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Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document, one of several making up the user documentation for the ProofPower system, is the
reference manual for the system.

0.2 Readership

This document is intended to be consulted by users already acquainted with the basic principles
behind ProofPower who need detailed information on the behaviour of specific facilities provided by
the system. It is not a tutorial for learning the basic use of the system. A ‘keyword in context’ index
is supplied, which is useful for identifying the full range of facilities of a particular kind, provided
that the reader is familiar with the naming conventions adopted in the development of ProofPower.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower
are:

1. ProofPower Tutorial [4], tutorial covering the basic ProofPower system.

2. ProofPower Z Tutorial [6], tutorial covering ProofPower Z support option.

3. ProofPower Installation and Operation [5];

4. ProofPower Document Preparation [3].

0.4 Assumptions

It is assumed that the reader has some prior acqaintance with ProofPower either by attending a
course on ProofPower or by reading the tutorial.

0.5 Acknowledgements

ICL gratefully acknowledges its debt to the many researchers (both academic and industrial) who
have provided intellectual capital on which ICL has drawn in the development of ProofPower.
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6 Chapter 0. ABOUT THIS PUBLICATION

We are particularly indebted to Mike Gordon of The University of Cambridge, for his leading role in
some of the research on which the development of ProofPower has built, and for his positive attitude
towards industrial exploitation of his work.

The ProofPower system is a proof tool for Higher Order Logic which builds upon ideas arising from
research carried out at the Universities of Cambridge and Edinburgh, and elsewhere. In particular
the logic supported by the system is (at an abstract level) identical to that implemented in the
Cambridge HOL system [1], and the paradigm adopted for implementation of proof support for the
language follows that adopted by Cambridge HOL, originating with the LCF system developed at
Edinburgh [2]. The functional language ‘Standard ML’ used both for the implementation and as
an interactive metalanguage for proof development, originates in work at Edinburgh, and has been
developed to its present state by an international group of academic and industrial researchers. The
implementation of Standard ML on which ProofPower is based was itself originally implemented by
David Matthews at the University of Cambridge, and is now commercially marketed by Abstract
Hardware Limited.

The ProofPower system also supports specification and proof in the Z language, developed at the
University of Oxford. We are therefore also indebted to the research at Oxford (and elsewhere) which
has contributed to the development of the Z language.
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Chapter 1 7

UNIX INTERFACES

SML

hol list [−c] [−d database[#theoryname]] [−i scripts] [−v ] theory ...
hol list [−d database[#theoryname]] [−i scripts] [−v ]
hol list [−c] [−d database] [−i scripts] [−v ] −a

Description hol list is used to obtain selected information from a ProofPower-HOL database.
It functions in the same manner as zed list except that it uses defaults appropriate to the
ProofPower-HOL, and a HOL theory lister.

In the first form of use, where a list of one or more theory names is specified, hol list uses
ProofPower-HOL to generate on its standard output listings (in the HOL language using the
function output theory) of the indicated theories in a form suitable for processing by doctex.
Any cache theory (i.e. the theory name is in the list returned by get cache theories) will be
printed with most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, hol list lists the names of all the theories in
the database whose language is “HOL”, in a sorted order, one per line on its standard output
channel. The third form, with -a, is like the first but causes all of the theories in the database
whose language is “HOL” to be listed in a sorted order.

In any of the three forms the program will start a session as if by command hol with the supplied
-d and -i arguments (if any), and it is in this environment that the theory listing is done.
The output of this startup will be suppressed, including any indication of failure to load the
initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors hol list prints a message and exits (with the value 1) if the database or any of the
theories does not exist. The log of the failure is sent to the standard output, the message to the
error output.

See Also pp list, zed list, pp, pp make database

SML

hol [−d database[#theoryname]] [−i files] [−f files [−n|−s] [−v ]] [−− ml flags]
zed [−d database[#theoryname]] [−i files] [−f files [−n|−s] [−v ]] [−− ml flags]

Description hol and zed are identical to pp. q.v., except that they use default databases hol
and zed respectively, and hence -d database is optional.
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8 Chapter 1. UNIX INTERFACES

SML

pp list [−c] −d database[#theory ] [−i scripts] [−l lang ] [−v ] theory ...
pp list −d database[#theory ] [−i scripts] [−l lang1 [−l lang2 ...]] [−v ]
pp list [−c] −d database [−i scripts] [−l lang1 [−l lang2 ...]] [−v ] −a

Description pp list is used to obtain selected information from a ProofPower database.

In the first form of use, where a list of one or more theory names is specified, pp list uses
ProofPower to generate on its standard output listings of the indicated theories held in the
database given by the -d option in a form suitable for processing by doctex.

If there is no -l option then the theory lister used will depend on the language of the theory. If
the language is “HOL” then output theory is used. Otherwise it will attempt to use a function
named:

<language in lower case> output theory

and only if that doesn’t exist will it use output theory . All but the first language will be ignored.

If the -l lang option is given then it will take the language code of all theories given to be lang,
and then work as above.

If no -d option is given then the function fails.

Any cache theory (i.e. the theory name is in the list returned by get cache theories) will be
printed with most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, pp list lists the names of all the theories in
the database one per line on its standard output channel in a sorted order. If any -l options are
given then only theories whose language is one of those listed will be noted.

The third form, with -a, is like the first but causes all of the theories in the database to be listed
in a sorted order. If any -l options are given then only theories whose language is one of those
given will be listed, and they will be individually printed according to their own language.

In any of the three forms, the program will start a session as if by command pp with the supplied
-d and -i arguments (if any), and it is in this environment that the theory listing is done.
The output of this startup will be suppressed, including any indication of failure to load the
initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors pp list prints a message and exits (with the value 1) if the database or any of the
theories does not exist. The log of the failure is sent to the standard output, the message to the
error output.

See Also zed list, hol list, pp, pp make database
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SML

pp make database \
[−c][−v ] [−f ] [−p parentdatabase[#parenttheory ]] newdatabase[#cachetheory ]

Description pp make database makes a new child database to contain ProofPower theories.
The new database initially contains a single theory, called the cache theory for the database,
with name given by cachetheory (which is used by certain system functions to cache various
definitions and theorems and which is used as the initial current theory when the database is used
by the pp, hol and zed commands). If cachetheory is omitted then the database name, prefixed
by “cache’ ” is taken to be the same as the name of the new cache theory.

The -p option may be used to indicate the database which is to be the parent of the new database
and to indicate which theory in it is to be the parent of the theory cachetheory. The parent
theory is taken to be the cache theory for the parent database if it is not given explicitly.

For portability, the parent database name should normally be given without any architecture- or
compiler-specific prefixes or suffixes. Any such prefixes or suffixes will be added automatically
by pp make database, If the resulting file name is an absolute path name (i.e., starts with a ‘/’
character), then that is used as the parent database file name. If the resulting file name is not
an absolute path name, pp make database looks for the parent database file first in the current
directory and then in the user’s search path (given in the environment variable $PATH).

If the -p option is not supplied then the database hol supplied with the system is used as the
parent database, and the parent theory is the theory hol. This is an appropriate default for a
ProofPower-HOL child database. An appropriate value for ProofPower-Z might be the database
zed supplied with the system.

In interactive use, pp make database will normally ask for confirmation before overwriting the
database if it already exists. The -f (force) option may be used to suppress the request for
confirmation before overwriting an existing database.

The -v option produces more output which may be useful for diagnostic purposes.

Under Poly/ML, databases are subject to an adjustable size limit. By default, pp make database
will adjust the size limit of the parent database to the minimum possible and adjust the size limit
of the child database to the maximum allowed. The -c option suppresses these adjustments.

The supplied child database name will be used to create the child database file name which is
derived using an algorithm specific to the Standard ML compiler being used.

Errors pp make database prints a message and exits (with value 1) if the parent database or
theory does not exist, if the new database cannot be created or if the name of the cache theory
clashes with the name of a theory in the parent database.

Some systems impose a limit on the depth of nesting of the database hierarchy and the command
will print an error message and exit (with value 1) if this limit would be exceeded.

The environment variable PPCOMPILER may be used to select between the Poly/ML or SML/NJ
compiler if ProofPower has been installed for both compilers. If it is set, the value of this variable
must be either “POLYML” or “SMLNJ”.

See Also hol, zed, pp.
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SML

pp −d database[#theoryname] [−i files] [−f files [−n|−s] [−v ]] [−− ml flags]

Description pp runs ProofPower on the indicated database. If no -d database is provided to
pp, the function fails. For portability, the database name should be given without any architecture-
or compiler-specific prefixes or suffixes. Any such prefixes or suffixes will be added automatically
by pp, If the resulting file name is an absolute path name (i.e., starts with a ‘/’ character),
then that is used as the database file name. If the resulting file name is not an absolute path
name, pp searches for the database file using the search path given in the environment vari-
able $PPDATABASEPATH, if set. If $PPDATABASEPATH is not set, pp searches for the database in
the current directory, then in the subdirectory db of the user’s home directory and then in the
subdirectory db of the ProofPower installation directory.

If specified, theoryname gives the name of a theory to be made the current theory at the start of
the session. If theoryname is not specified, then current theory will be set to the theory current
when the database was last saved by save and quit or, if just created, to the cache theory for
the database. The files identified by any [-i files] options are then executed in turn. files is
a comma-separated list of files.

If -f files is provided, then the files specified in the list files are loaded in batch mode. Once
loading is complete the database is saved and the batch session is terminated. The saving of the
database can be suppress by providing the -n flag. The default action if any of the files fails to
load is for the session to terminate at that point and the database is not saved. By providing the
-s flag, the user can indicate to the system to save the database in batch mode upon failure. The
-n and -s flags are mutually exclusive. If they are both provided, a warning message is issued
and the -s flag is ignored.

By default, the production of subgoal package output in a batch load is as determined by the
value of the flag subgoal package quiet stored in the database. If the -v flag is specified to pp, the
subgoal package output is produced whereas if the -q flag is specified, it is suppressed.

If -f files is not provided, then the system then issues a prompt for user input.

Flags which appear after -- are passed directly onto the Standard ML system for processing.
This mechanism can be used to tailor the heap size under SML/NJ: e.g., pp -d hol -- -h 32000.
The environment variable PPCOMPILER may be used to select between the Poly/ML or SML/NJ
compiler if ProofPower has been installed for both compilers. If it is set, the value of this variable
must be either “POLYML” or “SMLNJ”.

The environment variable PPLINELENGTH, if set, determines the initial value of the string control
line length. This gives the line length used by various listing facilities, e.g., print theory and
output theory. In interactive use, the xpp interface will set PPLINELENGTH automatically if it has
not been set explicitly by the user.

Errors pp prints a message and exits (with status 1) if the database cannot be accessed or if
the theory name specified as part of the -d argument does not exist in the database.

See Also pp make database, pp list, pp read, hol, zed
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SML

xpp [Standard X Toolkit options] [xpp options]

Description The program xpp provides a convenient way to prepare, check and execute Proof-
Power scripts under the X Windows System. xpp combines a general purpose text editor with a
command interface for operating the ProofPower specification and proof facilities. Consult the
xpp help menu or the xpp User Guide for information on how to use it.

‘Standard X toolkit options’ refers to common options which are automatically supported by
most X Windows applications. An example is the option ‘-display’, which may be used to specify
the X server on which you wish xpp output to be displayed.

The xpp option -f file may be used to specify a file to be loaded into the editor when xpp starts.
If you omit this option, xpp will start off editing an empty file.

If you specify the xpp option -d database, xpp will run an interactive command session working
on the specified ProofPower database. If you omit this option, xpp will just run as an editor.

The command line options mentioned above are the most common ones. The program has a
number of other options you may wish to use. Consult the xpp User Guide for further details.

See Also USR031: ProofPower - Xpp User Guide

SML

zed list [−c] [−d database[#theory ]] [−i scripts] [−v ] theory ...
zed list [−d database[#theory ]] [−i scripts] [−v ]
zed list [−c] [−d database] [−i scripts] [−v ] −a

Description zed list is used to obtain selected information from a ProofPower-Z database.
It functions in the same manner as hol list except that it uses defaults appropriate to the
ProofPower-Z, and a Z theory lister.

In the first form of use, where a list of one or more theory names is specified, zed list uses
ProofPower-Z to generate on its standard output listings (in the Z language using the function
z output theory) of the indicated theories, in a form suitable for processing by doctex. Any cache
theory (i.e. the theory name is in the list returned by get cache theories) will be printed with
most of the theory detail elided, unless the -c option is given.

In the second form, with no list of theory names, zed list lists the names of all the theories
whose language is Z in the database one per line on its standard output channel, in a sorted
order.

The third form, with -a, is like the first but causes all of the theories in the database whose
language is “Z” to be listed in a sorted order.

In any of the three forms the program will start a session as if by command zed with the supplied
-d and -i arguments (if any), and it is in this environment that the theory listing is done.
The output of this startup will be suppressed, including any indication of failure to load the
initialisation scripts.

Each theory is, if possible, made current, or at least in scope, when it is listed.

In any form -v indicates the log of the preprocessing should also be output.

Errors zed list prints a message and exits (with the value 1) if the database or any of the
theories does not exist. The log of the failure is sent to the standard output, the message to the
error output.

See Also pp list, hol list, zed, pp make database
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SML

conv ascii [−r ] [−K ] [−k keyword file name] <filename> ...
conv extended [−r ] [−K ] [−k keyword file name] <filename> ...

Description conv ascii converts ProofPower documents using the extended character set into
ASCII keyword format. conv extended performs the opposite conversion.

The filename arguments may be just the base-name, perhaps with a directory name prefix, or
may include the .doc suffix. By default, the result of the conversion is checked by converting in
the opposite direction and comparing with the input. If the check is successful, the .doc file is
then replaced by the result of the conversion. If the conversion appears to be unsuccessful the
output of the conversion is placed in a file with suffix .asc or .ext in the current directory, and
the .doc file is left unchanged.

If −r is specified no check is made and the output of the conversion is placed in a file with suffix
.asc or .ext.

Note that the check will always fail on a file containing a mixture of extended characters and
ASCII keywords. Use −r and then, if all is well, overwrite the .doc file with the .asc or .ext
file using mv(1 ) or cp(1 ) to convert a such file into a homogeneous one.

The check will also fail if the file is already in the desired format, in which case there is no need
to run the conversion program.

The −K and −k options indicate the keyword files to be used as for doctex and docsml (and are
only needed if fonts other than those supplied with ProofPower are being used.)

See Also docpr

SML

docdvi [−v ] [−f view file name] [−K ] [−k keyword file name]
[−e edit file name] [−p TeX program name] [− N ] <filename> ...

Description Shell script that combines the actions of doctex, bibtex (which is part of the
basic TEX distribution) and texdvi with the intention of fully processing a simple document from
its .doc form to a printable .dvi file.

The option −N controls how many times LATEX should be invoked, the default is three (i.e., ‘−3 ’),
the values of N may be in the range one to four inclusive. The other options are as for doctex
and texdvi.

LATEX and bibtex are run so that if they detect errors and prompt for input they will read an
end of file and thus stop immediately.

In some cases an extra run of LATEX may be required. In these cases LATEX will output the
message: ‘LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.’

See Also doctex, texdvi

SML

docpr [−n] [−p] [−s] [−v ] [−w width] <filename> ...

Description Shell script that prints out files that may contain extended characters in a
verbatim-like manner. Lines may be numbered in the output by using the −n option. Lines
are folded at at 80 characters wide, or at the width given by the −w width option. The output
may be viewed on screen with the −s option, the default is to print the output. By default all
intermediate files are deleted, with the −p option the .dvi file will be preserved. With the −v
option details of the files processed are listed on the standard output.

See Also doctex, texdvi
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SML

doctex [−v ] [−f view file name] [−e edit script ]
[−K ] [−k keyword file name] <filename> ...

docsml [−v ] [−f view file name] [−K ] [−k keyword file name] <filename> ...

Description Shell scripts that sieve each of their filename arguments to produce various output
files. These arguments may be given just as the base-name, perhaps with a directory name prefix,
or may include the .doc suffix. When the −v option is set details of the files read and written are
shown on the standard output. The default steering files are named sieveview and sievekeyword
and looked for first in the current directory, second on the callers execution path (from the UNIX
environment variable $PATH). The default viewfile may be changed with the −f option. The
default keyword file may be suppressed with the −K option. Additional keyword files may be
given with the −k option which may be used several times. The −e option identifies the name of
a script of ex commands which are used to edit the .tex file.

The output file from doctex has suffix .tex and is intended for processing with texdvi. The
output file from docsml has suffix .sml and is typically processed by loading it into a ProofPower
database.

See Also texdvi, docdvi

SML

texdvi [−v ] [−b] [−p TeX program name] <filename> ...

Description Shell script that runs LATEX on each of the filename arguments to produce the
corresponding .dvi file. These arguments may be just the base-name, perhaps with a directory
name prefix, or may include the .tex suffix. When the −v option is set details of the .tex
and.dvi files read and written are shown on the standard output. To support indexing this script
ensures that a .sid file exists before LATEX is called; when LATEX completes any .idx file is sorted
to create a.sid file ready for the next time texdvi is used. When initially producing a .dvi file
texdvi will need to be run up to four times so that the derived information such as tables of
contents and inter-page references stabilise.

The LATEX program is latex by default but a different program may be specified with the −p
option.

If the -b option is specified, bibtex is run after running latex.

See Also texdvi, docdvi
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16 Chapter 2. PROGRAMMING UTILITIES

2.1 Error Management

SML

signature BasicError = sig

Description This is the signature of the structure BasicError .

SML

exception Fail of MESSAGE
exception Error of MESSAGE

Description These exception are raised to report error conditions. Fail is for errors which may
be trapped (so that the associated message is suppressed). Error is intended to ensure that the
message will be reported and, by convention, should not be trapped.

Uses Obscure debugging situations.

