (- real_less _)

_ greater_eq) (- real_less_eq)

_less)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 63

fun 30 rightassoc

(- & -) (- &1 -) (- &2 -)

fun 40 rightassoc
(- intdiv _) (= intmod _) (- rem _)

fun 50 rightassoc
(array-not _) (mod_not _) (not _) (- *x _)

7.3.4 Axioms

- and _
_or _
_ Xor _
not _ - ((not _) € BOOLEAN — BOOLEAN
ANA{(and _), (- or), (- zor _)}
C BOOLEAN x BOOLEAN — BOOLFEAN)
A (V b: BOOLEAN
e not FALSE = TRUE
A not TRUE = FALSE
A (b and FALSE = FALSE
A b and TRUE = b)
A (b or FALSE = b
A b or TRUE = TRUFE)
A b zor FALSE = b
A b zor TRUE = not b)
_ and_then _
_ or_else _ F {(- and_then _), (- or_else _)}
C BOOLEAN x BOOLEAN — BOOLEAN
A (- and_then _) = (= and _)
A (- or_else) = (_ or _)
_eq -
_ noteq _
_ mem _
_ notmem _ F[XI(({(- mem _)[X], (- notmem _)[X]}

CX xPX — BOOLEAN
A A{(- eq)[X], (- noteq -)[X]} € X x X — BOOLEAN)

NNz, y:X;S:PX;b: BOOLEAN
o (b=(-mem)[X] (z,S) < b= TRUE & z € S)
A (b = (- notmem _)[X] (z, S)
& b= TRUE
S g S)
A(b=(-eq)[X](z,y) © b= TRUE & z = y)
A (b = (_ noteg)[X] (2, 9)
& b= TRUE
o)
_ array_and _
_ array_or _
_ array_xor _
array_not _ F [X](((array-not -)[X] € (X - BOOLEAN) — X + BOOLEAN

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

64 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

N A{(C array-and _)[X],
(- array-or _)[X],
(- array-zor _)[X]}
C (X + BOOLEAN) x (X -+ BOOLEAN) — X - BOOLEAN)
A (Y a, b: X + BOOLEAN
o (array-not _)[X] a = (N i: dom a e not a 1)
A (- array_and _)[X] (a, b)
=(Ni:domandombeaiandbdi)
A (- array_or _)[X] (a, b)
=(Ni:domandombeaiorhbi)
A (- array_zor _)[X] (a, b)
=Ni:doman dombeaizorbi)))

_less _
_less_eq -
_ greater _
_ greater_eq _
F{(- less),
(- less_eq -),
(_ greater _),

(_ greater_eq _)}
CZ x Z — BOOLEAN

ANz, y:Z;b: BOOLEAN
o (b=uxlessy < b= TRUE & z < y)
A (b=uzless.eq y< b= TRUE & z < y)
A (b =z greater y < b = TRUE < = > y)
A (b = x greater_eq y < b = TRUE & © > y))

_ real_less _
_real_less_eq _
_ real_greater _
_ real_greater_eq _
F{(- real_less _),
(- real_less_eq _),
(- real_greater _),
(- real_greater_eq)}
CR xR — BOOLEAN
ANz, y:R; b: BOOLEAN
o (b =ux real_less y < b = TRUE & z <g y)
(b =z real_less_eq y < b = TRUE < x <p y)
A (b = z real_greater y < b = TRUE < x >g v)
(b = x real_greater_eq y
& b= TRUE
&z >p y))
_ array_less _
_ array_less_eq _
_ array_greater _
_ array_greater_eq _
FA{(- array_less _),
(- array_less_eq _),
_ array-greater _),
_ array_greater_eq _)}
(Z + 7) x (Z + Z) — BOOLEAN

e

N

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 65

ANNVa, b:Z+17
e (a array_less b = TRUE
< (3i, 4,k Z
e {i,j} C dom b
ANi—1¢&domb
ANi+k—1¢doma
ANV t:ii.g— 1
ot +kedomaANbt=al(t+k))
ANj+ ke doma
S0 G+ k) < b))
A a array_less_eq b = a array_less b or a eq b
A a array_greater b = b array-less a
A a array_greater_eq b = b array_less_eq a)
_ intdiv _
_rem _
_ intmod _ FA{(- intdiv _), (- rem _), (- intmod _)}
CZxZ\{0} -2
NNVz, y:Z
|y #0
o (zxy >0 = xintdivy = abs = div abs y)
AN(zxy <0
= ¢ intdiv y = ~ (abs © div abs y))
ANxremy =z — (zintdiv y) xy
ANz*xy>0Varemy=70
= x intmod y = x rem y)
ANlxxy<O0ONzremy#0
= x intmod y = x rem y + y))
_ F*x_)€ZxN-—=Z
ANNz:Z;y:N
exxx 0 =1 Nz*x(y+1)=2z %z %ky)

*k

integer_to_real
F integer_to_real € Z — R
A (Vi : Z e integer_to_real i = real i)
real_to_integer
F real_to_integer € R — Z
ANNMz:R
o ~p 0.5 <gp x —p real (real_to_integer z)
Az —pg real (real_to_integer x) <p 0.5)
_ mod_and _
- mod_or _
_mod_xor _ F {(_ mod_and _), (- mod_or _), (- mod_zor _)}
CNxN-=N
AV i:Neimodand 0 = 0)
ANNVi:N; 5Ny
e i mod_and j
= 2 % (i div 2 mod_and j div 2)
+ i mod 2 x (j mod 2))
ANV i:Neimodor0=r1)
ANNVi:N; 5Ny
e i mod_or j
= 2 % (i div 2 mod_or j div 2)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