SML

type MESSAGE

Description This type is used to pass error and other messages around in the system.

Uses Obscure debugging situations.

SML

val area of : exn −> string

Description This returns the name of the function which raised an exception (provided the
exception was raised with fail following the usual conventions). If the exception was not the one
raised by fail then it is raised again.

Uses For use when coding new facilities to add to the system.

SML

val divert : exn −> string −> string −> int −> (unit −> string) list −> ′a
val list divert : exn −> string −> ((string ∗ int ∗ ((unit −> string) list)) list) −> ′a
val elaborate : exn −> int −> string −> int −> (unit −> string) list −> ′a

Description These functions support a style of error handling in which, if an error is reported
during evaluation of an expression, the source of the error may be checked and the error report
modified if needed to give a more meaningful report to the user. Sources of errors are identified by
the string passed as the first argument to the function fail which is used to flag trappable errors.
By convention, this string gives the name of the top level function which has raised the error.

In the call divert X from new new msg inserters, X is the exception which has been raised and
from identifies a possible source for an error report. inserters is a list of functions to be used
to generate insertions for the error message (as with fail q.v.). If an error has been reported by
from, the call will have the same effect as if fail new new msg inserters had been called.

list divert X new triples handles the more general case in which errors from several sources are
expected. X and new are as for divert . triples gives a list of triples giving possible sources of
error and the corresponding new messages and insertion functions.

elaborate is similar to divert but makes it possible to expand on the information provided by the
function that has raised the exception. In the call elaborate X old msg new new msg inserters,
old msg identifies an error message text. If X results from a call of fail (or equivalent) with that
error message text, the effect is as if fail new new msg (inserters ′@inserters) had been called,
with inserters ′ the list of string-valued functions associated with X .

Uses For use when coding new facilities to add to the system.
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2.1. Error Management 17

SML

val fail : string −> int −> (unit −> string) list −> ′a
val error : string −> int −> (unit −> string) list −> ′a

Description These functions report a message of the corresponding class with text determined
by an integer parameter and a list of string valued functions. The string parameter is intended
to give the name of the top level function which has invoked the error message.

The error messages are stored in a database maintained by new error message and the integer
parameter gives the key for the desired entry in the database. The list of string-valued functions
allow the messages to be parameterised. When the error is printed, the functions are evaluated to
produce a list of strings. Substrings of the database entry of the form “?i” where i is a decimal
digit are replaced by the corresponding entries in the list (with “?0” corresponding to the head
of the list). (If there are more than ten entries in the list, entries after the tenth are evaluated
but the result of the evaluation is ignored).

fail is for unrecoverable errors which may, however, be trapped. It causes exception Fail to be
raised.

error is for unrecoverable errors which must be reported to the user. It causes exception Error
to be raised. As for set flag etc.

Uses For use when coding new facilities to add to the system.

SML

val get error message : int −> (string list) −> string

Description This function returns the entry in the error message database associated with the
given integer key. The second parameter gives a list of strings to be inserted into the text of the
message. Substrings of the message text of the form “?i”, where i is a decimal digit, indicate
positions where these insertions are to be made. “?0” identifies the string at the head of the list
etc.
Errors

2002 The error number ?0 does not identify an entry in the error message database

SML

val get error messages : unit −> {id :int , text :string} list
val set error messages : {id :int , text :string} list −> unit

Description get error messages returns the contents of the error message database as a list.

set error messages uses new error message to add any new error messages in a list of such into
the database of error messages. It will issue a message on the standard output (and change
nothing) for any messages that do not match those already present.
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18 Chapter 2. PROGRAMMING UTILITIES

SML

val get message text: MESSAGE −> string

Description This returns a printable form of an error message text. The message text is given
without the header information which is inserted by get message, q.v.

Uses In constructing extensions to the system.

The error message data structure includes functions passed as arguments to fail or error that
are called to generate parts of the message. If any of these functions raises Fail , the exception is
caught and the string returned is a report on the failure.

See Also fail , error , get message

Errors

2004 Failure detected formatting message: ?0
2005 ∗ failure ?0 .?1 reported ∗

SML

val get message: MESSAGE −> string

Description This returns a printable form of an error message value. The message text is
followed by a trailer of the form “<#nnnnn area>”, where #nnnnn is the number of the message
in the error database and area typically gives the name of the function which gave rise to the
error message.

Uses In constructing extensions to the system.

See Also get message text

SML

val new error message : {id :int , text :string} −> unit

Description This function adds a new entry to the database of error messages. Note that
substrings of the message of the form “?i” where i is a decimal digit have special significance (see
fail for details). “??” may be used to insert a single “?” character in a message.

If the id and the text are identical to an existing entry, then new error message has no effect. If
there is an existing entry with the same id but a different text then a message is reported on the
standard output and the existing entry is left unchanged.

Errors

2001 The error number ?0 is already in use for a different message

Uses For use when adding facilities to the system.

SML

val pass on : exn −> string −> string −> ′a

Description pass on exn from to is similar to reraise, q.v., but the function name associated
with the exception is only modified if it is equal to from, in which case it is changed to to.

SML

val pending reset error messages : unit −> unit −> unit

Description This function is intended for use in system initialisation and shutdown. The
binding val p = pending reset error messages(), defines p as a function which will set the internal
state of the BasicError module to the value it had at the time the binding for prcs was made.
This is used to remember the set-up for error messages introduced in a child database.
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SML

val pp′change error message : {id :int , text :string} −> unit

Description This function changes an entry in the database of error messages. If the number
does not identify an existing entry a new entry is made.

Uses ICL Use only.

SML

val pp′error init : unit −> unit

Description This function is used to initialise certain aspects of the error reporting system.
It is called automatically at the start of each session. It is harmless, but unnecessary, to call it
within a session.

SML

val reraise : exn −> string −> ′a

Description This re-raises an exception. If the exception is the exception Fail (as raised by
fail , q.v.) then the function name associated with the exception is changed to the name given by
the second argument.

Uses For use when coding new facilities to add to the system.

2.2 Data Types

SML

signature UtilitySharedTypes = sig

Description Any new types in the Utility structures mentioned in more than one signature will
be declared in this signature.

SML

datatype ′a OPT = Nil | Value of ′a;

Description A type of “optional” values.

Uses A typical use for the datatype ′a OPT is in implementing partial functions for which
raising an exception is not an appropriate action for undefined cases.

See Also force value, is Nil

SML

type ′a S DICT;

Description The type of simple dictionaries: (string ∗ ′a) list .

See Also Signature SimpleDictionary .
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2.3 Lists

SML

signature ListUtilities = sig

Description Holds a variety of utility Standard ML list functions.

SML

val all different : ′′a list −> bool ;

Description all different determines whether a list has any repeated entries.

See Also all distinct

SML

val all distinct : (′a ∗ ′a −> bool) −> ′a list −> bool ;

Description all distinct eq list determines whether list has any repeated entries using eq to
test for equality. Each member, x of the list is tested against all the subsequent members of the
list, with x being the first argument to eq .

See Also all different

SML

val all : ′a list −> (′a −> bool) −> bool ;

Description all list cond is true iff. all elements of list satisfy cond .

SML

val any : ′a list −> (′a −> bool) −> bool ;

Description any list cond is true iff. some element of list satisfies cond .

SML

val app : (′a −> unit) −> ′a list −> unit ;

Description Apply a function to each element of a list in turn for the side-effect.

SML

val combine : ′a list −> ′b list −> (′a ∗ ′b) list ;

Description combine combines a pair of lists into a list of pairs. It is the left inverse of split .

Errors

1007 Cannot combine unequal length lists

See Also split , zip

SML

val contains : ′′a list −> ′′a −> bool ;

Description contains list x searches for a member of list equal to x and returns true iff. it
finds one.

See Also present , mem

SML

val cup : ′′a list ∗ ′′a list −> ′′a list ;

Description An infix binary union operation for lists, with Standard ML equality test. It has
the same result ordering as union(q.v.).

See Also list cup, union
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SML

val diff : ′′a list ∗ ′′a list −> ′′a list ;

Description diff is the set difference operator for lists.

SML

val drop : ′a list ∗ (′a −> bool) −> ′a list ;

Description list drop cond is the list obtained by deleting all members of list for which the
boolean function cond is true.

See Also less

SML

val filter : (′a −> bool) −> ′a list −> ′a list ;

Description filter pred list returns a list that is list , except that elements of the list that don’t
satisfy pred are dropped.

Definition

filter pred [] = []
| filter pred (a :: x ) = (

if pred a
then (a :: filter pred x )
else filter pred x );

SML

val find : ′a list −> (′a −> bool) −> ′a;

Description find list cond searches for the first member of list satisfying cond , and returns
such a member if there is one.
Errors

1004 Element cannot be found in list

SML

val flat : ′a list list −> ′a list ;

Description flat takes a list of lists and returns the result of concatenating them all.

SML

val fold : (′a ∗ ′b −> ′b) −> ′a list −> ′b −> ′b;

Description Fold a list into a single value:

Definition

fold f [x1 , x2 , ...., xk ] b = f (x1 , f (x2 , ... f (xk , b))...)

See Also revfold

SML

val force value : ′a OPT −> ′a;

Description Force an object of type ′a OPT (q.v) into one of type ′a:

Definition

force value (Value x ) = x

Errors

1001 Argument may not be Nil
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SML

val from : ′a list ∗ int −> ′a list ;

Description list from n takes the trailing slice of list . It uses 0-based indexing. If n is 0 or
negative then entire list is returned, and if n indexes past the other end of the list then the empty
list is returned.
Example

[0 ,1 ,2 ,3 ] from 2 = [2 ,3 ]

See Also to

SML

val grab : ′′a list ∗ ′′a −> ′′a list ;

Description list grab what is the list obtained by inserting what at the head of list if it is not
a member of it already, in which case list is returned.

See Also insert

SML

val hd : ′a list −> ′a;
val tl : ′a list −> ′a list ;

Description hd returns first element of a list, tl returns all but the first element of a list.

Definition

hd (a :: x ) = a
tl (a :: x ) = x

Errors

1002 An empty list has no head
1003 An empty list has no tail

SML

val insert : (′a ∗ ′a −> bool) −> ′a list −> ′a −> ′a list ;

Description insert eq list what is the list obtained by inserting what at the head of list if it is
not a member, by equality test eq , of it already, in which case list is returned.

See Also grab

SML

val interval : int −> int −> int list ;

Description interval a b is the list [a, a + 1 , a + 2 . . . , b]. This is taken to be [] if a > b and to
be [a] if a = b.

SML

val is Nil : ′a OPT −> bool

Description Is the argument equal to Nil (q.v).

Definition

is Nil Nil = true
| is Nil = false

SML

val is nil : ′a list −> bool ;

Description is nil tests whether a list is empty([]). It can be used for lists of types which do
not admit equality.
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SML

val lassoc1 : (′′a ∗ ′′a) list −> ′′a −> ′′a;

Description lassoc1 alist arg is x , where (arg , x ) is the first element of alist with arg as its left
item. The function is made total by taking arg as the result if there is no appropriate member of
the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val lassoc2 : (′′a ∗ ′b) list −> (′′a −> ′b) −> ′′a −> ′b;

Description lassoc2 alist f arg is x , where (arg , x ) is the first element of alist with arg as its
left item. The function is made total by returning f arg if there is no appropriate member of the
list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val lassoc3 : (′′a ∗ ′b) list −> ′′a −> ′b;

Description lassoc3 alist arg is x , where (arg , x ) is the first element of alist with arg as its
left item.
Errors

1005 No such value in association list

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val lassoc4 : (′′a ∗ ′b) list −> ′b −> ′′a −> ′b;

Description lassoc4 alist default arg is x , where (arg , x ) is the first element of alist with arg
as its left item. The function is made total by returning default if there is no appropriate member
of the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val lassoc5 : (′′a ∗ ′b) list −> ′′a −> ′b OPT ;

Description lassoc5 alist arg is Value x , where (arg , x ) is the first element of alist with arg
as its left item. The function is made total by returning Nil if there is no appropriate member of
the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val length : ′a list −> int ;

Description length returns the length of a list. Note that the Standard ML function size can
be used to find the length of strings.

SML

val less : ′′a list ∗ ′′a −> ′′a list ;

Description list less what is the list obtained by deleting all members of list which are equal
to what .

See Also drop
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SML

val list cup : ′′a list list −> ′′a list ;

Description A distributed union operation for lists, with Standard ML equality test.

Definition

list cup [list0 , list1 , ..., listn] =
list0 cup (list1 cup ...(listn cup [])...))

See Also cup, list union

SML

val list overwrite : (′′a ∗ ′b) list ∗ (′′a ∗ ′b) list −> (′′a ∗ ′b) list ;

Description alist list overwrite olist overwrites alist with each element of olist , using
overwrite(q.v).

Definition

fun alist list overwrite olist = (
fold (fn (l1 , l2 ) => l2 overwrite l1 ) olist alist

)

See Also overwrite, list roverwrite.

SML

val list roverwrite : (′a ∗ ′′b) list ∗ (′a ∗ ′′b) list −> (′a ∗ ′′b) list ;

Description alist list roverwrite olist overwrites alist with each element of olist , using
roverwrite (q.v.).

Definition

fun alist list roverwrite olist = (
fold (fn (l1 , l2 ) => l2 roverwrite l1 ) olist alist

)

See Also roverwrite, list overwrite.

SML

val list union : (′a ∗ ′a −> bool) −> ′a list list −> ′a list ;

Description A distributed union operation for lists, with parameterised equality test:

Definition

list union eq [list0 , list1 , ..., listn] =
union eq list0 (union eq list1 (...(union eq listn [])...))

See Also union, list cup.

SML

val mapfilter : (′a −> ′b) −> ′a list −> ′b list ;

Description Map a function over a list. If, when evaluating

mapfilter f (x 1 :: . . . x k − 1 :: x k :: x k + 1 :: . . .)

the evaluation of f x k raises a Fail exception, then the result will be

(f x 1 :: . . . f x k − 1 :: f x k + 1 :: . . .)

SML

val mem : ′′a ∗ ′′a list −> bool ;

Description x mem list searches for a member of list equal to x and returns true iff. it finds
one.

See Also contains, present
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SML

val nth : int −> ′a list −> ′a;

Description Return the n-th element of a list. The head of the list is the 0 -th element.

Errors

1009 Index past ends of list

SML

val overwrite : (′′a ∗ ′b) list ∗ (′′a ∗ ′b) −> (′′a ∗ ′b) list ;

Description alist overwrite (a, b) gives the list in which the first pair in alist that has the left
item a is replaced with the pair (a, b). If no such pair is found in alist then it returns the list of
(a, b) appended to the tail of alist .

See Also roverwrite, list overwrite

SML

val present : ((′a ∗ ′a) −> bool) −> ′a −> ′a list −> bool ;

Description present eq x list searches for a member, y , of list that satisfies eq(x , y) and returns
true iff. it finds one.

See Also contains, mem

SML

val rassoc1 : (′′a ∗ ′′a) list −> ′′a −> ′′a;

Description rassoc1 alist arg is x , where (x , arg) is the first element of alist with arg as its
right item. The function is made total by taking arg as the result if there is no appropriate
member of the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val rassoc2 : (′a ∗ ′′b) list −> (′′b −> ′a) −> ′′b −> ′a;

Description rassoc2 alist f arg is x , where (x , arg) is the first element of alist with arg as its
left item. The function is made total by returning f arg if there is no appropriate member of the
list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val rassoc3 : (′a ∗ ′′b) list −> ′′b −> ′a;

Description rassoc3 alist arg is x , where (x , arg) is the first element of alist with arg as its
right item.

Errors

1005 No such value in association list

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val rassoc4 : (′a ∗ ′′b) list −> ′a −> ′′b −> ′a;

Description rassoc4 alist default arg is x , where (x , arg) is the first element of alist with
arg as its right item. The function is made total by returning default if there is no appropriate
member of the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .
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SML

val rassoc5 : (′a ∗ ′′b) list −> ′′b −> ′a OPT ;

Description rassoc5 alist arg is Value x , where (x , arg) is the first element of alist with arg
as its right item. The function is made total by returning Nil if there is no appropriate member
of the list.

See Also lassocN and rassocN , where N = 1 . . . 5 .

SML

val revfold : (′a ∗ ′b −> ′b) −> ′a list −> ′b −> ′b;

Description Fold a list into a single value:

Definition

revfold f [x1 , x2 , ...., xk ] b = f (xk , ..., f (x2 , f (x1 , b))...)

See Also fold

SML

val roverwrite : (′a ∗ ′′b) list ∗ (′a ∗ ′′b) −> (′a ∗ ′′b) list ;

Description alist roverwrite (a, b) gives the list that in which the first pair in alist that has
the right item b is replaced with the pair (a, b). If no such pair is found in alist then it returns
the list of (a, b) appended to the end of alist .

See Also overwrite, list roverwrite

SML

val split3 : (′a ∗ ′b ∗ ′c) list −> ′a list ∗ ′b list ∗ ′c list ;

Description Split a list of triples into a triple of lists. split3 is the analogue of split for lists of
triples.

See Also split

SML

val split : (′a ∗ ′b) list −> ′a list ∗ ′b list ;

Description Split a list of pairs into a pair of lists.

Definition

split [(x0 , y0 ), (x1 , y1 ), ... (xk , yk)] = [x0 , x1 , ... , xk ], [y0 , y1 , ... , yk ]

See Also split3 , combine

SML

val subset : ′′a list ∗ ′′a list −> bool ;

Description l1 subset l2 is true iff. all the elements of l1 are also elements of l2

See Also =

SML

val to : ′a list ∗ int −> ′a list ;

Description list to n takes the initial slice of list . It uses 0-based indexing. If n is 0 or negative
an empty list is returned, and if n indexes past the other end of list then the entire list is returned.

Example

[0 ,1 ,2 ,3 ] to 2 = [0 ,1 ,2 ]

See Also from
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SML

val union : (′a ∗ ′a −> bool) −> ′a list −> ′a list −> ′a list ;

Synopsis A prefix binary union operation for lists, with parameterised equality test.

Description union is essentially a binary union operation for lists. Since we need it to work on
types which are not equality types, it has a parameter giving the relation to be used to determine
equality of members of the lists. In some cases it may be important for the order of members
of the union to be known. The rule is that union eq list1 list2 is the list obtained by prepending
those elements of list1 not already present in list2 , to the list list2 . Presence for x in the list
being created being that there is a member, y , of the list being created with eq(x , y) = true.
If list1 contains duplicates then all but the rightmost will be eliminated, but those in list2 will
not be. Note also that if one of the lists is small it is better supplied as the first list argument if
efficiency is of the essence.

Definition

union eq (list1 @ [a]) list2 = union eq list1 (
if present eq a list2
then list2
else (a :: list2 )

) | union eq [] list2 = list2

See Also cup, list union

SML

val which : ((′a ∗ ′a) −> bool) −> ′a −> ′a list −> int OPT ;

Description which eq x list returns Value of the position of first element, y , in list for which
eq x y is true. It uses 0-based indexing. If no such y is found, then it returns Nil .

SML

val zip : (′a −> ′b)list −> ′a list −> ′b list ;

Description Given a list of functions, and a list of arguments, of the same length, apply each
function to its corresponding argument. For the cases when the list of functions induce side effects,
note that the functions are applied from the head of their list to the tail, and will be applied until
there are insufficient elements of either list to continue. If there lists are not of equal length then
at that point a failure will be raised.

See Also combine
Errors

1008 List lengths differ

SML

val ∼<= : ′′a list ∗ ′′a list −> bool ;
val ∼= : ′′a list ∗ ′′a list −> bool ;

Description l1 <= l2 is true iff. every member of l1 is also a member of l2 . l1 = l2 is true
iff. the set of members of l1 is equal to the set of members of l2 .

See Also subset
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2.4 Functions

SML

signature FunctionUtilities = sig

Description Holds a variety of utility Standard ML functions concerned with functions.

SML

val ∗∗ : (′a −> ′b) ∗ (′c −> ′d) −> ′a ∗ ′c −> ′b ∗ ′d ;

Description The infix operator ∗∗, with precedence 4 (higher than “o”), applies the first of a
pair of functions to the first of a pair, and the second of the pair of functions to the second of the
pair, returning the pairing of the results.

Definition

(f ∗∗ g) x = (f x , g x )

SML

val curry : (′a ∗ ′b −> ′c) −> ′a −> ′b −> ′c;

Description curry f a b gives f (a, b).

See Also uncurry

SML

val fst : ′a ∗ ′b −> ′a;

Description fst is the left projection function for pairs: fst(a, b) = a.

See Also snd

SML

val fun and : ((′a −> bool) ∗ (′a −> bool)) −> ′a −> bool ;
val fun or : ((′a −> bool) ∗ (′a −> bool)) −> ′a −> bool ;
val fun not : (′a −> bool) −> ′a −> bool ;
val fun true : ′a −> bool ;
val fun false : ′a −> bool ;

Description These functions allow a style of programming that handles predicates rather than
booleans.
Definition

(f fun and g) x = f x andalso g x
(f fun or g) x = f x orelse g x
(fun not f ) x = not(f x )
fun true x = true
fun false x = false

SML

val fun pow : int −> (′a −> ′a) −> ′a −> ′a;

Description For non-negative n, fun pow n f is f n , i.e. the function

λx•f (f (...f (fx )....)

where f appears n times.

Errors

1010 First argument must not be negative
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SML

val repeat : (unit −> ′a) −> unit ;
val iterate : (′a −> ′a) −> ′a −> ′a;

Description repeat applies its argument to () until it fails (with an error generated by fail ,
q.v.), whereupon it returns (). iterate f a applies f to a. If this causes no failure it then calls
iterate f on the result. If it fails (with an error generated by fail , q.v.) it returns a. Failures
other than those caused by fail are not handled.

Definition

fun repeat f = (f (); repeat f ) handle (Fail ) => ()
fun iterate f a = (iterate f (f a)) handle (Fail ) => a

SML

val snd : ′a ∗ ′b −> ′b;

Description snd is the right projection function for pairs: snd(a, b) = b.

See Also fst

SML

val swap : ′a ∗ ′b −> ′b ∗ ′a;

Description swap interchanges the elements of a pair: swap(a, b) = (b, a).

SML

val switch : (′a −> ′b −> ′c) −> ′b −> ′a −> ′c;

Description switch f a b gives f b a.

SML

val uncurry : (′a −> ′b −> ′c) −> ′a ∗ ′b −> ′c;

Description uncurry f (a, b) gives f a b.

See Also curry
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2.5 Combinators

SML

signature Combinators = sig

Description Holds the three combinators S , K , I .

SML

val I : ′a −> ′a

Description The identity combinator: I x = x .

SML

val K : ′a −> ′b −> ′a

Description The deletion combinator: K x y is x .

SML

val S : (′a −> ′b −> ′c) −> (′a −> ′b) −> ′a −> ′c

Description The duplication combinator: S f g a is (f a)(g a).
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2.6 Characters

SML

signature CharacterUtilities = sig

Description Holds a variety of utility Standard ML functions concerned with character han-
dling.

SML

val is all decimal : string −> bool ;

Description is all decimal checks whether a string consists of one or more decimal digits.

SML

val nat of string : string −> int ;

Description nat of string converts a string into non-negative integer (using decimal notation).

See Also string of int

Errors

1012 ?0 is not a decimal string
1013 String is empty

SML

val string of int : int −> string ;

Description string of int converts an integer into a decimal string.

See Also nat of string
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2.7 Simple Dictionary

SML

signature SimpleDictionary = sig

Description Holds a set of Standard ML functions concerned with a linear search dictionary.

Uses For handling small dictionaries.

See Also EfficientDictionary .

SML

val initial s dict : ′a S DICT ;

Description The empty dictionary, which gives a starting point for the use of the simple dic-
tionary functions. It does not associate a value with any name.

SML

val s delete : string −> ′a S DICT −> ′a S DICT ;

Description s delete deletes an element of the domain of a dictionary. If the element is not
in the domain it returns the dictionary unchanged. s delete name dict returns a dictionary that
does not associate anything with name, but otherwise associates as dict .

SML

val s enter : string −> ′a −> ′a S DICT −> ′a S DICT ;

Description s enter implements overwriting by a singleton function. s enter name value
dict returns the dictionary that associates name with value, and otherwise associates as dict .
Overwriting is done “in place”, entries not previously present will be placed at the end of the
dictionary viewed as a list.

SML

val s extend : string −> ′a −> ′a S DICT −> ′a S DICT ;

Description s extend implements extension by a singleton function, that is to say it is like
s enter . s extend name value dict returns the dictionary that associates name with value, and
otherwise associates as dict . It fails if name is already in the domain of dict . Entries not previously
present will be placed at the head of the dictionary viewed as a list.

Errors

1014 ?0 is already in dictionary

SML

val s lookup : string −> ′a S DICT −> ′a OPT ;

Description s lookup implements application (of the dictionary viewed as a partial function).
s lookup name dict returns the value that dict associates with name.

SML

val s merge : ′a S DICT −> ′a S DICT −> ′a S DICT ;

Description s merge extends one dictionary by another. The dictionary s merge dict1 dict2
will associate a name with the value that either dict1 or dict2 associates it with.

Failure Will get the s extend failure message if any element is common to the domains of both
dictionaries (dict1 and dict2 ). Duplicate keys in the first list will also cause an s extend error,
but will be replicated in the result if found in the second list.
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2.8 Efficient Dictionary

SML

signature EfficientDictionary = sig

Description This is the signature of a structure implementing dictionaries (lookup-up tables)
based on hash-search techniques.

Uses For handling large dictionaries.

See Also SimpleDictionary .

SML

type ′a E DICT;

Description The type of efficient dictionaries.

SML

type E KEY;
val e get key : string −> E KEY ;
val e key lookup : E KEY −> ′a E DICT −> ′a OPT
val e key enter : E KEY −> ′a −> ′a E DICT −> ′a E DICT ;
val e key extend : E KEY −> ′a −> ′a E DICT −> ′a E DICT ;
val e key delete : E KEY −> ′a E DICT −> ′a E DICT ;
val string of e key : E KEY −> string ;

Description The abstract data type E KEY represents the hash-keys used in the internals of
the efficient dictionary (E DICT ) access functions. e get key computes the hash-key for a given
string. This may then be used as an argument to the functions e key lookup, e key enter, e key
extend and e key delete which perform the same functions as the corresponding functions without
“key ” in the name. This approach may be used if the same string is to be used to access several
efficient dictionaries to avoid the computational cost of recalculating the hash-key. string of key
is the left inverse of e get key.

Failure The failures are exactly as for the corresponding string access functions. In particular,
the area names in error messages are, e.g., “e lookup” rather than “e key lookup” etc.

SML

val e delete : string −> ′a E DICT −> ′a E DICT ;

Description e delete deletes an element of the domain of a dictionary. If the element is not
in the domain it returns the dictionary unchanged. e delete name dict returns a dictionary that
does not associate anything with name, but otherwise associates as dict .

SML

val e enter : string −> ′a −> ′a E DICT −> ′a E DICT ;

Description e enter implements overwriting by a singleton function. e enter name value dict
returns the dictionary that associates name with value, and otherwise associates as dict .

SML

val e extend : string −> ′a −> ′a E DICT −> ′a E DICT ;

Description e extend implements extension by a singleton function, that is to say it is like
e enter . e extend name value dict returns the dictionary that associates name with value, and
otherwise associates as dict . It fails if name is already in the domain of dict .

Errors

1014 ?0 is already in dictionary
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SML

val e flatten : ′a E DICT −> ′a S DICT ;

Description e flatten converts an efficient dictionary into a simple one. The result will contain
no duplicates, but will be in no useful order.

SML

val e lookup : string −> ′a E DICT −> ′a OPT

Description e lookup implements application (of the dictionary viewed as a partial function).
e lookup name dict returns the value that dict associates with name.

SML

val e merge : ′a E DICT −> ′a E DICT −> ′a E DICT ;

Description e merge extends one efficient dictionary by another. The dictionary e merge dict1
dict2 will associate a name with the value that either dict1 or dict2 associates it with.

Failure Will get the e extend failure message if an element is common to the domains of both
dictionaries.

SML

val e stats : ′a E DICT −> {height : int , nentries : int , nnodes : int , sumweights : int};
Description e stats dict returns statistics about the internals of the efficient dictionary dict.
Efficient dictionaries are currently represented as binary trees whose non-leaf nodes each carry a
simple dictionary of entries (in case of collisiion of hash values). The statistics currently returned
are the height of the tree, the number of entries, the number of nodes and the sum over all entries
of the depth of the entries (i.e, the sum of the number of entries per node weighted by node-depth).

SML

val initial e dict : ′a E DICT ;

Description The empty dictionary, which gives a starting point for the use of the efficient
dictionary functions. It does not associate a value with any name.

SML

val list e enter : ′a E DICT −> ′a S DICT −> ′a E DICT ;

Description list e merge extends an efficient dictionary by overwriting with entries from a
simple one. That is, for each association in the simple dictionary an e enter is executed on the
efficient dictionary.

SML

val list e merge : ′a E DICT −> ′a S DICT −> ′a E DICT ;

Description list e merge extends an efficient dictionary by merging with entries from a simple
one. That is, for each association in the simple dictionary an e extend is executed on the efficient
dictionary.

Failure Will get the e extend failure message if an element is common to the domains of both
dictionaries.
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2.9 Sorting

SML

signature Sort = sig

include Order ;

Description This provides an efficient sort utility package. For historical reasons it includes
the structure Order .

SML

val sort : ′a ORDER −> ′a list −> ′a list
val merge : ′a ORDER −> ′a list −> ′a list −> ′a list

Description sort sorts a list and merge merges two lists assumed already to be sorted. Both
functions are parametrised by an ordering function of type ′a ORDER, i.e., ′a− >′ a− > int .
The integer, say n returned by an application of this function, say f a 1 a 2 , is interpreted as
follows:

n < 0 a 2 is to come after a 1 (i.e. the arguments are in order).

n > 0 a 2 is to come before a 1 (i.e. the arguments are out of order).

n = 0 a 2 is to be taken as equal to a 1

Sorting eliminates duplicate elements in the sense of the equality test given by the ordering.
Merging includes just one copy of an element that occurs once in each of its arguments in the
result. The result of merging unsorted lists is unspecified; in particular, the result is unspecified
if there is duplication within one of the lists.

Example

To sort a list of integers, ilist in ascending order :

sort (curry (op −)) ilist

or

sort int order ilist

See Also For convenient ways of constructing orderings, see, e.g. string order and list order .
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2.10 Sparse Arrays

SML

signature SparseArray = sig

Description This is the signature of a structure implementing sparse arrays (i.e. imperative
data structures representing finite partial functions on the integers). The sparse arrays also give
an efficient means for handling dense (i.e. contiguous) arrays whose size varies. To facilitate their
use for such dynamically sized arrays, the sparse arrays have lower and upper bound attributes
which gives the smallest and largest indices into the array which identify an occupied cell.

The design of the structure is an adaptation of the library structure Array implementing fixed
length arrays.

SML

type ′ a SPARSE ARRAY;

Description This is the type of a sparse array with entries of type ′ a.

SML

val array : int −> ′ a SPARSE ARRAY ;

Description This function creates an empty sparse array. The parameter indicates the length
of an internal data structure used to represent the array. For a contiguous array or for a sparsely
filled array with a random distribution of occupied cells, the average access time for an element
will be proportional to n/l where n is the number of occupied cells and l is this length.

Errors

1102 The length parameter must be positive

SML

val lindex : ′ a SPARSE ARRAY −> int
val uindex : ′ a SPARSE ARRAY −> int

Description lbound(array) (resp. ubound(array)) returns the smallest (resp. largest) index of
an occupied cell in the sparse array array . An exception is raised if the array is empty.

Errors

1103 the array is empty

SML

val scratch : ′ a SPARSE ARRAY −> unit ;

Description scratch array empties all cells in the sparse array array .

SML

val sub opt : (′ a SPARSE ARRAY ∗ int) −> ′ a OPT

Description sub(array , i) returns Value a, where a is the occupant of the i -th cell of the sparse
array array . If the cell is unoccupied it returns Nil .

SML

val sub : (′ a SPARSE ARRAY ∗ int) −> ′ a

Description sub(array , i) returns the occupant of the i -th cell of the sparse array array . An
exception is raised if the cell is not occupied.

Errors

1101 Cell with index ?0 is empty
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SML

val update : (′ a SPARSE ARRAY ∗ int ∗ ′ a) −> unit ;

Description update(array , i , a) makes a the occupant of the i -th cell of the sparse array array .
The cell need not previously have been occupied (indeed, update is the only means by which cells
become occupied).
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2.11 Dynamic Arrays

SML

signature DynamicArray = sig

Description This is the signature of a structure implementing dynamic arrays with 0-based
indexing (i.e. imperative data structures representing finite partial functions on the integers,
whose range is an interval 1 . . .n). The implementation gives constant access time. The design
of the structure is an adaptation of the library structure Array implementing fixed length arrays.

SML

type ′ a DYNAMIC ARRAY;

Description This is the type of a dynamic array with entries of type ′ a.

SML

val array : int −> ′ a DYNAMIC ARRAY ;

Description This function creates an empty dynamic array. The parameter indicates the length
of an internal data structure used to represent the initial size of the array. The average access
time for an element will be constant — the underlying array structure is grown as necessary.

Errors

1301 The initial size parameter must be positive

SML

val scratch : ′ a DYNAMIC ARRAY −> unit ;

Description scratch array empties all cells in the sparse array array and reduces the underlying
data structure to the initial length specified when the array was first created.

SML

val sub opt : (′ a DYNAMIC ARRAY ∗ int) −> ′ a OPT

Description sub(array , i) returns Value a, where a is the occupant of the i -th cell of the dy-
namic array array . If the cell is unoccupied it returns Nil .

SML

val sub : (′ a DYNAMIC ARRAY ∗ int) −> ′ a

Description sub(array , i) returns the occupant of the i -th cell of the dynamic array array . An
exception is raised if the cell is not occupied.

Errors

1101 Cell with index ?0 is empty
1303 Index ?0 is out of range

SML

val uindex : ′ a DYNAMIC ARRAY −> int

Description lbound(array) the largest index of an occupied cell in the dynamic array array or
∼1 if no cells in the array are occupied.

SML

val update : (′ a DYNAMIC ARRAY ∗ int ∗ ′ a) −> unit ;

Description update(array , i , a) makes a the occupant of the i -th cell of the sparse array array .
The cell need not previously have been occupied (indeed, update is the only means by which cells
become occupied).
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2.12 Arbitrary Magnitude Integer Arithmetic

SML

signature Integer = sig
eqtype INTEGER;
val idiv : INTEGER ∗ INTEGER −> INTEGER;
val imod : INTEGER ∗ INTEGER −> INTEGER;
val @∗ : INTEGER ∗ INTEGER −> INTEGER;
val @+ : INTEGER ∗ INTEGER −> INTEGER;
val @− : INTEGER ∗ INTEGER −> INTEGER;
val @∼ : INTEGER −> INTEGER;
val iabs : INTEGER −> INTEGER;
val @< : INTEGER ∗ INTEGER −> bool ;
val @> : INTEGER ∗ INTEGER −> bool ;
val @<= : INTEGER ∗ INTEGER −> bool ;
val @>= : INTEGER ∗ INTEGER −> bool ;
val integer of string : string −> INTEGER;
val @@ : string −> INTEGER;
val string of integer : INTEGER −> string ;
val int of integer : INTEGER −> int ;
val integer of int : int −> INTEGER;
val natural of string : string −> INTEGER;
val zero : INTEGER;
val one : INTEGER;
val string of float : INTEGER ∗ INTEGER ∗ INTEGER −> string ;
val integer order : INTEGER −> INTEGER −> int ;

Description This is the signature of an open structure providing arithmetic on integers of
arbitrary magnitude. It is used to support HOL natural numbers and other object language
numeric types. The names of the usual arithmetic operators are decorated with an initial i or @
as appropriate. The string conversions work with signed decimal string representations. Either
‘−’ or ‘∼’ may be used for unary negation and a leading ‘+ ’ is also allowed. @@ is an abbreviation
for integer of string . natural of string is a converter for non-negative numbers (it has the same
error cases as nat of string).

string of float interprets a triple (x , p, e) as a floating point number with value x × 10 e−p and
converts the triple into its string representation.

integer order implements the ordering of the integers in the form used by sort , q.v.