66 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

+ max {i mod 2, j mod 2})
A (Vi:Neimodzor 0 = 1)
AN(Vi:N;j: Ny
® i mod_xor j
= 2 x (i div 2 mod_zor j div 2)
+ (i + J) mod 2)
mod_not _ F (mod-not _) € Z x Z — Z
A (Y i, modulus : Z
e mod_not (i, modulus) = modulus — (i + 1))
INTEGER F INTEGER € P Z A true
INTEGERvSUCC
INTEGERvVPRED
INTEGERvVPOS
INTEGERvVVAL
INTEGERVFIRST
INTEGERVLAST F ({INTEGERvFIRST, INTEGERvLAST} C 7Z
N {INTEGERvSUCC,
INTEGERvPRED,
INTEGERvPOS,
INTEGERvVAL}
CZ-+7Z)
N true
LONG_INTEGER F LONG_INTEGER € P Z A true
LONG_INTEGERvSUCC
LONG_INTEGERvVPRED
LONG_INTEGERvVPOS
LONG_INTEGERvVAL
LONG_INTEGERVFIRST
LONG_INTEGERvVLAST
F ({LONG_INTEGERvFIRST, LONG_INTEGERvLAST} C 7Z
AN {LONG_INTEGERvSUCC,
LONG_INTEGERvPRED,
LONG_INTEGERvPOS,
LONG_INTEGERvVAL}
CZ -+ 17Z)
A true
SHORT_INTEGER
F SHORT_INTEGER € P Z A true
SHORT_INTEGERvSUCC
SHORT_INTEGERvPRED
SHORT_INTEGERvPOS
SHORT_INTEGERvVAL
SHORT_INTEGERVFIRST
SHORT_INTEGERvVLAST
F ({SHORT_INTEGERvFIRST, SHORT _INTEGERvLAST} C 7Z
AN {SHORT_INTEGERvSUCC,
SHORT_INTEGERvPRED,
SHORT_INTEGERvPOS,
SHORT_INTEGERvVAL}
CZ-+7)
A true

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 67

universal_discrete
F universal_discrete € P 7. N true
universal_discretevSUCC
universal_discretevPRED
universal_discretevPOS
universal_discretevVAL
universal_discretevFIRST
universal_discretevLAST
F ({universal_discretevFIRST, universal_discretevLAST}
CZ
A {universal_discretevSUCC,
universal_discretevPRED,
universal_discretevPOS,
universal_discretevVAL}
CZ-+7)
N true
FLOAT F FLOAT € P R A true
FLOATvDIGITS
FLOATvVFIRST
FLOATVLAST + ({FLOATvFIRST, FLOATvLAST} C R
A FLOATvDIGITS € 7)
N true
SHORT_FLOAT F SHORT_FLOAT € P R A true
SHORT_FLOATvDIGITS
SHORT_FLOATvVFIRST
SHORT_FLOATvVLAST
F ({SHORT_FLOATvFIRST, SHORT _FLOATvLAST} C R
A SHORT_FLOATvDIGITS € Z)
A true
LONG_FLOATHF LONG_FLOAT € P R A true
LONG_FLOATvDIGITS
LONG_FLOATvVFIRST
LONG_FLOATvVLAST
F ({LONG_FLOATvFIRST, LONG_FLOATvLAST} C R
N LONG_FLOATvDIGITS € 7Z)

A true
CHARACTERVLAST
F CHARACTERvLAST € Z N CHARACTERvLAST > 127
STRING F STRING € P (POSITIVE - CHARACTER) A true
dest_char F dest_char € S — Z
A (Y ch : S e dest_char ch = "NZ (RepChar ch)?)
string_lit _ F (string-lit _) € Z_STRING — seq CHARACTER

A (Y str: Z_STRING
e string_lit str = dest_char o str)
char_lit _ F (char_lit) € Z_CHAR — CHARACTER
A (char_lit _) = head o (string_lit)

_ &g

_ & -

"o I o0 Y] €2+ X) % (2 X) % X
(&1_)[X] (Z + X)x X -7+ X
NL&)X]eX x(Z-+ X)—7Z+ X)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

68 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

ANNa, b:Z -+ X;m,n:7Z

| dom a — m € mazx A dom b +— n € min
e (&g)[X] (s, b)
=a®{i:dombei+m+1—nw—bi})

ANVa:Z+ X e (&)X](a,d)=na)

ANNVa:Z2Z+ X;z:X

o (& JX] (0, 2) = (&g JIX] (a, ()

ANNVa:72Z+ X;z:X

o (& JX] (2,) = (_ &0 JIX] ((2), 0)))

slide X,

Yi(slide[X, Y] € (X » V) xPX - X - Y

AVFf: X+ Y;r:PX

| dom f =r
o slide[X, Y] (f, r) = f))
Boolean F Boolean € B — BOOLEAN

A Boolean true = TRUE
A Boolean false = FALSE

VREIsfTrue

VRElsfFalse t { VREIsfTrue, VREIsfFalse} C VRElsfInd
A disjoint ({ VRElsfTrue}, { VREIsfFalse})
A (Y W : P VREIsfInd

| { VREIsfTrue, VREIsfFalse} C W
o VREIlsflnd C W)