Errors

1201 the divisor is zero
1202 an empty string is not a valid decimal number
1203 the string ‘?0 ′ is not a valid decimal number
1204 the conversion would overflow
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2.13 Order-preserving Efficient Dictionary

SML

type ′a OE DICT;
val initial oe dict : ′a OE DICT ;
val oe lookup : string −> ′a OE DICT −> ′a OPT
val oe enter : string −> ′a −> ′a OE DICT −> ′a OE DICT ;
val oe extend : string −> ′a −> ′a OE DICT −> ′a OE DICT ;
val oe delete : string −> ′a OE DICT −> ′a OE DICT ;
val oe key lookup : E KEY −> ′a OE DICT −> ′a OPT
val oe key enter : E KEY −> ′a −> ′a OE DICT −> ′a OE DICT ;
val oe key extend : E KEY −> ′a −> ′a OE DICT −> ′a OE DICT ;
val oe key delete : E KEY −> ′a OE DICT −> ′a OE DICT ;
val oe flatten : ′a OE DICT −> ′a S DICT ;
val oe key flatten : ′a OE DICT −> (′a ∗ E KEY ) S DICT ;
val e dict of oe dict : ′a OE DICT −> ′a E DICT ;
val list oe merge : ′a OE DICT −> ′a S DICT −> ′a OE DICT ;
val oe merge : ′a OE DICT −> ′a OE DICT −> ′a OE DICT ;

Description This type and associated access functions implement order-preserving efficient
dictionaries. The functions have exactly the same effect as the corresponding functions e lookup,
e enter etc., qv., for the type E DICT except that se flatten returns a list which preserves the
order in which entries were made (last-in, first-out). If an entry is updated (rather than added)
by oe key enter or oe enter, the updated entry appears in its original position.

list oe merge enters the list of items in the second argument into the dictionary given as its first
argument in tail-first (right-to-left) order.

Failure The failures are exactly as for the corresponding E DICT functions. In particular, the
area names in error messages are, e.g., “e lookup” rather than “oe lookup” etc.
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2.14 Compatibility with SML’90

SML

signature BasicIO = sig
type instream;
type outstream;
exception Io of {cause:exn, function:string , name:string}
val close in : instream −> unit
val close out : outstream −> unit
val end of stream : instream −> bool
val input : instream ∗ int −> string
val lookahead : instream −> string
val open in : string −> instream
val open out : string −> outstream
val output : outstream ∗ string −> unit
val std in : instream
val std out : outstream

end ;
signature ExtendedIO = sig

type instream;
type outstream;
val can input : instream ∗ int −> bool
val flush out : outstream −> unit
val open append : string −> outstream
val is term in : instream −> bool
val input line : instream −> string
val is term out : outstream −> bool
val system : string −> bool
val get env : string −> string
val std err : outstream

end ;

Description These are the signatures of the structures that implement SML’90-style I/O. Ba-
sicIO is open. ExtendedIO is not.

ExtendedIO differs from the the original SML’90 in several respects:

• It provides system instead of execute (which cannot be implemented cleanly on UNIX im-
plementation sof the SML’97 standard basis library, since the SML’90 signature does not
give an interface for the caller to reap the executed process).

• It provides std err, which was not in the SML’90 library at all (and is the same as Tex-
tIO.stdErr in the SML’97 standard basis library).

• It provides get env which is the UNIX get env with non-existent environnent variables re-
turning an empty string.
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SML

signature PPArray = sig
exception Subscript
type ′a array
val arrayoflist : ′ a list −> ′ a array
val array : int ∗ ′ a −> ′ a array
val length : ′a array −> int
val sub : ′a array ∗ int −> ′a
val tabulate : int ∗ (int −> ′ a) −> ′ a array
val update : ′a array ∗ int ∗ ′a −> unit

end ;

Description This is the signature of a structure that provides an array datatype compatible
with the ProofPower code (independent of the underlying compiler).

SML

signature PPString = sig
val implode : string list −> string ;
val explode : string −> string list ;
exception Ord ;
val ord : string −> int ;
val chr : int −> string ;
val string of exn : exn −> string ;

end ;

Description This is the signature of an open structure that provides string functions compatible
with the ProofPower code (independent of the underlying compiler).

SML

signature PPVector = sig
exception Subscript
exception Size
type ′ a vector
val vector : ′ a list −> ′ a vector
val length : ′a vector −> int
val sub : ′a vector ∗ int −> ′a
val tabulate : int ∗ (int −> ′ a) −> ′ a vector

end ;

Description This is the signature of a structure that provides a vector (read-only array)
datatype compatible with the ProofPower code (independent of the underlying compiler).
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SML

(∗
structure SML97BasisLibrary = struct

val explode : string −> char list ; ...
structure Array = Array ; ...

end ;
∗)
Description This is a structure containing the required structures of the Standard ML ’97 Basis
Library together with some functions from the ’97 standard for the language that are redefined
by ProofPower.

It is provided so that these structures can still be accessed when ProofPower defines a structure
of the same name as a basis library structure (e.g., “Char”).

The structure SML97BasicLibrary.Prelude contains the functions from the ’97 standard for the
language that are redefined by ProofPower. If you open this structure and later wish to revert to
the ProofPower versions of explode, hd, etc., open the structures PPString and ListUtilities.
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SYSTEM FACILITIES
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3.1 System Control

SML

signature SystemControl = sig

Description This is the signature of the structure SystemControl .

SML

val get flags : unit −> (string ∗ bool) list
val get int controls : unit −> (string ∗ int) list
val get string controls : unit −> (string ∗ string) list
val get controls : unit −>

((string ∗ bool) list ∗ (string ∗ int) list ∗ (string ∗ string) list)

Description These functions return the names and current values of the system flags or controls.

SML

val get flag : string −> bool
val get int control : string −> int
val get string control : string −> string

Description These functions are used to get the values of named control variables of the cor-
responding types. The parameter gives the name of the control variable.

Errors

2011 The name ?0 is not in use as a control variable name

Uses This function is for use when adding new facilities to the HOL system which require global
control variables.

SML

val new flag :
{name:string , control :bool ref , default :unit−>bool , check :bool −> bool} −> unit

val new int control :
{name:string , control :int ref , default :unit−>int , check :int −> bool} −> unit

val new string control :
{name:string , control :string ref , default :unit−>string , check :string −> bool} −> unit

Description These functions are used to introduce new named control variables of the corre-
sponding types. The name parameter gives the name of the new control variable. The control
component of the parameter gives the variable itself. The default component of the parameter is
a function which is used by reset flag , reset int control or reset string control to reset the value.

After the introduction, users may update the control using one of set flag , set int control or
set string control .

The check component of the parameter is a function to check the validity of the control values,
and, if desired, to notify other code of the change in the value. When one of the control setting
functions, is called, an error is reported if the check function for the control returns false when
applied to the new value supplied by the caller.

The following message is raised as a warning if the control variable name is already in use. If the
user elects to continue, the old control variable is renamed (by decorating it with one or more
prime characters) and a new control variable is introduced with the specified name.

Errors

2010 The name ?0 is already in use as a control variable name

Uses This function is for use when adding new facilities to the HOL system which require global
control variables.
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SML

val pending reset control state : unit −> unit −> unit

Description This function is intended for use in system initialisation and shutdown. The
binding val prcs = pending reset control state(), defines prcs as a function which will set the
internal state of the SystemControl module to the value it had at the time the binding for prcs
was made. This is used to remember the set-up for controls introduced in a child database. Note
that, to avoid problems with stateful user-defined check functions, this function does not attempt
to set the values of the controls. The values are, after all, not part of the SystemControl module’s
internal state.

SML

val reset flags : unit −> unit
val reset int controls : unit −> unit
val reset string controls : unit −> unit
val reset controls : unit −> unit

Description These functions reset the current values of all the system flags or controls in the
system, as by reset flag , etc.

SML

val reset flag : string −> bool
val reset int control : string −> int
val reset string control : string −> string

Description These functions are used to reset the values of named control variables of the
corresponding types. The parameter gives the name of the control variable. They return the
previous value of the control variable.

Errors

2011 The name ?0 is not in use as a control variable name

Uses This function is for use when adding new facilities to the HOL system which require global
control variables.

SML

val set flags : (string ∗ bool) list −> unit
val set int controls : (string ∗ int) list −> unit
val set string controls : (string ∗ string) list −> unit
val set controls : ((string ∗ bool) list ∗ (string ∗ int) list ∗ (string ∗ string) list)

−> unit

Description These functions set the current values of the system flags or controls named in the
lists. Items that are not mentioned keep their previous values.

SML

val set flag : (string ∗ bool) −> bool
val set int control : (string ∗ int) −> int
val set string control : (string ∗ string) −> string

Description These functions are used to change the values of named control variables of the
corresponding types. The first parameter gives the name of the control variable. The second
parameter gives the desired new value. They return the previous value of the control variable.

Errors

2011 The name ?0 is not in use as a control variable name
2012 Value out of range for control variable ?0

Uses This function is the standard means of changing global control variables.
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3.2 System Initialisation

SML

signature HOLSystem = sig

Description This is the signature of the structure HOLSystem which contains functions used
to end a HOL session and to save the results of a HOL session, as well as two access routes to the
UNIX environment to the Standard ML session.

SML

signature Initialisation = sig

Description This is the signature of the structure HOLInitialisation which contains functions
which may be used to add and test new start of session functions. These functions are for use by
those extending the system.

SML

(∗ flag : gc messages; default false ∗)
Description The flag gc messages can be used to turn the Standard ML compiler garbage
collector messages on and off (true meaning on) providing that facility is supported by the compiler
being used. By default, garbage collection messages are turned off.

SML

type ICL′DATABASE INFO TYPE;
val pp′database info : ICL′DATABASE INFO TYPE ;

Description Private ProofPower database information, that neither contains information useful
to the user, nor should be overwritten by the user. Note that it is not an assignable variable. It
is set by pp′set database info.

SML

val get init funs : unit −> (unit −> unit) list ;
val get save funs : unit −> (unit −> unit) list ;

Description These functions returns the list of functions that have been registered with
new init fun and new save fun. They are made visible because they are needed to save the
state in a child database.

SML

val get shell var : string −> string ;

Description get shell var shvar will extract the value (as a string), if any, bound to shell
environment variable shvar . If the variable is not set the empty string will be returned.

SML

val init : unit −> unit ;

Description init causes the initialisation functions in the table maintained by new init fun to
be executed, as they would be at the start of a session. The failure of any individual initialisation
function will not affect the attempted execution of the others.

Uses Mainly for use in testing extensions to the system.

See Also new init fun.

Errors

36014 Exception caught by init : ?0 (?1 )
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SML

val load files : string list −> bool

Description load files takes a list of files and compiles each file (using use file). A message
indicating the success or failure is output as each file is processed and a summary is output when
all files have been processed. If all the files loaded without any error, load files returns true else
it returns false.

SML

val new init fun : (unit −> unit) −> unit ;

Description new init fun adds a new entry to a table of functions which are invoked at the
start of each session. At the beginning of each session, these functions are executed in turn, with
the function stored by the most recent use of new init fun executed last.

SML

val new save fun : (unit −> unit) −> unit ;

Description new save fun adds a new entry to a table of functions which are invoked when the
state of a session is saved with save, save and quit or save and exit . The functions are executed
in turn, with the function stored by the most recent use of new save fun executed last.

SML

val pp′reset database info: bool −> ICL′DATABASE INFO TYPE −> unit ;

Description This function resets the current system state to a given stored value (which will
generally be given by the variable pp′database info), optionally setting the current theory. It is
not intended to be called other than in the system start-up code.

SML

val pp′set banner : string OPT −> string ;
(∗ string control : system banner; default − see below ∗)
(∗ string control : user banner; default − "" ∗)
Description pp′set banner (Value banner) will change the core part of the system banner to
banner , returning the old value. pp′set banner Nil just returns the current value. (The value is
held in the string control system banner and can also be changed using set string control or read
get string control).

The messages below gives the banner, which has elements which may be changed by setting
the string controls system banner and user banner. Message 36050 is printed first with system
banner as the insertion (?0) followed by message 36051 with insertions giving the latest copyright
year (?0) and the user banner (?1). If it is not empty, user banner should begin with a newline
character.

Message 36000 gives the value for system banner set in the HOL database, the insertion being
the version string taken from the variable system version defined by the make file.

Errors

36000 ProofPower ?0 [HOL Database]
36050 === ?0
36051 === Copyright (C ) Lemma 1 Ltd . 2000−?0?1

SML

val pp′set database info: unit −> unit ;

Description This function sets the value of pp′database info so that it describes the current
system state. The function is used by save and quit , and elsewhere, but should not be directly
invoked by the user.
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SML

val pp′theory hierarchy : pp′Kernel .pp′HIERARCHY OPT ;

Description Private ProofPower database information, that neither contains information useful
to the user, nor should be overwritten by the user. Note that it is not an assignable variable.

SML

val print banner : unit −> unit ;

Description Output the system startup banner.

SML

val print status : unit −> unit ;

Description This command will list:

1. Current theory name;

2. Current proof context name(s);

3. Number of distinct goals to be achieved;

4. Current subgoal label;

SML

val quit : unit −> unit
val exit : int −> unit

Description quit() is used to end a session with the HOL system. In interactive use, the user is
warned that the database will not be saved, and asked whether they still wish to quit. The session
will be quit if the response is “y”, and otherwise the user is returned to the HOL session. If it is
used non-interactively, or use terminal (q.v.) is not active, then the session will end without the
database being saved.

exit ends the current session of the HOL system with an exit status that is the argument to exit .
The exit status is available to the calling environment (e.g., as documented in the UNIX manual
page for sh(1)). This facility enables the user to flag errors to the outside environment from within
ProofPower.

See Also save and quit , save and exit to save the database.
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SML

val save : unit −> unit ;
val save as : string −> unit ;
val save and quit : unit −> unit ;
val save and exit : int −> unit ;

Description save() saves the user’s current work to disk using the current database name
(which is initially derived from the name supplied on the command line when ProofPower is
invoked using the supplied shell scripts). save as name saves the user’s current work to disk
under a new name (which becomes the current name used in subsequent calls of save()).

save and quit() saves the user’s current work to disk and then ends the current ProofPower
session.

save and exit saves the user’s current work and then ends the current ProofPower session with
an exit status that is the argument to save and exit . The exit status is available to the calling
environment (e.g., as documented in the UNIX manual page for sh(1)). This facility enables the
user to flag errors to the outside environment from within ProofPower.

If these function are called from another function rather than at the top-level then the function
should be the last side-effecting function call before returning to the top-level, otherwise the
behaviour when a new session is started on the saved state will be compiler-dependent.

The state of subsystems such as the subgoal package is preserved between sessions by system-
dependent means. The compactification cache is cleared at the end of each session in order to
reduce the size of the saved database.

See Also quit , exit , clear compactification cache

Errors

36010 The database name has not been set
36017 STATE WAS FOUND TO BE INCONSISTENT : state should not be saved

Errors If the database cannot be saved then depending on the Standard ML compiler, the
function may exit anyway, with a compiler-specific raised error message. The only warning of
this is that the start of session text informs the user of the database is read-only at that point in
time. This does not happen with Standard ML of New Jersey, which reports the error and then
continues the session.
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3.3 Warnings

SML

signature Warning = sig

Description This is the signature of the structure containing the function warn which is used
to report recoverable error conditions. It also contains the function comment which is used to
pass comments from the system to the user.

SML

val comment : string −> int −> (unit −> string) list −> unit

Description comment is used to report messages to the user. The parameters are exactly as
for fail and error (q.v.).

Errors

10010 ∗∗∗ COMMENT ?0 raised by ?1 :

SML

val warn : string −> int −> (unit −> string) list −> unit

Description warn is used to report on recoverable error conditions. The parameters are ex-
actly as for fail and error (q.v.). The behaviour of warn depends on the system control flag
ignore warnings and on whether or not the system is running interactively, as shown in the
following table:

interactive ignore warnings Effect
yes false the message is reported; the system asks the user

whether to continue; if the answer is ‘yes’ then control
returns to the caller of warn otherwise an exception
is raised.

yes true the message is reported and control returns to the
caller of warn

no false the message is reported and an exception is raised
no true the message is reported and control returns to the

caller of warn

Errors

10001 ∗∗∗ WARNING ?0 raised by ?1 :
10002 Do you wish to continue (y/n)?
10003 execution of ?0 abandoned

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



3.4. Profiling 53

3.4 Profiling

SML

signature Profiling = sig

Description The signature contains definitions that may be used to record statistics, e.g., on
the number of times certain functions have been called.

SML

(∗ profiling − boolean flag declared by new flag ∗)
Description Turns profiling on (if true) or off (if false). Default is false, but flag is true during
build of ProofPower-HOL. This should be maintained via the functions of structure SystemControl .

SML

val prof : string −> unit ;
val counts : string −> int OPT ;
val get stats : unit −> int S DICT ;
val set stats : int S DICT −> unit ;
val print stats : int S DICT −> unit ;
val init stats : unit −> unit ;

Description These five functions provide a simple database facility, associating each name with
a count. A call to prof name increments, if the flag “profiling” is true, the count for name. A
call to counts name returns the value of the current count for name. A call to get stats provides
the counting database as an integer dictionary, in order of first name entry into database being
first in the dictionary viewed as a list. The function print stats will provide a one line - one entry
display of an integer dictionary, in particular the kind of dictionary provided by get stats. A call
to init stats initialises all the counts to 0 (which is also the state in which the database starts).
A call to set stats will restore a statistics database to a given set of values (such as those given
by get stats). The input list must contain no duplicated names.

It is likely that the output of get stats would be best sorted before being printed by print stats.

Uses The intended use of this database is to profile function calls, with the implementer making
one call to prof per profiled function.

Errors

1020 Input list is ill−formed
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3.5 Timing

SML

signature Timing = sig

Description The signature contains definitions that can be used to measure execution time of
ML code.

SML

datatype TIMER UNITS = Microseconds | Milliseconds | Seconds;
type ′b TIMED = {result : ′b, time : int , units : TIMER UNITS};
val time app : TIMER UNITS −> (′a −> ′b) −> ′a −> ′b TIMED ;

val reset stopwatch : unit −> unit ;
val read stopwatch : TIMER UNITS −> int ;

Description The function time app and the associated data types TIMER UNITS and ’a
TIMED may be used to measure the execution time of a function.

In the call time app u f x, u specifies the units in which the timing is to be measured, f is the
function to be timed and x gives the argument to be passed to f. The return value gives the result
of the application f x together with the time taken measured in the specified units and a reminder
of what the units were.

reset stopwatch time and read stopwatch time give a way of timing sequences of ML commands.
read stopwatch time u returns the elapsed time measured in the units specified by u since the last
call of reset stopwatch time. read stopwatch time will either return a meaningless value or result
in arithmetic overflow if reset stopwatch time has not been called in the current session.

The following points should be born in mind when using these functions:

• The times are “wall-clock” times. Garbage-collection and other overheads will be included.

• Depending on the underlying Standard ML compiler, arithmetic overflow may occur if the
units are chosen inappropriately for the time period being measured.

• The functions will themselves introduce a time overhead, which may vary depending on
system load and other system-dependent factors.

Errors

1021 Arithmetic overflow in time conversion
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INPUT AND OUTPUT

4.1 The Reader/Writer
SML

signature HOLReaderWriter = sig

Description This structure holds the HOL specific reader writer code. All the errors that the
basic reader writer may raise may also be raised by the HOL reader writer.

SML

signature ReaderWriter = sig

Description File and terminal reading and writing functions.

Errors

5001 End of file found in comment
5002 End of file found in string
5003 Unknown keyword ‘?0‘ after ‘?1‘
5004 Unknown keyword ‘?0‘
5005 Unknown extended character ‘?0‘ (decimal ?1 ) after ‘?2‘
5006 Unknown extended character ‘?0‘ (decimal ?1 )
5007 Unexpected symbol ‘?0‘ (a symbol of type $Invalid$ has been read)
5008 Bracket mismatch, ‘?0‘ found after an opening ‘?1‘
5010 Unknown language requested by symbol ‘?0‘ with language name ‘?1‘
5011 Unknown language requested
5014 Newline found in string after ‘?0‘
5030 End of file in quotation
5032 End of file found in Standard ML quotation
5036 Unknown language ‘?0‘ requested

Several error messages are provided to report faults in the user’s textual input to the ICL HOL
system, they may be produced from all of the routines use file, use string and use terminal .
Some error messages might be associated with particular routines in the ReaderWriterSupport
structure but that is incidental to most users, so they are all gathered here.

SML

signature ReaderWriterSupport = sig

Description A set of declarations that allows the addition of new embedded languages. The
HOL language is an example of a language embedded into a basic system that understands
Standard ML with extended characters and percent keywords.

SML

(∗ prompt1 − boolean flag declared by new flag , default : ":>" ∗)
(∗ prompt2 − boolean flag declared by new flag , default : ":#" ∗)
Description Prompt strings for use terminal . String prompt1 is used when the reader writer is
expecting the first line of a top-level expression, prompt2 is used for subsequent lines. The strings
used here must comprise characters whose decimal codes are in the range 32 to 126 inclusive, but
excluding the characters ‘Q’ (i.e., code 81) and ‘%’ (37).
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SML

(∗ RW diagnostics − integer control declared by new int control , default : 0 ∗)
Description For reader writer diagnostic purposes.

SML

(∗ use extended chars − boolean flag declared by new flag , default : true ∗)
Description Controls how the writer changes the text output from the PolyML compiler. When
true extended characters are written, when false the corresponding keywords are written.

SML

(∗ use file non stop mode − boolean flag declared by new flag , default : false ∗)
Description Makes use file continue reading text (if the flag is true) or stop reading (if false)
from the file after an error is reported by PolyML, this includes both syntax and execution errors.
Default is to stop reading.

SML

datatype NAME CLASS
= Simple
| Starting of (READER ENV −> (string ∗ bool)

−> string −> bool −> string list
−> string list) ∗ string

| Middle of string
| Ending of string
| Ignore
| Invalid;

Description These detail the characteristics of a symbol. Simple is used for symbols that may
be part of identifiers. Starting , Middle and Ending relate to the symbols position when embedding
text of other languages. The function with Starting is the reader routine for the particular
embedded language. Details of how this function should be written (and of it arguments) are
given in the implementation document corresponding to this design. Ignore is used for characters
that are completely ignored in the input, the extended characters for indexing come in this
category. Invalid will cause an error message.

See Also Error 5007
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SML

datatype SYMBOL
= SymKnown of string ∗ bool

∗ PrettyNames.PRETTY NAME
| SymUnknownChar of string
| SymUnknownKw of string ∗ bool
| SymDoublePercent
| SymWhite of string list
| SymCharacter of string
| SymEndOfInput
;

Description SymKnown indicates a symbol declared via add new symbols, if a keyword was
read the string hold the characters without the enclosing percents and the boolean is true. Oth-
erwise, when an extended character is read the string holds the character and the boolean is
false.

SymUnknownChar indicates an extended character not declared via add new symbols.

SymUnknownKw indicates a keyword not declared via add new symbols or a badly formed key-
word with no closing percent sign. The boolean is true for a well-formed keyword.

SymDoublePercent indicates an empty keyword, i.e., two adjacent percent signs.

SymWhite indicates a non-empty sequence of formatting characters (space, tab, newline, and
formfeed) which are passed as individual characters in reverse order in the string list.

SymEndOfInput indicates an empty string was seen.

All other cases are passed back as a single character in SymCharacter .

SML

exception TooManyReadEmpties;

Description Associated with the reader functions is the exception TooManyReadEmpties which
is raised when the parser has read the end of the file and has passed the end of file character at
least 100 times to the compiler. Raising this exception signifies something has gone wrong in a
reader.

SML

structure PrettyNames : sig

Description A structure within ReaderWriterSupport that gathers all the information relat-
ing the extended characters and percent keywords understood by the system, together with the
interfaces for interrogating and extending the information.
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SML

type PRETTY NAME (∗ = ( string list ∗ string OPT ∗ NAME CLASS ) ∗) ;

Description Each symbol is defined in a three-element tuple of this type. Elements of the
tuple are as follows. First, a non-empty list of the keywords that may be used for this symbol.
These keywords exclude the enclosing percent signs. Second, an optional character for the symbol.
Third, a value of datatype NAME CLASS indicating the characteristics of the symbol.

The extended character field, when used, contains a single character. It may be the letter “Q” or
any character with decimal code greater than 127.

See Also Function add new symbols, for details of the validation of values of this type.

Example

([ "fn",
"lambda"], Value "λ", Simple),

SML

type READER ENV (∗ = {
advance : unit −> string ,
look at next : unit −> string ,
push back : string −> unit

} ∗) ;
val skip and look at next : READER ENV −> unit −> string ;

Description All of the parsing functions in the reader writer support use the functions provided
in this record type to read characters from the current input stream. Attempting to read characters
by any other method will have unpredictable results. The utility function skip and look at next
combines advance and look at next discarding the result of advance. Some applications will want
to use instances of this data type to count line numbers, so pushing back newlines that have not
been read is not advisable.

SML

type READER ENV;
type READER FUNCTION;

Description These types are used for reader functions for embedded languages, they are iden-
tical to the types of the same name in signature ReaderWriterSupport .

See Also Signature ReaderWriterSupport .
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SML

type READER FUNCTION (∗
= READER ENV
−> (string ∗ bool) (∗ Starting symbol ∗)
−> string (∗ Language name ∗)
−> string (∗ Opening text ∗)
−> string list (∗ Left hand context ∗)
−> string list ∗);

Description The type of the reader functions for embedded languages. The first string ar-
gument gives the symbol that started the quotation. For a keyword enclosing percent signs are
omitted and the boolean is true. For an extended character the boolean is false. The second string
holds the language name without the leading “%dntext%” or trailing “%cantext%”, the default
language and type are expanded to give their full names, namely “HOL” or “HOL:” for the colon
form. The third string is text to be included at the start of the quoted text, in the case of a HOL
quotation it is the first characters that are to be read by the HOL recogniser. The string list is
the left hand context of the call and must be returned with the text of the quotation added to its
head.

SML

val abandon reader writer : unit −> unit ;

Description Only meaningfully used after use terminal has been called, when it forces an exit
from that routine.

SML

val add error code : int ∗ string list −> string list ;
val add error codes : int list ∗ string list −> string list ;

Description For each error number “nn” given as the first argument an entry of the form
“ÃERROR__nnÃ” is added to the head of the second argument. (Note that “Ã” denotes aspace
character.)

SML

val add general reader : string ∗ string ∗ string ∗ READER FUNCTION −> unit ;
val add specific reader : string ∗ string ∗ READER FUNCTION −> unit ;
val add named reader : string ∗ string ∗ string ∗ READER FUNCTION −> unit ;

Description Adds reader functions to the database of known readers. The first strings give
the language name, the last string holds the name of a Standard ML constructor which is to be
written before the quotation when it occurs in within languages other than Standard ML. Typical
values of the last string are “Lex.Term” and “Lex.Type”.

Errors

5033 Reader already present for language ‘?0‘
5034 Improper reader name ‘?0‘
5035 Improper reader name ‘?0‘ and ‘?1‘
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SML

val add new symbols : PRETTY NAME list −> unit ;

Description Adds details of new symbols to the data structures characterising all known sym-
bols. There is some validation of the symbols added, the list of names should not be empty, the
individual names should not contain two adjacent “Q”s and the character field should have a single
character which is either a “Q” or has decimal code greater than 127.

Errors

5100 Keyword ‘?0‘ has adjacent ‘Q‘s
5101 Empty keyword list
5102 Invalid extended character ‘?0‘ with keyword ‘?1‘
5103 Keyword ‘?0‘ duplicated
5104 Character ‘?0‘ duplicated

Errors 5100, 5101 and 5102 are issued as warnings against particular parts of the argument value,
they do not prevent the other parts from being added to the data structures.

SML

val ask at terminal : string −> string ;

Description Asks a question at the terminal by writing out the given string then reading a
single line of text which is returned. Characters are read until a newline or end of file is reached,
in the first case the the returned string will end with a newline.

Any characters in the type ahead buffer of the terminal input stream before ask at terminal is
called are read and saved (for later analysis by the normal reading functions) before the prompt
is output and the response is read.

Errors

5012 Function ‘use terminal‘ is not active
5013 Input stream is not a terminal , nothing read

SML

val diag line : string −> unit ;

Description diag line outputs a string to the standard output stream followed by a new line,
after translating it with translate for output(q.v.). It is intended for use in printing formatted
terms, theorems and the like (for which the pretty printer will have included new lines within the
string if necessary).

See Also diag string , raw diag line.

SML

val diag string : string −> unit ;

Description diag string outputs a string on the standard output stream, after translating it
with translate for output(q.v.). If the string exceeds the value of get line length it attempts to
split the string into tokens, to fit within the line length. A token is taken to be an initial string
of spaces, followed by exclusively non-space characters.

See Also list diag string , diag line, raw diag string .

SML

val expand symbol : SYMBOL −> string ;

Description A value of type SYMBOL is expanded into the corresponding character string.
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SML

val find name : string −> PRETTY NAME OPT
val find char : string −> PRETTY NAME OPT

Description Finds the characteristics of a symbol based on its keyword or character. Both
functions return Nil if the symbol is not known. They return the tuple given to add new symbols
for known symbols.

SML

val general quotation : READER ENV
−> (string ∗ bool) (∗ Start of quotation symbol ∗)
−> string (∗ Opening characters ∗)
−> bool (∗ Context , true => in Standard ML ∗)
−> string list (∗ Left hand context ∗)
−> string list ;

val specific quotation : READER ENV
−> (string ∗ bool) (∗ Start of quotation symbol ∗)
−> string (∗ Opening characters ∗)
−> bool (∗ Context , true => in Standard ML ∗)
−> string list (∗ Left hand context ∗)
−> string list ;

val named quotation : READER ENV
−> (string ∗ bool) (∗ Start of quotation symbol ∗)
−> string (∗ Opening characters ∗)
−> bool (∗ Context , true => in Standard ML ∗)
−> string list (∗ Left hand context ∗)
−> string list ;

Description Process the text of a quotation and add it to the left hand context given. The
opening quotation symbol has been read and is passed as the first string argument, a keyword
is passed without its enclosing percent signs and the boolean is true, for an extended character
the boolean is false. For general and named quotations the next characters to be read denote the
language of the quotation. The boolean argument indicates whether the left hand context is in
Standard ML text or in a quotation of another language.

Errors

5004 Unknown keyword ‘?0‘
5006 Unknown extended character ‘?0‘ (decimal ?1 )
5010 Unknown language requested by symbol ‘?0‘ with language name ‘?1‘
5011 Unknown language requested
5030 End of file in quotation
5031 End of file in language name of general quotation
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SML

val get box braces : (READER ENV −> string list −> string list)
−> READER ENV −> string list −> string list ;

val get curly braces : (READER ENV −> string list −> string list)
−> READER ENV −> string list −> string list ;

val get round braces : (READER ENV −> string list −> string list)
−> READER ENV −> string list −> string list ;

Description These functions assemble a section of bracketed text. The opening bracket has
been read, the first unread character is the first character within the brackets. Each routine reads
text upto and including the matching closing bracket. The first argument is the parsing routine
for reading items of text within the brackets. The third argument is the left hand context, which is
returned with the bracketed text read by these functions, and the enclosing braces. The three pairs
of brackets: “[ ]”, “{ }” and “( )” are handled by functions get box braces, get curly braces
and get round braces respectively.

Errors

5008 Bracket mismatch, ‘?0‘ found after an opening ‘?1‘

SML

val get HOL any : READER ENV −> string list −> string list

Description Assemble a section of HOL text starting with the first unread character. Text is
read up to and including the first unmatched symbol of value Ending . The second argument
gives the left hand context, the new text read is added to that context and returned. All the
errors that the basic reader writer may raise may also be raised by the HOL reader writer.

See Also Type READER ENV .

SML

val get ML any : READER ENV −> string list −> string list

Description Assemble a section of Standard ML text starting with the first unread character.
Text is read up to the first semi colon ‘;’, unmatched closing bracket or ending keyword. A semi
colon will be read and added to the returned text, a closing bracket or ending keyword is left
unread for the calling routine. The syntax error where too many closing bracket are presented
must be resolved by the outermost routine that calls function. The second argument gives the
left hand context, the new text read is added to that context and returned.

Errors

5003 Unknown keyword ‘?0‘ after ‘?1‘
5005 Unknown extended character ‘?0‘ (decimal ?1 ) after ‘?2‘
5007 Unexpected symbol ‘?0‘ (a symbol of type $Invalid$ has been read)

See Also Type READER ENV .
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SML

val get ML string : READER ENV −> string list −> string list ∗ int list ;
val get primed string : READER ENV −> string list −> string list ∗ int list ;

Description Assemble a string literal and add it to the left hand context given in the second
argument. On entry the opening string quote has been read, exit when the closing string quote
has been read. The goal of this routine is to form an equivalent string that can be read by a
Standard ML compiler, and to defer as much validation of the string as possible to that compiler.
Minimal validation is performed on escape sequences. Well-formed layout sequences (i.e., the
sequence “\f..f \”) are removed, characters not recognised as formatting ones are retained and
wrapped between “\ ” and “ \” for later checking by the Standard ML compiler. Extended
characters are translated to their three digit decimal form.

Function get ML string reads a Standard ML string.

Function get primed string reads a string enclosed with single left-hand primes ( ‘ ). These are
similar to Standard ML strings but with the meanings of the single ( ‘ ) and double ( " ) prime
characters interchanged.

An end of file found in the string indicates that there is no more input available, and so an
immediate failure (error 5002) is raised. Error code 5014 is included to aid in understanding
where errors occur, this error is not actually generated until the first non white-space character
after the newline is processed. All other errors detected in strings are reported when found,
additionally their numbers passed back in the result.

Errors

5002 End of file found in string
5014 Newline found in string after ‘?0‘

See Also Type READER ENV .

SML

val get percent name : READER ENV
−> string ∗ PrettyNames.PRETTY NAME OPT ∗ bool ;

Description Assemble a percent keyword and look it up in the list of known keywords. On
entry the opening percent (%) is the first unread character.

The tuple returned contains: (1) the keyword read, but without the percent characters;
(2) the symbols entry as given to add new symbols or Nil for an unknown keyword; (3) a
flag set true if the keyword had a closing percent character, false otherwise, error report-
ing is left to the calling functions. Non-alphanumeric keywords may contain the characters
“! & $ # + - / : < = > ? @ \ ~ ’ ^ | *”

See Also Type PRETTY NAME . Type READER ENV . Function is special char .