VRAny _

VRNull _

VR Assign _

VRSpecVia _

VRSpecToSide _

VRSpecPrelntro

VRSemi _

VREndSemi _

VRIfThen _

VRIfElse _

VREndIf _

VRCaseBranch _

VRCaseOthers _

VREndCase _

VRLoopUndecVia _

VRLoopUndecPrelntro

VRLoopUndecPreToSide

VRLoopUndecToSide _

VRWhileVia _

VRWhilePrelntro

VRWhileWPToSide _

VRWhileToSide _

VRForVia _

VRForPrelntro

VRForPreToSide

VRForToSide _

VRForExitToSide _

VRExitTilllntro

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 69

VRExitVia _

VRReturnIntro

VRProcCall _

VRProcCallEnd _

VRProcCallRnglIntro

VRLogConToSide _

VRLogConPrelntro

VRLogConTypeMemlntro

VRRefinementBegin _

VRRefinementIntro

+ ({ VRSpecPrelntro,

VR LoopUndecPrelntro,
VR LoopUndecPreToSide,
VRWhilePrelntro,
VRForPrelntro,
VRForPreToSide,
VRReturnintro,
VR ProcCallRnglntro,
VRLogConPrelntro,
VR LogConTypeMemlIntro,
VR RefinementIntro}
C VC_Route

A (VRAny) € VC_Route — VC_Route

A (VRNull _) € VC_Route — VC_Route

N (VRAssign _) € VC_Route — VC_Route

A (VRSpecVia _) € VC_Route — VC_Route

A (VRSpecToSide _) € VC_Route — VC_Route

A (VRSemi _) € VC_Route — VC_Route

A (VREndSemi _) € VC_Route — VC_Route

A (VRIfThen _) € VREIsfInd x VC_Route — VC_Route

A (VRIfElse _) € VREIsfInd x VC_Route — VC_Route

A (VREndIf _) € VC_Route — VC_Route

A (VRCaseBranch) € Ny x VC_Route — VC_Route

A (VRCaseOthers _) € VC_Route — VC_Route

A (VREndCase _) € VC_Route — VC_Route

A (VRLoopUndecVia _) € VC_Route — VC_Route

A (VRLoopUndecToSide _) € VC_Route — VC_Route

A (VRWhileVia _) € VC_Route — VC_Route

A (VRWhileWPToSide _) € VC_Route — VC_Route

A (VRWhileToSide) € VC_Route — VC_Route

A (VRForVia _) € VC_Route — VC_Route

A (VRForToSide _) € VC_Route — VC_Route

A (VRForEzitToSide) € VC_Route — VC_Route

A VREzitTilllntro € Z_STRING — VC_Route

A (VREzitVia) € VC_Route — VC_Route
(VRProcCall _) € VC_Route — VC_Route
(VRProcCallEnd) € VC_Route — VC_Route
(VRLogConToSide _) € VC_Route — VC_Route

A (VRRefinementBegin _) € VC_Route — VC_Route)

A disjoint (ran (VRAny _),
ran (VRNull _),

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

70 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

ran (VRAssign _),
ran (VRSpecVia _),
ran (VRSpecToSide _),
{VRSpecPrelntro},
ran (VRSemi _),
ran (VREndSemi _),
ran (VRIfThen _),
ran (VRIfElse _),
ran (VREndIf _),
ran (VRCaseBranch _),
ran (VRCaseOthers _),
ran (VREndCase _),
ran (VRLoopUndecVia _),
{VRLoopUndecPrelntro},
{VRLoopUndecPreToSide},
ran (VRLoopUndecToSide _),
ran (VRWhileVia _),
{VRWhilePrelntro},
ran (VRWhileWPToSide _),
ran (VRWhileToSide _),
ran (VRForVia _),
{VRForPrelntro},
{VRForPreToSide},
ran (VRForToSide _),
ran (VRForEzitToSide _),
ran VRExitTillIntro,
ran (VREzitVia _),
{VRReturnIntro},
ran (VRProcCall _),
ran (VRProcCallEnd _),
{VRProcCallRngIntro},
ran (VRLogConToSide _),
{VRLogConPrelntro},
{VRLogConTypeMemIntro},
ran (VRRefinementBegin _),
{VRRefinementIntro})
AN (VY W : P VC_Route
| { VRSpecPrelntro,
VR LoopUndecPrelntro,
VRLoopUndecPreToSide,
VRWhilePrelntro,
VRForPrelntro,
VRForPreToSide,
VRReturnintro,
VR ProcCallRnglntro,
VRLogConPrelntro,
VR LogConTypeMemlIntro,
VRRefinementIntro}
U (VRAny) (W |
U ((VRNull -) (W)
U ((VRAssign _) (W)

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 71

U ((VRSpecVia -) (W)
U ((VRSpecToSide _) (W)
U ((VRSemi _) (W)
U ((VREndSemi) (
W)
U ((VRIfThen _) (
VREIsfInd x W)
U ((VRIfEIse _) {
VREIsfInd x W)
U ((VREndIf _) (W)
U ((VRCaseBranch _) (Ny x W)
U ((VRCaseOthers _) (W)
U ((VREndCase _) (W)
U ((VRLoopUndecVia _) (W)
U ((VRLoopUndecToSide _) (W)
U ((VRWhileVia _) (W)
U ((VRWhileWPToSide) (

W)
U ((VRWhileToSide)
W)
U ((VRForVia _) (

W)
U ((VRForToSide -) (
W)
U ((VRForEzitToSide _) (W)
U (VRExitTilllntro (Z_-STRING)
U ((VREzitVia) (W)
U ((VRProcCall _) (W)
U ((VRProcCallEnd _) (W)
U ((VRLogConToSide _) (W)
U (VRRefinementBegin _) (
)