SML

val get use extended chars flag : unit −> bool ;

Description This function gives the value of the flag use extended chars.

SML

val HOL lab prod reader : READER FUNCTION ;

Description This is the reader function for HOL labeled products. It is provided to allow
specialised versions of the HOL language to be read, it is not intended to be called directly called
by any user code. All the errors that the basic reader writer may raise may also be raised by the
HOL reader writer.
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SML

val HOL reader : string −> bool −> READER FUNCTION ;

Description This is the HOL reader function, its first argument is the name of the recogniser
for the particular aspect of HOL to be recognised. Its second argument indicates whether this
reader is considered to be used only at outermost (i.e., Standard ML’s top-level): true is used for
outermost usage, false for HOL text that may be used within other expresions. This function is
provided to allow specialised versions of the HOL language to be read, it is not intended to be
called directly called by any user code. All the errors that the basic reader writer may raise may
also be raised by the HOL reader writer.

SML

val is same symbol : (string ∗ string) −> bool

Description Compare two symbols return true if they are identical, i.e., the same string. Oth-
erwise, look up both with find char and find name then if they are the same symbol return true,
if either is not a known symbol or they are not the same symbol return false.

SML

val is special char : string −> bool ;

Description Checks whether the string contains a single non-alphanumeric character that is
allowed in a keyword. Returns true if the argument contains exactly one of the characters listed
in the description of function get percent name, otherwise false is returned.

See Also Function get percent name.

SML

val is white : string −> bool

Description Returns true if the string is a single white-space character, false otherwise.

SML

val list diag string : string list −> unit ;

Description list diag string outputs a list of strings onto the standard output stream, after
translating them with translate for output(q.v.). The strings in the list are concatenated (with
spaces to separate them) and then output with diag string (q.v).

See Also diag string , diag line, list raw diag string .

SML

val local error : string −> int −> (unit −> string) list −> unit ;
val local warn : string −> int −> (unit −> string) list −> unit ;

Description An error or warning message is written to the standard output, then the function
returns. The arguments are identical in form to functions error and fail of DS/FMU/IED/DTD002.

See Also Functions error and fail .

SML

val look up general reader : string ∗ string −> (READER FUNCTION ∗ string) OPT ;
val look up specific reader : string −> (READER FUNCTION ∗ string) OPT ;
val look up named reader : string ∗ string −> (READER FUNCTION ∗ string) OPT ;

Description Looks up readers in the database of known readers. The argument strings are
matched against the first string given in the call of the add . . . reader , if the reader is known
then the corresponding constructor string and reader function are returned. The value Nil is
returned for an unknown reader.
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SML

val read symbol : READER ENV −> SYMBOL;

Description Reads one or more characters and returns a value of type SYMBOL. No errors
are reported by this routine. The routine reads as many characters as necessary to form a symbol.
End of file is returned as a SymEndOfInput .

SML

val reset use terminal : unit −> unit ;

Description Restores the state that controls use terminal to its default values. N.b., this
bypasses the check that use terminal makes on recursive calls (and so could cause a small memory
leak if not used with care).

SML

val skip comment : READER ENV −> unit ;

Description Skip over a comment which comprises a sequence of characters within which the
comment braces ‘(*’ and ‘*)’ are properly balanced. This routine is entered when the opening
round bracket of the comment has been read, the opening asterisk is the first unread character.
Note that Standard ML comments separate lexical items thus the calling routine should not simply
discard the comment, it might replace the comment with a space character to ensure the lexical
items remain separated.

Errors

5001 End of file found in comment

See Also Type READER ENV .

SML

val SML recogniser : string ∗ string ∗ ′a ∗ string −> ′a;

Description This routine is not intended to be directly called by any user code, it is provided
to allow the quotation of Standard ML text. The context of use of this routine is that the
“macro processing” of the Standard ML quotation “%<%%dntext%SML%cantext% 42 %>%” yields
the text “(ReaderWriterSupport.SML recogniser ("%<%", "SML", 42 , "%>%"))” which is
read by the Standard ML compiler.

Errors

5032 End of file found in Standard ML quotation
5050 Incorrect symbols starting or ending of Standard ML quotation: ‘?0‘, ‘?1‘, ‘?2‘

SML

val string of int3 : int −> string

Description The string representation of small positive integers is needed in various places,
particularly within Standard ML strings where some characters are denoted by their decimal code
in three digits, preceded by a backslash. Function string of int3 gives a three character with
leading zeros representation of small positive numbers. In general the routine PolyML.makestring
cannot be used, if the value last passed to PolyML.print depth is zero then PolyML.makestring
converts numbers into three dots. The intended use of this function is in building reader writer
extensions for other languages. In such places it is intended that the caller only supply suitable
arguments, getting this wrong indicates something wrong in the design of the caller. The text of
the message anticipates this usage.

Errors

5040 DESIGN ERROR:Number ?0 is too big or is negative

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



66 Chapter 4. INPUT AND OUTPUT

SML

val to ML string : string −> string

Description Converts characters which are to form part of a string literal into another string
which may be read by a Standard ML compiler and which has the same meaning. This is
intended to form the string representation of extended characters for passing them through to
a Standard ML compiler. Characters other than space, tab and newline which are outside the
range 32 to 126 (decimal) inclusive are converted to their four character equivalent of a backslash
followed by a three digit decimal number with leading zeroes.

SML

val translate for output : string −> string ;

Description Translates a string according to the macro processing rules used when outputting
text. The output produced depends on the setting of the control flag use extended chars, when
false the result will have no extended characters, the keyword forms will be used.

SML

val use file : string −> unit ;
val use file1 : string −> unit ;

Description Both of these functions compile and execute ProofPower-ML (i.e., Standard ML
extended to allow mathematical symbols) from the named file. If the file does not exist then the
it will read the file with the given name and suffix “.ML”, if that file does not exist it will try the
suffix “.sml”.

use file passes the file name string through translate for output before using it as an operating
system file name which is appropriate for file names given as ProofPower-ML strings. The variant
use file1 uses the string exactly as given.

See Also Error messages given with signature for ReaderWriter . Flag use file non stop mode.

Errors

5009 Cannot read file ‘?0‘ or ‘?0 .ML‘ or ‘?0 .sml‘

SML

val use string : string −> unit ;

Description Read Standard ML with extended characters allowed, from the given string.

See Also Error messages given with signature for ReaderWriter .

SML

val use terminal : unit −> unit ;

Description Read Standard ML with extended characters allowed, from the terminal. This
routine takes over the terminal, it handles all exceptions as the outermost level of the ML system.
To return to the default PolyML terminal reader use abandon reader writer .

This routine prompts to the conventions of PolyML but uses the strings “:> ” and “:# ”, the
PolyML prompts do not have the colon. These strings are held as the string controls ‘prompt1 ’
and ‘prompt2 ’ and thus may be altered.

Typing two control-D characters to the terminal prompt, or reading the end-of-file, causes the
function PolyML.quit to be called.

See Also Error messages given with signature for ReaderWriter . Control strings‘prompt1 ’ and
‘prompt2 ’.
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4.2 Output

SML

signature SimpleOutput = sig

Description Holds a variety of utility Standard ML functions concerned with simple output.
Related facilities may be found in structure ReaderWriter. Function ask at terminal (q.v) pro-
vides for prompted input of text from the terminal.

Strings containing extended characters and strings derived from HOL types and terms should be
passed through the ReaderWriter function translate for output (q.v) before being output. This
allows the proper output of keywords and extended characters on both graphic and simple ASCII
terminals.

SML

(∗ line length − integer control declared by new int control ∗)
Description An integer control dictating the output’s length of line available for printing.

See Also set line length, get line length

SML

val format list : (′a −> string) −> ′a list −> string −> string ;

Description format list formatter items seperator is used to format a list of items for printing
as a string, perhaps for printing. Given formatter , a function to format a single item, items, a
list of items, and seperator , a string to separate elements of a multi-element list, the resulting
string is the contatenation of the formatted items with interposed separators. The formatted head
element of the list becomes the left hand end of the result string.

Example

format list string of term [p1q,pxq,pa ∧ bq] ", ";
−−−>

val it = "p1q, pxq, pa ∧ bq" : string

SML

val get line length : unit −> int

Description Returns current output line length.

See Also set line length

SML

val list raw diag string : string list −> unit ;

Description list raw diag string outputs a list of strings onto the standard output stream.
The strings in the list are concatenated (with spaces to separate them) and then output with
raw diag string (q.v).

See Also raw diag string , raw diag line, list diag string .

SML

val raw diag line : string −> unit ;

Description raw diag line outputs a string to the standard output stream followed by a new
line. It is intended for use in printing formatted terms, theorems and the like (for which the pretty
printer will have included new lines within the string if necessary).

See Also raw diag string , diag line.
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SML

val raw diag string : string −> unit ;

Description raw diag string outputs a string on the standard output stream. If the string
exceeds the value of get line length it attempts to split the string into tokens, to fit within the
line length. A token is taken to be an initial string of spaces, followed by exclusively non-space
characters.

See Also list raw diag string , raw diag line, diag string .

SML

val set line length : int −> int

Description Set the output line length, returning the previous line length. Default length is
80, minimum length 20.

See Also get line length

Errors

1015 line length must be at least 20
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4.3 HOL Lexical Analysis

SML

signature Lex = sig

Description This is the signature of the structure which contains the lexical analyser for ICL
HOL.

Uses For use by those who wish to extend the system to handle languages other than HOL
which have a similar lexical structure.

SML

datatype ASSOC = LeftAssoc
| RightAssoc;

datatype FIXITY = Nonfix
| Binder
| Infix of ASSOC ∗ int
| Prefix of int
| Postfix of int ;

Description These data types are used in the symbol table and elsewhere to give the syntactic
status of a name. Nonfix means no special status. The integer components are the precedences
for infix, prefix or postfix status.
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SML

datatype HOL TOKEN = HTAqTm of TERM
| HTAqTy of TYPE
| HTName of string
| HTNumLit of string
| HTString of string
| HTChar of string
| HTBinder of string
| HTInOp of {name:string , is type op:bool ,

is term op:bool , prec : ASSOC ∗ int}
| HTPostOp of {name:string , prec : int}
| HTPreOp of {name:string , prec : int}
| HTAnd
| HTBlob
| HTColon
| HTElse
| HTIf
| HTIn
| HTLbrace
| HTLbrack
| HTLet
| HTLsqbrack
| HTRbrace
| HTRbrack
| HTRsqbrack
| HTSemi
| HTThen
| HTVert
| HTEos;

Description This is the data type of the output from the HOL lexical analyser.

Uses For use by those who wish to extend the system to handle languages other than HOL
which have a similar lexical structure.

SML

datatype INPUT = Text of string
| String of string
| Char of string
| Type of TYPE
| Term of TERM
| Separator of string
| Error of int ;

Description This is the data type of the input to the HOL lexical analyser.

Uses For use by those who wish to extend the system to handle languages other than HOL
which have a similar lexical structure.
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SML

val is alnum : string −> bool
val is copula : string −> bool
val is digit : string −> bool
val is macro : string −> bool
val is punctuation : string −> bool
val is space : string −> bool
val is symbolic : string −> bool

Description These functions classify character strings according to their first character. They
all return false if the argument is an empty string. The characters for which the various functions
return true are shown in the following table.

is alnum a letter or a number or the prime character ‘’’
is copula an underscore or the subscription, or superscription characters
is digit a decimal digit
is macro the character ‘%’ which introduces preprocessor macros
is punctuation ‘(’, ‘)’, ‘{’, }’, ‘[’, ‘]’, ‘:’, ‘;’, ‘,’, ‘|’, ‘•’ or ‘$’
is space a formatting character, i.e., space, tab, newline etc.
is symbolic any character which is not does not fall into any of the above classes

SML

val lex : (string list list) −> (string −> FIXITY ) −>
INPUT list −> HOL TOKEN list

Description This is the HOL lexical analyser.

The first parameter is the list of (exploded) strings which are to be taken as terminator symbols.
Terminators are recognised by looking for the first match in the list, so that if one terminator
is a leading substring of another the longer one must come first. No punctuation symbol should
appear in a terminator. For HOL this parameter is always obtained by calling the symbol table
function get terminators, which maintains the list of terminators sorted in order of decreasing
length.

The second parameter is used to classify names as binder, infix, prefix, postfix or nonfix.

The third parameter is the input to be lexically analysed.

Uses For use by those who wish to extend the system to handle languages other than HOL
which have a similar lexical structure.
Errors

15001 antiquotation not allowed after ‘$‘
15002 ‘$‘ not allowed at end of quotation
15003 lexical analyser or reader/writer error detected (?0 )
15004 ill−formed keyword symbol
15005 ?0 is not a valid character literal (must contain exactly one character)
15006 error code ?0 reported by reader/writer

The last of these error messages occurs, e.g., when a keyword symbol has been entered incorrectly
and is preceded by a more comprehensive error message from the reader/writer.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



72 Chapter 4. INPUT AND OUTPUT

SML

val num lit of string : string −> (INTEGER ∗ (INTEGER ∗ INTEGER) OPT ) OPT ;

Description The argument to this function should be a string representing a numeric literal
(either a natural number, N , or a floating point number with optional, optionally signed, exponent
part, X .Y or X .YeZ . The result value is Nil if the string cannot be interpreted as a numeric
literal. Otherwise, the result value is N , or (XY ,P , 0 ) or (XY ,PZ ), where XY stands for the
natural number obtained by concatenating the digit sequences X and Y and P is the number of
digits in Y .
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4.4 Pretty Printing

SML

signature PrettyPrinter = sig

SML

(∗ Flag pp top level depth : integer control , default −1 ∗)
(∗ Flag pp format depth : integer control , default −1 ∗)
Description These control the depth to which HOL types and terms are printed. Control
pp top level depth applies to values printed as part of Standard ML top-level expressions. Control
pp format depth applies to values printed by the “format . . .” routines. When these controls are
negative, types and terms are fully printed, otherwise the value indicates how deeply the expression
is printed where zero indicates suppressing the whole type or term. Suppressed types and terms,
or parts thereof, are shown as three dots.

See Also Functions format term, format term1 , format thm, format thm1 , format type and
format type1 .

SML

(∗ Flag pp print assumptions : boolean control , default true ∗)
Description This controls whether the assumptions of values of type THM are printed. The
default is to print assumptions. If assumptions are not printed then each is shown as three dots.

See Also Functions format thm and format thm1 .

SML

end (∗ of signature PrettyPrinter ∗);

SML

val format term : bool −> TERM −> string list ;
val format term1 : bool −> int −> TERM −> string list ;

Description Produce a number of lines, one string per line, containing a pretty printing of the
given HOL Term. The text is suitable for directly outputting via the diag line and diag string
routines BasicIO .output . If the boolean argument is set false then the strings produced from
terms whose language is the same as that of the current theory will not include the term quotation
symbols, in all other cases the term quotation symbols will be included. Line width is given
by the integer in format term1 , or for format term the current line width (as maintained by
set line length, q.v.) is used.

See Also Pretty printer controls: pp add brackets, pp show HOL types, pp types on binders
and pp let as lambda.

SML

val format thm : THM −> string list ;
val format thm1 : int −> THM −> string list ;

Description Produce a number of lines, one string per line, containing a pretty printing of the
given HOL theorem. The text is suitable for directly outputting via the diag line and diag string
routines The theorem is printed with a comma separated list of terms for the assumptions, a
turnstile and finally the term representing the conclusion. Assumptions in the same language as
the conclusion are not enclosed with the term quotation symbols. Other assumptions have term
quotation symbols. Line width is given by the integer in format term1 , or for format term the
current line width (as maintained by set line length, q.v.) is used.

See Also Pretty printer controls: pp add brackets, pp show HOL types, pp types on binders
and pp let as lambda.
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SML

val format type : bool −> TYPE −> string list ;
val format type1 : bool −> int −> TYPE −> string list ;

Description Produce a number of lines, one string per line, containing a pretty printing of the
given HOL type. The text is suitable for directly outputting via the diag line and diag string
routines If the boolean argument is set true then type quotation symbols will be included in the
returned strings, when false they are excluded. Line width is given by the integer in format term1 ,
or for format term the current line width (as maintained by set line length, q.v.) is used.

See Also Pretty printer control: pp add brackets.

SML

val pp init : unit −> unit ;

Description Initialise the pretty printing system so that values of types TERM , TYPE and
THM will be prettily printed out as “top level” Standard ML values.

SML

val show type : bool −> int OPT −> OppenFormatting .OPPEN FUNS
−> TYPE −> unit ;

val show term : bool −> int OPT −> OppenFormatting .OPPEN FUNS
−> TERM −> unit ;

val show thm : int OPT −> OppenFormatting .OPPEN FUNS
−> THM −> unit ;

Description These functions enable programming of Oppen-style pretty-printing for data types
that contain embedded types, terms and theorems.
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4.5 Theory Lister

SML

signature Lister = sig

Description This is the signature of the structure Lister which contains functions for listing
theories.

SML

signature ListerSupport = sig
datatype LISTER SECTION =

LSBanner | LSParents | LSChildren
| LSConsts | LSAliases | LSUndeclaredAliases
| LSTypes | LSTypeAbbrevs | LSUndeclaredTypeAbbrevs
| LSFixity | LSTerminators | LSUndeclaredTerminators
| LSAxioms | LSDefns | LSThms
| LSTrailer
| LSADString of string −> (string list ∗ string)
| LSADStrings of string −> (string list ∗ string list)
| LSADThms of string −> (string list ∗ THM ) list
| LSADTerms of string −> (string list ∗ TERM ) list
| LSADTypes of string −> (string list ∗ TYPE ) list
| LSADTables of string −> (string list ∗ string list) list
| LSADSection of string −> string
| LSADNestedStructure of string −> (string ∗ LISTER SECTION list);

Description ListerSupport is the signature of a structure containing a functions, gen theory
lister and gen theory lister1 for creating variant theory listers, e.g. for languages other than
ProofPower-HOL. The data type ListerSupport.LISTER SECTION controls what is listed. Each
constructor of this type determines an element of the listing. The first block of constructors for
the type LISTER SECTION cause sections of the listing like those produced by the HOL theory
lister to be included (except that LSBanner uses the first argument to print , output , or output1
to compute the contents of the banner heading.) The second block of constructors are for creating
application-defined sections of the listing and in each case the constructor takes as its operand a
function which is passed the name of the theory being listed as argument. LSADSection produces
a section header containing the result of applying the argument function to the theory name
unless that result is an empty string, in which case it has no effect. The others are for printing
(labelled) individual strings (LSADString) or columns of strings (LSADStrings), or (labelled) lists
of theorems, terms, types or rows of strings (LSADTables). In each case the first component of
(each element of) the result is used as a list of labels for the elements and is printed in the left
margin and the second component is indented.

SML

(∗ sorted listings − flag − default false ∗)
(∗ listing indent − integer − control default 2 ∗)
Description These two system control variables influence the behaviour of the functions
list theory and output theory which are used to generate theory listings. If sorted listings is
false (the default) then items are unsorted, otherwise they are sorted according to string order
(q.v.). listing indent sets the indent level of the listings in terms of a number of tabstops, and its
default is 2.
Errors

33052 integer control ‘?0‘ must be greater than zero

See Also output theory
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SML

val gen theory lister : LISTER SECTION list −>
{ print : (string −> string) −> string −> unit ,

out : (string −> string) −> {theory : string , out file: string} −> unit ,
out1 : (string −> string) −> {theory : string , out file: string} −> unit};

val gen theory lister1 : LISTER SECTION list −>
{ print : (string −> string) −> string −> unit ,

out : (string −> string) −> {theory : string , out file: string} −> unit ,
out1 : (string −> string) −> {theory : string , out file: string} −> unit};

end (∗ of structure ListerSupport ∗) (∗ of structure ListerSupport ∗);
Description The functions ListerSupport .gen theory lister and
ListerSupport .gen theory lister1 are used to create customised theory listers and can also be
used to create formatted listings of other kinds.

They return a triple of functions each of which has as its first argument a function to compute
the contents of the banner line in the listing from the name of the theory name. Given such an
argument, the three components, print , out , and out1 deliver results which behave very much
like print theory , output theory and output theory1 , respectively, as regards where they send the
listing and whether or not they insert LATEX formatting controls in it, but what they put in the
listing is determined by the argument to gen theory lister . This argument is a list of elements of
type LISTER SECTION, q.v.

The integer control listing indentand the flag sorted listings control the print of labelled lists of
theorems, terms etc. listing indent gives the number of spaces of indent from the left margin of
the lists. If sorted listings is true, the lists will be sorted using the concatenation of the labels as
the sort key otherwise they are printed in the order supplied.

gen theory lister1 is just like gen theory lister except that it does not check whether the theory
exists or whether it is in scope.

SML

val output theory1 : {theory :string , out file:string} −> unit

Description output theory1{theory = thy , out file = file} causes a listing of the theory thy to
be output to the file file. The listing is in a format suited for display on the screen or for viewing
with a text editor. The theory must be in scope, i.e. it must be the current theory or one of its
ancestors.

See Also output theory print theory

Errors

33050 The theory ?0 is not in scope
33051 There is no theory called ?0
33101 i/o failure on file ?0 (?1 )
33102 the theory ?0 does not exist
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SML

val output theory : {theory :string , out file:string} −> unit

Description output theory{theory = thy , out file = file} causes a listing of the theory thy to be
output to the file file. The listing is in a format suited for printing using the ICL HOL document
preparation system. The theory must be in scope, i.e. it must be the current theory or one of its
ancestors.

See Also output theory1 print theory

Errors

33050 The theory ?0 is not in scope
33051 There is no theory called ?0
33101 i/o failure on file ?0 (?1 )
33102 the theory ?0 does not exist

SML

val print theory : string −> unit

Description print theory thy causes a listing of the theory thy to be written to the standard
output. The listing is in a format suited for display on the screen. The theory must be in scope,
i.e. it must be the current theory or one of its ancestors.

Errors

33050 The theory ?0 is not in scope
33051 There is no theory called ?0

See Also output theory output theory1
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4.6 Z Theory Lister

SML

signature ZLister = sig

Description This is the signature of the structure ZLister which contains functions for listing
ProofPower-Z theories.

SML

val z output theory : {theory :string , out file:string} −> unit

Description z output theory{theory = thy , out file = file} causes a listing of the theory thy
to be output to the file file. The listing is in a format suited for printing using the ProofPower
document preparation system. The theory must be in scope, i.e. it must be the current theory
or one of its ancestors.

See Also output theory z print theory z output theory1

Errors As for output theory .

SML

val z output theory1 : {theory :string , out file:string} −> unit

Description z output theory1{theory = thy , out file = file} causes a listing of the theory thy
to be output to the file file. The listing is in a format suited for display on the screen or for
viewing with a text editor. The theory must be in scope, i.e. it must be the current theory or
one of its ancestors.

See Also output theory1 z print theory z output theory

Errors As for output theory1 .

SML

val z print fixity : string −> unit

Description If id has been defined as an infix operator, or other kind of fancy-fix symbol,
z print fixity id prints out a Z fixity paragraph showing the template or templates in which id
appears.

Errors

65100 there are no fixity paragraphs in scope containing ?0

SML

val z print theory : string −> unit

Description z print theory thy causes a listing of the ProofPower-Z theory thy to be written
to the standard output. The listing is in a format suited for display on the screen. The theory
must be in scope, i.e. it must be the current theory or one of its ancestors.

Errors As for print theory .

See Also print theory z output theory z output theory1
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HOL TYPES AND TERMS

5.1 Syntactic Manipulations

It should be noted that the functions documented in this section are drawn from two signatures,
TypesAndTerms and icl ′TypesAndTerms.

Since the former includes the latter, an object available under the name xxx , say, or in full TypesAndTerms.xxx ,
is also available under the name icl ′TypesAndTerms.xxx . It is the intention that users should
not access objects by names of the form icl ′TypesAndTerms.xxx . In practice, since the structure
TypesAndTerms is open, the unqualified name xxx will do unless you have redefined the name xxx .

SML

signature pp′TypesAndTerms = sig

Description This provides the type of HOL types: TYPE , of HOL terms: TERM , and some
functions upon them. A user should access all the elements of this signature through signature
DerivedTerms (q.v).

SML

signature TypesAndTerms = sig

Description This provides various functions on derived TERM s, which are not considered
necessary to create the abstract data type THM . It also contains, by inclusion, the types, and
functions on the types TERM and TYPE from structure pp′TypesAndTerms(q.v.).

SML

datatype DEST SIMPLE TYPE =
Vartype of string

| Ctype of (string ∗ TYPE list);

Description This is the type of simple destroyed types, related to the type TYPE by
dest simple type(q.v) and mk simple type(q.v.). The value constructors correspond to type vari-
ables and compound types.

SML

datatype DEST SIMPLE TERM =
Var of string ∗ TYPE

| Const of string ∗ TYPE
| App of TERM ∗ TERM
| Simpleλ of TERM ∗ TERM ;

Description This is the simple type of destroyed terms, related to the type TERM by
dest simple term(q.v) and mk simple term(q.v.). The four value constructors represented de-
stroyed variables, constants, applications and simple λ-abstractions respectively.

Uses In writing pattern-matching functions upon HOL terms.

See Also DEST TERM .
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SML

datatype DEST TERM = DVar of string ∗ TYPE |
DConst of string ∗ TYPE |
DApp of TERM ∗ TERM |
Dλ of TERM ∗ TERM |
DEq of TERM ∗ TERM |
D⇒ of TERM ∗ TERM |
DT |
DF |
D¬ of TERM |
DPair of TERM ∗ TERM |
D∧ of TERM ∗ TERM |
D∨ of TERM ∗ TERM |
D⇔ of TERM ∗ TERM |
DLet of ((TERM ∗ TERM )list ∗ TERM ) |
DEnumSet of TERM list |
D∅ of TYPE |
DSetComp of TERM ∗ TERM |
DList of TERM list |
DEmptyList of TYPE |
D∀ of TERM ∗ TERM |
D∃ of TERM ∗ TERM |
D∃1 of TERM ∗ TERM |
Dε of TERM ∗ TERM |
DIf of (TERM ∗ TERM ∗ TERM ) |
DN of INTEGER |
DFloat of INTEGER ∗ INTEGER ∗ INTEGER |
DChar of string |
DString of string ;

Description This type is that of a term destroyed using the appropriate derived destructor
functions (e.g. dest eq) as well as the primitive ones. The type given to D∅ and DEmptyList is
the type of an element of the associated set or list. The type is related to TERM by mk term
(q.v.) and dest term (q.v)

See Also DEST SIMPLE TERM

SML

eqtype TERM;

Description This is the type of well-formed HOL terms. Objects of this type are manipulated
by term constructor, destructor and recogniser functions, such as mk app, dest λ and is var .

SML

eqtype TYPE;

Description All HOL terms will be “typed”, by associating them with an object of type TYPE .
A type may either be a type variable or a compound type.

This is not an equality type (i.e. = cannot be used in tests for equality - see =: instead.).

SML

val =$ : (TERM ∗ TERM ) −> bool ;

Description This is the (infix) equality test for HOL terms. It is retained for backwards
compatibility — the type of HOL terms is now an equality type.

Instead of equality it is often preferable to test for α-convertibility, using ∼=$
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SML

val =: : (TYPE ∗ TYPE ) −> bool

Description This is the (infix) equality test for HOL types. It is retained for backwards com-
patibility — the type of HOL types is now an equality type.

SML

val bin bool op : string −> TYPE −> TYPE −> TERM ;

Description Returns a constant with the given name, and type

p :BOOL → BOOL → BOOLq

The type arguments are dummies, present only to make the function have an acceptable signature
for certain other functions.

SML

val BOOL : TYPE ;

Description The HOL type of truth values:

Definition

val BOOL = p:BOOLq;

See Also Theory “min”.

SML

val CHAR : TYPE ;

Description This is the HOL type of single characters.

Definition

val CHAR = p:CHARq;

See Also Theory “char”.

SML

val dest app: TERM −> (TERM ∗ TERM );

Description Destroys a function application into the function and argument. Note that many
derived term constructs, e.g. all quantifications, are also applications.

Definition

dest app pf tq = (pf q, ptq)
dest app p∀ x • tq = (p$∀q, pλ x • tq)

Errors

3010 ?0 is not of form: pt1 t2q

SML

val dest binder : string −> int −> string −> TERM −> TERM ∗ TERM ;

Description A generic method of implementing binder destructor functions:

Definition

dest binder area msg binder nm pbinder(λ varstruct• body)q =
(pvarstructq, pbodyq)

where binder is a constant whose name is binder nm. The varstruct may be any allowed variable
structure.

See Also dest simple binder

Failure If the term cannot be destroyed, then the error will be from area, with a message
indexed by msg .

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



82 Chapter 5. HOL TYPES AND TERMS

SML

val dest bin op : string −> int −> string −> TERM −> (TERM ∗ TERM );

Description dest bin op area msg rator nm term first assumes that term is of the form
prator t1 t2q, where rator is a constant with name rator nm, and attempts to return the pair
(t1 , t2 ).

Example

dest bin op "dest ∧" 4032 "∧" pa ∧ bq = (paq, pbq)

If the function fails it will fail with message msg , area area and with the string form of term.

SML

val dest char : TERM −> string ;

Description Destroy a character literal.

Example

dest char p‘a‘q = "a"

Errors

3024 ?0 is not a character literal

SML

val dest const: TERM −> (string ∗ TYPE );

Description This destroys a constant into its name and type.

Errors

3009 ?0 is not a constant

SML

val dest ctype : TYPE −> string ∗ TYPE list ;

Description Extract the components of a compound type.

Definition

dest ctype p:(ty1 ,ty2 ,...)tcq = ("tc", [p:ty1q,p:ty2q,...])
dest ctype p:ty tcq = ("tc", [p:tyq])
dest ctype p:tcq = ("tc", [])

Errors

3001 ?0 is not a compound type

SML

val dest empty list : TERM −> TYPE ;

Description A derived term destructor function for empty lists.

Definition

dest list p[]:ty LISTq = p:tyq
Errors

4034 ?0 is not of form: p[]q

SML

val dest enum set : TERM −> (TERM list);

Description A derived term destructor function for enumerated sets.

Definition

dest enum set p{a; b; ...}q = [paq, pbq, ...]

Errors

4011 ?0 is not of form: p{t1 , ...}q
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SML

val dest eq : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for equations.

Definition

dest eq pa = bq = (paq,pbq)
dest eq pa ⇔ bq = (paq,pbq)

Errors

3014 ?0 is not of form: pt = uq

SML

val dest float : TERM −> INTEGER ∗ INTEGER ∗ INTEGER;

Description Destroy a floating point literal.

Definition

dest float pXXYY .q = (pxq, p0q, p0q)
dest float pXX .YYeZZq = (pxq, ppq, p0q)
dest float pXX .YYeZZq = (pxq, ppq, pzq)

where x is the natural number with decimal representation XXYY , p is the number of digits after
the point in XX .YY and z is the integer represented by ZZ (with p = z = 0 in the first case and
z = 0 in the second).

Errors

4042 ?0 is not a floating point literal

SML

val dest f : TERM −> unit ;

Description This will return () if given the term pFq, and otherwise fail.

Errors

4037 ?0 is not : pFq

SML

val dest if : TERM −> (TERM ∗ TERM ∗ TERM );

Description Destroy a conditional.

Definition

dest if pif c then y else nq = (pcq, pyq, pnq)

Errors

4006 ?0 is not of form: pif c then y else nq
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SML

val dest let : TERM −> ((TERM ∗ TERM )list ∗ TERM );

Description A derived term destructor function for let-terms. See mk let for details of for-
mat. The distinction between a local function definition, and a variable structure bound to an
abstraction is lost, with both being destroyed to the second form.

Example

dest let(mk let([(pf xq, pyq)],pbdyq)) =
([(pf q, pλ x• yq)], pbdyq)

dest let(mk let([(pf q, pλ x• yq)],pbdyq)) =
([(pf q, pλ x• yq)], pbdyq)

Errors

4009 ?0 is not of form: plet ... in ...q

dest let (mk let([], term)) will actually fail (unless term is already a let-term), as apply mk let
to ([], term)) will just return term.

SML

val dest list : TERM −> (TERM list);

Description A derived term destructor function for list-terms.

Definition

dest list p[a; b; ...]q = [paq, pbq, ...]
dest list p[]q = []

Errors

4015 ?0 is not of form: p[t1 ,...]q

SML

val dest mon op : string −> int −> string −> TERM −> TERM ;

Description dest mon op area msg rator nm term assumes that term is of the form prator tq,
where rator is a constant with name rator nm, and the function attempts to return t .

Example

dest mon op "dest ¬" 4029 "¬" p¬ tq = ptq

Failure The failure message for failing to destroy the term will be from area area, and will have
the text indexed by msg , and will have as argument the string form of term.

SML

val dest multi ¬ : TERM −> (int ∗ TERM );

Description dest multi ¬ t will strip ¬ from t , returning the number of times, as well as the
result. It will return (0 , t) if t is either not boolean, or has no negations.

Example

dest multi ¬ p¬(¬ T )q = (2 , pTq)

SML

val dest pair : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for pairs.

Definition

dest pair p(t1 , t2 )q = (pt1q, pt2q)

Errors

4003 ?0 is not of form: p(t1 ,t2 )q
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SML

val dest set comp : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for set comprehensions.

Example

dest set comp p{ x | x > 5}q = (pxq, px > 5q)

Errors

4013 ?0 is not of form: p{v | p}q

SML

val dest simple binder : string −> int −> string −> TERM −> TERM ∗ TERM ;

Description Executing dest simple binder area msg binder nm pbinder(λ var • body)q, where
binder is a constant with the name binder nm, will give (pvarq, pbodyq).

Example

dest simple binder "dest simple ∀" 3032 "∀" p∀ x • tq = (pxq,ptq)

See Also dest binder

Failure If the term cannot be destroyed, then the error will be from area, with a message
indexed by msg , and argument the string form of term.

SML

val dest simple term : TERM −> DEST SIMPLE TERM ;

Description An injective function, that destroys a term, returning its top-level structure, and
the associated constituent parts.

See Also DEST SIMPLE TERM

SML

val dest simple type : TYPE −> DEST SIMPLE TYPE ;

Description This function destroys a HOL type into something of type SIMPLE DEST TYPE
(q.v).

SML

val dest simple ∀ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ∀-terms. It cannot destroy paired abstrac-
tion ∀-terms, being the inverse of mk simple ∀.
Definition

dest simple ∀ p∀ var • bodyq = (pvarq, pbodyq)

See Also dest ∀
Errors

3032 ?0 is not of form: p∀ var • bodyq

SML

val dest simple ∃1 : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for simply abstracted ∃ 1 -terms. It may de-
stroy only simple abstraction ∃ 1 -terms, being the inverse of mk simple ∃ 1 .

Definition

dest simple ∃1 p∃1 var• bodyq = (pvarq, pbodyq)

Errors

4019 ?0 is not of form: p∃1 v• tq

See Also dest ∃ 1
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SML

val dest simple ∃ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ∃-terms. It cannot destroy paired abstrac-
tion ∃-terms, being the inverse of mk simple ∃.
Definition

dest simple ∃ p∃ var • bodyq = (pvarq, pbodyq)

See Also dest ∃
Errors

3034 ?0 is not of form: p∃ var • bodyq

SML

val dest simple λ: TERM −> (TERM ∗ TERM );

Description Destroys a simple λ-abstraction. It cannot destroy paired λ-abstractions, being a
inverse of mk simple λ.