WD)

cw
e VC_Route C W)
array_agg2 F g1,
92,
gl(array-agg2lgl, g2, g|
€(91 - 92 —g) — gl xg2—yg
ANNf:igl — g2 — g;xl:gl; x2: g2
e array-agg2lgl, g2, g] f (z1, 22) = [z1 z2))
array_agg3 F g1,
92,
93,
gl(array-agg3[g1, 92, g3, g|
€ (gl — 92— g3 —g) — gl xg2xg3—g
ANNFigl — g2 — g3 — g;
zl @ gl;
x2 1 g2;
x3 . g3
o array-agg3lgl, 92, 93, g] f (z1, 22, z3)
= f xl 22 23))

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

72 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

array_agg4 F g1,
92,
93,
94,
gl(array_agg4 (g1, 92, 93, 94, 9]
€ (gl — g2 — 93— g4 —yg) =gl x g2 xg3xgj—g
NNV figl — g2 — g3 — g4 —g;

xl @ gl;
z2 : g2;
8 1 g3;
T4t g4
e array-agg4lgl, 92, 93, 94, 9] f
(z1, z2, 23, x4)
=f xl 22 23 24))
array_aggb F g1,
92,
93,
94
99,

gl(array_agg5(g1, 92, 93, 94, 95, g
€ (gl — 92— 93— g4 — 95— g)
— gl X g2 X g3 X g4 X gb — ¢
NNV [frigl —g2— 98— gf—g5—g
zl : gl;
x2 : g2;
8 1 g3;
T4t g4
xH 1 gd
e array-aggslgl, 92, 93, 94, 95, g] f
(z1, z2, 28, x4, ©5)
= f xl 22 28 z4 z5))

7.3.5 Definitions

FALSE - FALSE = 0
TRUE - TRUE = 1
BOOLEAN + BOOLEAN = FALSE .. TRUE
BOOLEANVFIRST

- BOOLEANuFIRST = FALSE
BOOLEANvVLAST - BOOLEANvLAST = TRUE
BOOLEANvSUCC - BOOLEANvSUCC = (BOOLEAN \ {BOOLEANvLAST}) < succ
BOOLEANvPRED - BOOLEANvPRED = BOOLEANvSUCC ™~
BOOLEANvPOS - BOOLEANvPOS = id BOOLEAN
BOOLEANvVVAL - BOOLEANvVAL = BOOLEANvPOS ~
NATURAL + NATURAL = 0 .. INTEGERvLAST
NATURALvVFIRST

- NATURALvFIRST = 0
NATURALVLAST - NATURALvLAST = INTEGERvLAST
NATURALvSUCC - NATURALvSUCC = INTEGERvSUCC
NATURALvPRED - NATURALvPRED = INTEGERvPRED
NATURALvPOS - NATURALvPOS = INTEGERvPOS

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 73

NATURALvVVAL F NATURALvVAL = INTEGERvVAL
POSITIVE F POSITIVE = 1 .. INTEGERvLAST
POSITIVEvVFIRST

F POSITIVEvFIRST = 1
POSITIVEvVLAST

F POSITIVEVLAST = INTEGERvLAST
POSITIVEvSUCC

= POSITIVEvSUCC = INTEGERvSUCC
POSITIVEvPRED

F POSITIVEvPRED = INTEGERvPRED
POSITIVEvVPOS F POSITIVEvPOS = INTEGERvPOS
POSITIVEvVVAL F POSITIVEvVAL = INTEGERvVAL
CHARACTERVFIRST

- CHARACTERvFIRST = 0
CHARACTER + CHARACTER = CHARACTERvFIRST .. CHARACTERvLAST
CHARACTERvSUCC
- CHARACTERuvSUCC
— (CHARACTER \ {CHARACTERuvLASTY}) < succ

CHARACTERvVPRED

F CHARACTERvPRED = CHARACTERvSUCC ~
CHARACTERvPOS

+ CHARACTERvPOS = id CHARACTER
CHARACTERvVVAL

F CHARACTERvVAL = CHARACTERvPOS ~
Z_CHAR F Z_CHAR = seq S

Z_STRING F Z_STRING = seq S
Informal_Function

F Informal_Function = U
VRElIsfInd F VREIsfInd = U
VC_Route F VC_Route = U

7.3.6 Theorems

cn_boolean_thm
+ BOOLEAN = {FALSE, TRUE}
cn_boolean_succ_thm
+ BOOLEANvSUCC = {FALSE — TRUE}
cn_boolean_pred_thm
+ BOOLEANvPRED = {TRUE — FALSE}
cn_boolean_pos_thm
F BOOLEANvPOS = id BOOLEAN
cn_boolean_val_thm
F BOOLEANvVAL = id BOOLEAN
cn_—_true_eq_false_thm
F - TRUE = FALSE
cn_boolean_cases_thm
FVzxz: BOOLEAN e x = TRUE V x = FALSE
cn_boolean_clauses
F TRUE = Boolean true
N FALSE = Boolean false
A (V p : U e not Boolean p = Boolean (— p))

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

74 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

ANNp,qg:U

e Boolean p and Boolean q¢ = Boolean (p A q))
ANNp,qg:U

e Boolean p or Boolean q = Boolean (p V q))
ANNp,qg:U

e Boolean p xor Boolean q = Boolean (- (p < q)))
A (Y p, ¢ : U e Boolean p = Boolean q < p < q)
cn_and_then_or_else_clauses
FVYa, y:U
ez and_then y = x and y AN = or_else y = x or y
cn_boolean_€_boolean_thm
FVxz:Ue Boolean x € BOOLEAN
cn_relational_clauses
I—(V:l: U; S : U e x mem S = Boolean (z € S))
Vz:U; S:Uex notmem S = Boolean (— z € 5))
: U e x eq y = Boolean (z = y))
: U e x noteq y = Boolean (— x = y))
: U e x less y = Boolean (z < y))
: U e x less_eq y = Boolean (x
x
T

v))
v))
>

<
: U e z greater y = Boolean (z >
: U e x greater_eq y = Boolean (x

<
8
e e

Y))

cn_relational_clausesl
F(Vz,y:Ue x real_less y = Boolean (x <p y))

NNz, y:U

e x real_less_eq y = Boolean (z <p y))
NNz, y:U

e x real_greater y = Boolean (x >pg y))
NNz, y:U

e x real_greater_eq y = Boolean (z >g vy))
cn_integer_to_real_thm
FY x:Z e integer_to_real x = real x
cn_boolean_clausesl
t (v 2 : BOOLEAN
e not © = Boolean (- x = Boolean true))
A (Y z,y: BOOLEAN
e x and y
= Boolean
(z = Boolean true N y = Boolean true))
A (Y z,y: BOOLEAN
ez ory
= Boolean
(x = Boolean true V y = Boolean true))
A (Y z,y: BOOLEAN
o zoT Y
= Boolean
(= & = Boolean true < y = Boolean true))
cn_boolean_clauses2
(Y z: BOOLEAN; p : U
e x and Boolean p
= Boolean (x = Boolean true A p))
A (Y z: BOOLEAN; p : U

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 75

e Boolean p and x
= Boolean (p N x = Boolean true))
AN (Y z: BOOLEAN; p : U
e x or Boolean p
= Boolean (z = Boolean true V p))
A (Y z: BOOLEAN; p : U
e Boolean p or x
= Boolean (p V x = Boolean true))
A (V z: BOOLEAN; p: U
e x zor Boolean p
= Boolean (- = = Boolean true < p))
A (Y z: BOOLEAN; p : U
e Boolean p xor x
= Boolean (- p < x = Boolean true))
cn_intdiv_0_thm
FYj:Z
| -
j=20
e O intdivy=0AN0remj=0AN0 intmod j =10
cn_intdiv_thm
FYi, 4, k:7Z
| =
j=20
o ¢ intdiv j =k
S (Im:Z
ei=Fkxj+m
A abs m < abs j
ANO<iNO<mVi<0OANm<DO0))
cn_rem_thm FYi, g, k:Z
| -
j=20
eiremj =k
S (3d:Z
ei=dxj+k
A abs k < abs j
ANO<iNO<EkEVi<ONEk<ZLD0)
cn_intmod_thm
FYi, 4, k:7Z
| -
j=20
e i intmod j = k
S (3d:Z
e, =d=xj+k
A abs k < abs j
ANO<FiNO<EkEVi<ONk<D0)
z_succ”_j_thm
FYz2:U;y:U
e succ ¥ gy
={a:0U;b:0
(I <zA0<aV-0<zAN0—-—z<aVz=20)
A (a + z,b) € y}

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

76 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

REFERENCES

[1] John Barnes. High Integrity Ada — The Spark Approach. Addison-Wesley, 1997.
[2] Donald E. Knuth. Literate Programming. The Computer Journal, 27(2):97-111, 1984.
[3] C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[4] ANSI/MIL-STD-1815A-1983. The Annotated Ada Reference Manual. Karl A. Nyberg, Ada
Joint Program Office, 1983.

[5] DRA/CIS/CSE3/TR/94/27. Specification of the compliance notation for SPARK and Z. (3
Volumes). C.M. O’Halloran, C.T. Sennett, and A. Smith, Defence Research Agency, Malvern.

[6] DRA/CIS(SE2)/PROJ/SWI/TR/1/1.1. A commentary on the specification of the compliance
notation for SPARK and Z. C.M. O’Halloran, C.T. Sennett, and A. Smith, Defence Research
Agency, Malvern, 1st November 1995.

[7] DS/FMU/IED/USR004. ProofPower Tutorial Manual. Lemma 1 Ltd.,

http://www.lemma-one.com.

[8] DS/FMU/IED/USR005. ProofPower Description Manual. Lemma 1 Ltd.,
http://www.lemma-one.com.

[9] DS/FMU/IED/USRO010. ProofPower Evaluator’s Guide. Lemma 1 Ltd.,

http://www.lemma-one. com.
[10] DS/FMU/IED/USRO11. ProofPower Z Tutorial. Lemma 1 Ltd., http://www.lemma-one.com.
[11] ISO/IEC 8652:1983. Ada Reference Manual. International Standards Organisation, 1983.
[12] ISO/IEC 8652:1995. Ada Reference Manual. International Standards Organisation, 1995.

[13] ISS/HAT/DAZ/USR502. Compliance Tool — Installation and Operation. Lemma 1 Ltd.,
http://www.lemma-one.com.

[14] ISS/HAT/DAZ/USR503. Compliance Tool — Proving VCs. Lemma 1 Ltd.,

http://www.lemma-one. com.

[15] ISS/HAT/DAZ/USR504. Compliance Notation — Language Description. Lemma 1 Ltd.,
http://www.lemma-one.com.

[16] LEMMA1/HOL/USR029. ProofPower HOL Reference Manual. Lemma 1 Ltd.,
rda@lemma-one.com.

[17] Motif 1.2 User’s Guide. Sun Microsystems, Inc.

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

78 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

INDEX

TOnT o 48
fem_reals ... 49
P 48
(array_mot _)[X]... ..o o i 57
(char_lit Z) ..o o 60
(mod_ not) 58
(MOE Z) 57
(stmng 2 60
(VRANY). 60
(VRASSIGN _) .o 60
(VRCaseBranch _) ..., 61
(VRCaseOthers _) 61
(VREndCase -)ooiiiiiiiii i 61
(VRERAIF) oo 61
(VREndSemi _) i ... 61
(VREzitVia _) o i i i i i 61
(VRForEzitToSide). ..., 61
(VRForToSide _)oouiiiiiiiiii 61
(VREorVia _) ..o 61
(VRIfEIse _) i 61
(VRIfThen _) ... i 61
(VRLogConToSide _).............cciiiiii... 62
(VRLoopUndecToSide)couiii... 61
(VRLoopUndecVia _).........cooiiiiiiiin... 61
(VRNGL) oo 60
(VRProcCallEnd) 61
(VRProcCall _)....... 61
(VRRefinementBegin _)ccuiuii... 62
(VRSemi _) i 61
(VRSpecToSide _) i ... 60
(VRSpecVia _) ... i i i 60
(VRWhileToSide _) 61
(VRWhileVia _) ... 61
(VRthleWPToSzde) 61
(R) e 58
(- and Then) oo 57
(Cand _) oo 57
(Carray-and)[X].. .o i 57
(L array-greater_eq _) o i i 58
(L oarray_greater). ... 58
(Coarray-less_eq _) i i 58
(Coarray-less _)...... .. i i i 58
(- array-or)[X] .o 57
(- array-zor)[X] ... 57
(Coeq)Xo 57
(Cogreater_eq _). ... 57
(Cogreater) ... 57
(Coantdiv) oo 58
(Cantmod _) ... 58

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

(CleSS_€q =) o 57
(LSS 2) e 57
(Cmem)[X] oo 57
(Cmod_and _) ... 58
(Cmod_or _) ... o 58
(Cmod_zor _) . ..o 58
(Cmoteq)[X] oo 57
(- motmem _)[X] ... 57
(Coor_else) oo 57
(COr L) 57
(- real_greater_eq _) 58
(- real_greater _) oo 58
(Coreal_less_eq _) ... i i 58
(Coreal_less _) oo 58
(Corem) o 58
(C@OT) 57
(C&p)X o 60
(- &1 X 60
(C &g X o 60
all, cen-make_script_support oo 56
array-agg2(gl, g2, gl ... 62
ATTAY_GGGL « « o v vt e et e 71
array-agg3[gl, g2, 93, gl e 62
ATTAY_-AGGS - - o oot 71
array_agg4(gl, 92, g3, g4, gl - 62
ATTQY-QGGL + v o e e e et e e e e et 72
array-agg5(gl, 92, 93, 94, 95, G| -« ... 62
ATTQY_QGGD « o oo oo 72
array_agg-def 45
ArraY-Mot _ ... 63
BOOLEANvFIRST ... 57
BOOLEANvFIRST ... i 72
BOOLEANuLAST ... 57
BOOLEANvLAST ... 72
BOOLEANvPOS 57
BOOLEANuPOS i 72
BOOLEANuPREDc..oiiiiiiiii.. 57
BOOLEANvPREDo .. 72
BOOLEANvSUCC 57
BOOLEANvSUCC ... 72
BOOLEANvVAL i, 57
BOOLEANvVAL ... i 72
BOOLEAN ... i 57
Boolean 60
Boolean 68
BOOLEAN ... 72
browse_ves 42
CHARACTERvFIRST ... i 60
CHARACTERvFIRST ..., 73

80 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE
CHARACTERvLAST i .. 60 cn-mod_and_conv 48
CHARACTERvLAST i, 67 cn_mod_not_conv....... 48
CHARACTERvPOS, 60 CN_MOd_OT_COMU . ..o v it 48
CHARACTERvPOS T3 CN_MOA_TOT_CONU .. .o 48
CHARACTERvPREDcccuuu... 60 cn_no_domain_conds 44
CHARACTERvPREDcccouu... 73 cn_relational_clausesl 46
CHARACTERvSUCC, 60 cn_relational_clausesl 74
CHARACTERvSUCC, 73 cn_relational_clauses 46
CHARACTERvVAL......., 60 cn_relational_clauses 74
CHARACTERvVAL 0. .. T3 CH_TEM_CONU oottt ettt 47
CHARACTER 60 cn_rem_thm.........c. i 46
CHARACTER i, T3 cen_rem_thm. i 75
char_lit 67 cn_script_support_thms........... 54
enl_ext. ... 49 cn_show_typing_context 42
CNL 49 cen_simplify_canon o o i 53
CONTGCEICS « oo ov e 49 cn_spark_annotation_char 44
CNTheoryProofSupport 51 cn_spark_syntax_warnings 44
CNToolkitExtensionsc..oouuinennon.. 46 cn_spec_rule ... 55
en_all_domain_conds 44 cn_standard_domain_conds 44
cn_and_then_or_else_clauses 46 en_Star_star_conuv 47
cn_and_then_or_else_clauses T4 cn_stop_on_exceptionsc.ooeuen... 43
cn_automatic_line_splitting 43 cn_syntax_check_only, 43
cn_boolean_cases_thm 46 cn_tab_width o 43
cn_boolean_cases_thm 73 cn_use_let_im_ves. ... i i 42
cn_boolean_clausesl 46 CN_VC_SIMP_LAC . o v vt 50
en_boolean_clausesl T4 cen_€_type_tac i 51
cn_boolean_clauses2 46 cn_—_true_eq_false_thm 46
cn_boolean_clauses2 74 cn_—_true_eq_false_thm 73
cn_boolean_clauses A6 N e 49
cn_boolean_clauses 73 ComplianceTool 39
cn_boolean_pos_thm 46 current_pc_z_€_met 50
en_boolean_pos_thm 73 delete_deferred_subprogram 40
cn_boolean_pred_thm 46 delete_exception_log, 39
cn_boolean_pred_thm 73 delete_script ... 40
cn_boolean_succ_thm 46 dest_char ... 60
cn_boolean_succ_thm T3 dest_char 67
cn_boolean_thm 46 dest_cn_intdiv 47
en_boolean_thm 73 dest_en_intmod 47
cn_boolean_val_thm 46 dest_Cn_Temouueiiinini 47
cn_boolean_val_thm 73 dest_cn_star_star 47
cn_boolean_€_boolean_thm 46 EVAL_REPORTo, 41
cn_boolean_€_boolean_thm T4 FALSE 57
en_case_of _ada_keywords 42 FALSE ... 72
cn_compactify_termso 43 FLOATuDIGITSo 59
CT_ETE vt 49 FLOATuDIGITSo 67
cn_tgnore_spark_annotations 44 FLOATvFIRST 59
en_intdiv_0_thm i, 46 FLOATUFIRST 67
en_tntdiv_0_thm 75 FLOATULAST 59
CN_INEAIV_CONU + oottt 47 FLOATuvLAST 67
cnointdiv_thm ... 46 FLOAT i 59
en_intdiv_thm 75 FLOAT i 67
en_integer_to_real_thm 46 fun 0 1Tightassoc i i 62
en_integer_to_real_thm T4 fun 10 rightassoc 62
CN_INEMOA_CONU « ..o vt 47 fun 20 rightassoc i 62
cn_intmod_thm 46 fun 30 rightassoc 63
cn_intmod_thm o 75 fun 40 rightassoc 63
en_left_marging ... oo 43 fun 50 rightassoc i 63
cn_make_script_support 56 get_eval_report 41

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 81
get_pc_z_€_rules ... 50 NATURALuvPOS 58
get_script_theories 41 NATURALvPOS0 i 72
Informal_Functionc........ 60 NATURALvPRED cccuiiin... 58
Informal_Function 73 NATURALvPRED, 72
INTEGERvFIRST 58 NATURALvSUCC 58
INTEGERvFIRST 66 NATURALvSUCC 0., 72
INTEGERvLAST 58 NATURALvVAL........o, 58
INTEGERvLAST 66 NATURALvVAL........ ... oo, 73
INTEGERvPOS 58 NATURAL. ..., 58
INTEGERvPOS i 66 NATURAL.o, 72
INTEGERvPRED i, 58 mew_continuation_scriptl 40
INTEGERvVPRED 66 new._continuation_script 40
INTEGERvSUCC ... 58 mew_SCriptl 40
INTEGERvSUCCo, 66 new_SCript 40
INTEGERvVAL B8 MOt o 63
INTEGERvVAL 66 OPEM_SCOPE . .o vt 40
integer_to_real o 58 output-ada_program 41
integer_to_real o 65 output_eval_reportl 41
INTEGER e 58 output_eval_report 41
INTEGER i 66 output_exception_log, 39
IS_Cn_inbdiv . .o 47 output_hypertext_edit_script 42
IS_CN_intmod . . oo 47 output_z_document 41
TSCCNTEML v vttt 47 pe_z_€_rules_of _thms ... o i 50
IS_Cn_Star_star i 47 POSITIVEvFIRST ... 58
list_cn_make_script_support................... 56 POSITIVEvFIRST 73
list_cn_script_support_thms 54 POSITIVEULAST 58
list_en_spec_rule o 55 POSITIVEVLAST 73
LONG_FLOATvDIGITS 60 POSITIVEvPOS 59
LONG_FLOATvDIGITS 67 POSITIVEvPOS 73
LONG_FLOATvFIRST ..., 60 POSITIVEVPRED0...cciviiiiaon.. 59
LONG_FLOATvFIRST 67 POSITIVEVPRED0...0.ccciiioo... 73
LONG_FLOATvLAST 60 POSITIVEDSUCC ..., 59
LONG_FLOATvLAST 67 POSITIVEDSUCCo 73
LONG_FLOAT 60 POSITIVEOVAL ..., 59
LONG_FLOATo, 67 POSITIVEOVAL ..., 73
LONG_INTEGERvFIRST 59 POSITIVE i 58
LONG_INTEGERvFIRST 66 POSITIVE 73
LONG_INTEGERvLAST 59 print_ada_programo 41
LONG_INTEGERvLAST 66 print_eval_report i, 41
LONG_INTEGERvPOS 59 print_exception_log 39
LONG_INTEGERvPOS 66 print_z_document 41
LONG_INTEGERvPRED 59 real_to_integer i 58
LONG_INTEGERvPRED 66 real_to_integer 65
LONG_INTEGERvSUCC 59 set-pc_z_€_rules........ .. o 50
LONG_INTEGERvSUCC 66 SHORT_FLOATvDIGITS 60
LONG_INTEGERvVAL 59 SHORT_FLOATvDIGITS 67
LONG_INTEGERvVAL 66 SHORT_FLOATwFIRST 60
LONG_INTEGER, 59 SHORT_FLOATwFIRST 67
LONG_INTEGERcco .. 66 SHORT_FLOATvLAST 60
mk_cn_intdiv. ... Lo 47 SHORT_FLOATvLAST 67
mk_cn_intmod 47 SHORT_FLOAT i 60
ME_CT_TEM © vt e e 47 SHORT_FLOAT 67
mk_cn_star_star 47 SHORT_INTEGERvFIRST 59
MOA_MOE _ oot 66 SHORT_INTEGERvFIRST 66
NATURALvFIRST 58 SHORT_INTEGERvLAST 59
NATURALvFIRST 72 SHORT_INTEGERvLAST 66
NATURALvVLAST 58 SHORT_INTEGERvPOS 59
NATURALvVLAST ... o 72 SHORT_INTEGERvPOS 66

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

82 Chapter 7. ProofPower-ML COMPLIANCE TOOL REFERENCE
SHORT_INTEGERvPRED 59 VRLogConToSide - 69
SHORT_INTEGERvPRED 66 VRLogConTypeMemlIntro 62
SHORT_INTEGERvSUCC 59 VRLogConTypeMemlIntro 69
SHORT_INTEGERvSUCC 66 VRLoopUndecPrelntro........................ 61
SHORT_INTEGERvVAL 59 VRLoopUndecPrelntro........................ 68
SHORT_INTEGERvVAL 66 VRLoopUndecPreToSide 61
SHORT_INTEGER 59 VRLoopUndecPreToSide 68
SHORT_INTEGER 66 VRLoopUndecToSide _ 68
Slide[X, Y] oo 60 VRLoopUndecVia _cccovuiiiinaon.. 68
slide ..o 68 VRNull _ .. 68
string Uit _ ... 67 VRProcCallEnd _.......... 69
STRING e 60 VRProcCallRngIntro 61
STRING . ..o e 67 VRProcCallRngIntro c....... 69
TRUE . ..o e 57 VRProcCall _ 0. .. 69
TRUE e 72 VRRefinementBegin _cccuiueioon.. 69
ungversal_discretevFIRST 59 VRRefinementIntro 62
universal_discretevFIRST 67 VRRefinementIntro 69
universal_discretevLAST 59 VRReturnIntro i, 61
universal_discretevLAST 67 VRReturnInlro, 69
universal_discretevPOS 59 VRSemi _ ..o 68
universal_discretevPOS 67 VRSpecPrelntro 61
universal_discretevPRED 59 VRSpecPrelntro, 68
universal_discretevPRED 67 VRSpecToSide _ 68
universal_discretevSUCC 59 VRSpecVia _ ... 68
universal_discretevSUCC 67 VRWhilePrelntro oo, 61
undversal_discreteoVAL 59 VRWhilePrelntro 68
universal_discreteoVAL 67 VRWhileToSide _ 68
untversal_discrete o i 59 VRWhileVia _ 68
untversal_discrete o i 67 VRWhileWPToSide _..............cccouio... 68
VO_Routeo, 60 Z_CHAR i 60
VO_Route, 73 Z_CHAR ... i 73
VRANY _ 68 z_norm_sig_h_schema_conv 52
VRASSIGN — oot 68 Z_STRINGcoiiii .. 60
VRCaseBranch _ 68 Z_STRINGc.coioiiiiiiiin.. 73
VRCaseOthers _iuiiiiiiiinina... 68 z_succ™_s_thm........... 46
VREIsfFalse 60 z_succ™_ g thm..... 75
VREIsfFalse B8 L KK e 65
VREIsfInd 0 .. 60 _ and_then _ 63
VREIsfInd i, T3 —and — oo 63
VREISfTruecovoi i 60 _ array-and - ... 63
VREISfTrueccovoi i 68 _ array_greater_eq - 64
VREnRdCase _ ..., 68 _ array_greater _ 64
VRERAIf _. .. 68 _ array_less_eq — 64
VREndSemi _ 68 _ array-less _ ... 64
VREzitTilllntro oo, 61 _ array-or - ... 63
VREzitTilllntro oo, 68 _ array-xor - ... 63
VREZitVia _ ... i 69 o eq 63
VRForExitToSide _ 68 _ greater_eq - i 64
VRForPreIntro, 61 _ greater _ 64
VRForPreIntro 68 _ intdiv _ ... 65
VRForPreToSide 61 _dntmod _ ... 65
VRForPreToSide 68 _ leSS_eq _ . 64
VRForToSide _...... ... i, 068 eSS 64
VRForVia _.......c i 68 _ mMem _ . 63
VRIfEISEe _ ..o 68 _mod_and _ 65
VRIfThen _ ... 68 _ mod_or _ ... 65
VRLogConPrelntro. c..... 62 _ mod_zor _ ... 65
VRLogConPrelntro. 69 _noteq - ... 63

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

7.3. THE Z THEORY cn 83

CNOEMEML vt 63
COT_€lSe 63
Ol e 63
_real_greater_eq _ ... 64
CTeal_greater _ 64
_real_less_eq .. 64
_real_less ... 64
LML e e 65
0T e e 63
&g 67
L& 67
L& 67

© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Compliance Tool — User GuideUSR501