Definition

dest simple λ pλ v • tq = (pvq, ptq)

See Also dest λ

Errors

3011 ?0 is not of form: pλ var • tq

SML

val dest string : TERM −> string ;

Description Destroy a string literal.

Example

dest string p"abc"q = "abc"

Errors

3025 ?0 is not a string literal

SML

val dest term : TERM −> DEST TERM

Description This function returns the “best” interpretation of a term in the form of an object
of type DEST TERM . E.g. it will return DEq( 1 2 ) rather than DComb(($ = 1 ), 2 ). It will
also use the paired abstraction forms of functions in preference to the simple forms, e.g., it uses
dest λ not dest simple λ.

The function assumes that the name of a constant is sufficient to identify it without checking the
type, as with, e.g., dest bin op(q.v).

See Also mk term

SML

val dest t : TERM −> unit ;

Description This will return () if given the term pTq, and otherwise fail.

Errors

4036 ?0 is not : pTq
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SML

val dest vartype : TYPE −> string ;

Description Extract the name of a type variable:

Definition

dest vartype p: ′tvq = "′tv"

Errors

3019 ?0 is not a type variable
3027 STRING STORE ERROR: cannot translate internal id (?0 ) to string

SML

val dest var: TERM −> (string ∗ TYPE );

Description This destroys a term variable into its name and type.

Errors

3007 ?0 is not a term variable

SML

val dest ∅ : TERM −> TYPE ;

Description A derived term destructor function for empty enumerated sets.

Definition

dest ∅ p∅:ty SETq = p:tyq
Errors

4035 ?0 is not of form: p∅q

SML

val dest ⇔ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for bi-implications. N.B. this may be success-
fully applied to boolean equalities.

Definition

dest ⇔ pt1 ⇔ t2q = (pt1q, pt2q)

Errors

4031 ?0 is not of form: pt1 ⇔ t2q

SML

val dest → type : TYPE −> (TYPE ∗ TYPE );

Description Extract the two constituent types of a function type.

Definition

dest → type p:ty1 → ty2q = (p:ty1q, p:ty2q)

Errors

3022 ?0 is not of form: p:ty1 → ty2q

SML

val dest ∧ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for conjunctions.

Definition

dest ∧ pt1 ∧ t2q = (pt1q, pt2q)

Errors

4032 ?0 is not of form: pt1 ∧ t2q
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SML

val dest ∨ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for disjunctions.

Definition

dest ∨ pt1 ∨ t2q = (pt1q, pt2q)

Errors

4027 ?0 is not of form: pt1 ∨ t2q

SML

val dest ¬ : TERM −> TERM ;

Description A derived term destructor function for negations.

Definition

dest ¬ p¬ tq = ptq
Errors

4029 ?0 is not of form: p¬ tq

SML

val dest ⇒ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for implications, returning the antecedent and
consequent.

Definition

dest ⇒ pa ⇒ bq = (paq,pbq)

Errors

3016 ?0 is not of form: pt ⇒ uq

SML

val dest ∀ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ∀-terms. It may destroy a paired abstrac-
tion ∀-term, being the inverse of mk ∀.
Definition

dest ∀ p∀ varstruct• bodyq = (pvarstructq, pbodyq)

Errors

4017 ?0 is not of form: p∀ vs• tq

SML

val dest ∃1 : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ∃ 1 -terms. It may destroy paired abstrac-
tion ∃ 1 -terms, being the inverse of mk ∃ 1 .

Definition

dest ∃1 p∃1 varstruct• bodyq =
(pvarstructq, pbodyq)

Errors

4021 ?0 is not of form: p∃1 vs• tq

See Also dest simple ∃ 1
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SML

val dest ∃ : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ∃-terms. It may destroy paired abstraction
∃-terms, being the inverse of mk ∃.
Definition

dest ∃ p∃ varstruct• bodyq = (pvarstructq, pbodyq)

Errors

4020 ?0 is not of form: p∃ vs• tq

See Also dest simple ∃
SML

val dest × type : TYPE −> (TYPE ∗ TYPE )

Description dest × type p :ty 1 × ty 2q returns (p :ty 1q, p :ty 2q).

Errors

4018 ?0 is not of the form p:ty1 × ty2q

SML

val dest ε : TERM −> (TERM ∗ TERM );

Description A derived term destructor function for ε-terms.

Definition

dest ε pε varstruct• bodyq = (pvarstructq, pbodyq)

Errors

4023 ?0 is not of form: pε vs• tq

SML

val dest λ: TERM −> (TERM ∗ TERM );

Description Destroys a λ-abstraction. It can destroy paired λ-abstractions, being an inverse
of mk λ.
Definition

dest λ pλ vs• tq = (pvsq, ptq)

See Also dest simple λ

Errors

4002 ?0 is not of form: pλ vs• tq

Further details of the errors will be given, before the above exceptions are raised.

SML

val dest N : TERM −> INTEGER;

Description Destroy a numeric literal.

Example

dest N p5q = 5 ;

Errors

3026 ?0 is not a numeric literal

SML

val equality : TYPE −> TYPE −> TERM ;

Description Returns the constant p$ = q upon terms with the first type argument. The second
type is a dummy argument, present only to make the function have an acceptable signature for
certain other functions.
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SML

val frees : TERM −> TERM list ;

Description Extract the free term variables within the term argument. The resulting variables
will be in reverse order of first occurrence (for a term viewed without fixity properties, such as
infix variables).

See Also dest frees

SML

val gen vars : TYPE list −> TERM list −> TERM list ;

Description gen vars tyl tml generates a list of differently named term variables, with the
types in tyl , whose names are not present within any of the terms in tml as variable names.

It will be much faster to make one call to this function with a list of types, than to make the
equivalent number of individual calls.

SML

val get variant suffix : unit −> string ;

Description Returns the string control variant suffix used to create variant names in
string variant (q.v.) and its relatives. The string is set by set variant suffix (q.v.).

SML

val inst type : ((TYPE ∗ TYPE ) list) −> TYPE −> TYPE ;

Description inst type alist type recursively descends through type, replacing any type variables
by whatever the association list alist associates with them. If the association list does not contain
a type variable found in type, then that type variable will not be changed. Replaced types are
not recursively processed by this function.

Errors

3019 ?0 is not a type variable

SML

val inst : TERM list −> (TYPE ∗ TYPE ) list −> TERM −> TERM ;

Description inst avlist slist term instantiates the type variables of term with the associated
types found in slist . An element of slist will be (return, tv), where tv is a type variable that is to
be instantiated to return. It will rename bound variables as necessary to prevent name capture
problems. It will also not allow free variables to become the same as those in the avoidance list,
avlist , or to become bound.

It partially evaluates with two arguments.

Errors

3007 ?0 is not a term variable
3019 ?0 is not a type variable
3020 Internal error in type instantiation (?0 would become bound)

SML

val is app : TERM −> bool ;

Description Return true only when the term is a function application (i.e. of form pf xq), and
false otherwise: no exceptions can be raised. Note that many derived term constructs, e.g. all
quantifications, are also applications. Thus is app p∀ x • tq will return true.
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SML

val is binder : string −> TERM −> bool ;

Description is binder binder nm tm is true only when tm is of the form pbinder(λ vs• body)q,
where binder is a constant whose name is binder nm, and vs an allowed variable structure, and
false otherwise. It cannot raise an exception.

See Also is simple binder

SML

val is bin op : string −> TERM −> bool ;

Description is bin op rator nm term returns true iff. term is of the form prator t1 t2q, and
rator is a constant with name rator nm. It cannot raise an exception.

Example

is bin op "∧" pa ∧ bq = true

SML

val is char : TERM −> bool ;

Description Return true only when the term is a character literal (e.g. p‘a‘q), and false
otherwise: no exceptions can be raised.

SML

val is const : TERM −> bool ;

Description Return true only when the term is a constant, and false otherwise: no exceptions
can be raised. Note that even if the constant has not been declared, or has an inappropriate type
it will still satisfy this predicate.

SML

val is ctype : TYPE −> bool ;

Description Return true only when the type is a compound type, and false otherwise: no
exceptions can be raised. If the argument isn’t a compound type then it must be a type variable.

SML

val is empty list : TERM −> bool ;

Description Return true only when the term is an empty list-term, p[]q, and false otherwise:
no exceptions can be raised.

SML

val is enum set : TERM −> bool ;

Description Return true only when the term is an enumerated set (i.e. of form p{a; b; ...}q),
and false otherwise: no exceptions can be raised.

SML

val is eq : TERM −> bool ;

Description Return true only when the term is an equation (i.e. of form pa = bqor pa ⇔ bq),
and false otherwise: no exceptions can be raised.

SML

val is float : TERM −> bool ;

Description Return true when the term is a floating point literal. and false otherwise: no
exceptions are raised.
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SML

val is free in : TERM −> TERM −> bool ;

Description is free in v term returns true iff. there is a free occurrence of v in term. It will
raise an exception if the first argument is not a term variable.

Errors

3007 ?0 is not a term variable

SML

val is free var in : (string ∗ TYPE ) −> TERM −> bool ;

Description Given a destroyed term variable, return true only when it is free within the term
supplied as a second argument, and false otherwise: no exceptions can be raised.

SML

val is f : TERM −> bool ;

Description Return true only when the term is pF : BOOLq, and false otherwise: no exceptions
can be raised.

SML

val is if : TERM −> bool ;

Description Return true only when the term is a conditional (i.e. of form pif a then b else cq),
and false otherwise: no exceptions can be raised.

SML

val is let : TERM −> bool ;

Description Return true only when the term is a let-term (i.e. of form plet x = y in zq), and
false otherwise: no exceptions can be raised.

SML

val is list : TERM −> bool ;

Description Return true only when the term is a list-term (i.e. of form p[a; b; ...]q), and false
otherwise: no exceptions can be raised.

SML

val is mon op : string −> TERM −> bool ;

Description is mon op rator nm term returns true iff. term is of the form rator t , where
rator is a constant with name rator nm. It cannot raise an exception.

Example

is mon op "¬" p¬ tq = ptq

SML

val is pair : TERM −> bool ;

Description Return true only when the term is a pair (i.e. of the form p(a, b)q), and false
otherwise: no exceptions can be raised.

SML

val is set comp : TERM −> bool ;

Description Return true only when the term is a set comprehension (i.e. of form p{v | p}q),
and false otherwise: no exceptions can be raised.
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SML

val is simple binder : string −> TERM −> bool ;

Description is simple binder binder nm term returns true iff. argument term is of the form
pbinder(λ var • body)q, where binder is a constant with the name binder nm.

See Also is binder

SML

val is simple ∀ : TERM −> bool ;

Description A derived term test for simple ∀-terms (i.e. of form p∀ x • tq), not formed with
paired abstractions.

See Also is ∀
SML

val is simple ∃1 : TERM −> bool ;

Description Return true only when the term is a ∃ 1 -term (i.e. of form p∃1 x • tq), formed
only by simple abstraction, and false otherwise: no exceptions can be raised.

See Also is ∃ 1

SML

val is simple ∃ : TERM −> bool ;

Description A derived term test for ∃-terms (i.e. of form p∃ x • tq), not formed with paired
abstractions.

See Also is ∃
SML

val is simple λ : TERM −> bool ;

Description Is the term a simple λ-abstraction (i.e. of form pλ x • tq).

See Also is λ

SML

val is string : TERM −> bool ;

Description Return true only when the term is a string literal (e.g. p"abc"q), and false other-
wise: no exceptions can be raised.

SML

val is type instance : TYPE −> TYPE −> bool ;

Description is type instance ty 1 ty 2 returns true iff ty 1 is an instance of ty 2 . It cannot
raise an exception.

SML

val is t : TERM −> bool ;

Description Return true only when the term is pT : BOOLq, and false otherwise: no exceptions
can be raised.

SML

val is vartype : TYPE −> bool ;

Description Return true only when the type is a type variable, and false otherwise: no excep-
tions can be raised. If the argument isn’t a type variable then it must be a compound type.
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SML

val is var : TERM −> bool ;

Description Return true only when the term is a variable, and false otherwise: no exceptions
can be raised.

SML

val is ∅ : TERM −> bool ;

Description Return true only when the term is an empty enumerated set, p∅q, and false
otherwise: no exceptions can be raised.

SML

val is ⇔ : TERM −> bool ;

Description Return true only when the term is a bi-implication (i.e. of form pa ⇔ bq), and
false otherwise: no exceptions can be raised. N.B. this may be successfully applied to boolean
equations.

SML

val is → type : TYPE −> bool ;

Description Return true only when the type is a function type, i.e. of form p :ty1 → ty2q, and
false otherwise: no exceptions can be raised.

SML

val is ∧ : TERM −> bool ;

Description Return true only when the term is a conjunction (i.e. of form pa ∧ bq), and false
otherwise: no exceptions can be raised.

SML

val is ∨ : TERM −> bool ;

Description Return true only when the term is a disjunction (i.e. of form pa ∨ bq), and false
otherwise: no exceptions can be raised.

SML

val is ¬ : TERM −> bool ;

Description Return true only when the term is a negation (i.e. of form p¬ xq), and false
otherwise: no exceptions can be raised.

SML

val is ⇒ : TERM −> bool ;

Description Return true only when the term is an implication (i.e. of form pa ⇒ bq), and
false otherwise: no exceptions can be raised.

SML

val is ∀ : TERM −> bool ;

Description Return true only when the term is a ∀-term (i.e. of form p∀ vs • tq), possibly
formed with paired abstraction, and false otherwise: no exceptions can be raised.

See Also is simple ∀
SML

val is ∃1 : TERM −> bool ;

Description Return true only when the term is a ∃ 1 -term (i.e. of form p∃1 vs • tq), possibly
formed with paired abstraction, and false otherwise: no exceptions can be raised.

See Also is simple ∃ 1
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SML

val is ∃ : TERM −> bool ;

Description Return true only when the term is a ∃-term (i.e. of form p∃ vs • tq), possibly
formed with paired abstraction, and false otherwise: no exceptions can be raised.

See Also is simple ∃
SML

val is × type : TYPE −> bool ;

Description Return true only when the type is a pair type, i.e. of the form: p :ty 1 × ty 2q,
and false otherwise: no exceptions can be raised.

SML

val is ε : TERM −> bool ;

Description Return true only when the term is a ε-term (i.e. of form pε vs • tq), possibly
formed with paired abstraction, and false otherwise: no exceptions can be raised.

SML

val is λ : TERM −> bool ;

Description This function returns true iff. the term is of the form pλ vs • tq. It cannot raise
exceptions.

See Also is simple λ

SML

val is N : TERM −> bool ;

Description Return true only when the term is a numeric literal (e.g. p5q), and false otherwise:
no exceptions can be raised.

SML

val key mk const : (E KEY ∗ TYPE ) −> TERM ;
val key dest const : TERM −> E KEY ∗ TYPE ;

Description Internally, the names of constants are represented using efficient dictionary keys.
These functions allow the creation and destruction of constants by key rather than by name.

SML

val key mk ctype : E KEY ∗ TYPE list −> TYPE ;
val key dest ctype : TYPE −> E KEY ∗ TYPE list ;

Description Internally, the names of type constructors are represented using efficient dictionary
keys. These functions allow the creation and destruction of compound types by key rather than
by name.

SML

val list mk app : (TERM ∗ TERM list) −> TERM ;

Description Applies a function to multiple arguments.

Definition

list mk app (ptq, [pt1q,pt2q,pt3q,...]) = pt t1 t2 t3 ...q

Failure May give rise to the error message from mk app.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



96 Chapter 5. HOL TYPES AND TERMS

SML

val list mk binder : (TERM ∗ TERM −> TERM ) −> (TERM list ∗ TERM )
−> TERM ;

Description If maker (pvsq,pbq) makes an abstraction pbind vs • bq, then

list mk binder maker ([pvs 1q, pvs 2q, ...],pbodyq)

returns pbind vs 1• bind vs 2• ... • bodyqNotice that this can be used for implementing both
simple and paired abstractions, with the vs i being variable structures when so allowed, and
otherwise variables.

SML

val list mk bin op : string −> int −> int −>
(TYPE −> TYPE −> TERM ) −> TERM list −> TERM ;

Description This function combines a list of terms using the given operator, as if by mk bin op
(q.v). Notice the bracketing in the example.

Example

list mk bin op area msg ∧ fun [paq, pb ∧ cq, pdq] =
pa ∧ ((b ∧ c) ∧ d)q

where ∧ fun takes two (dummy) arguments and returns p$∧q.

Errors

3017 An empty list argument is not allowed

Failure The failure message for failing to combine its arguments will be as mk bin op for the
offending two arguments. If given an empty list the error will be from area area, but with message
3017.

SML

val list mk let : (((TERM ∗ TERM )list)list ∗ TERM ) −> TERM

Description This generates a nested let-term.

Example

list mk let ([[(pxq,p1q)],[(pyq,p2q)]],px+yq) =
plet x = 1 in let y = 2 in x+yq

SML

val list mk simple λ : (TERM list ∗ TERM ) −> TERM ;

Description λ-abstract a list of variables from a term.

Definition

list mk simple λ ([px1q,px2q,...],ptq) = pλ x1 x2 ... • tq

This function will be implemented using mk simple λ(q.v), not mk λ.

See Also list mk λ

Failure May give rise to the error message from mk simple λ.
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SML

val list mk simple ∀ : TERM list ∗ TERM −> TERM ;

Description Universally quantify a term with a list of variables.

Definition

list mk simple ∀ ([px1q,px2q,...], pbodyq) = p∀ x1 x2 ... • bodyq

This uses mk simple ∀ (q.v) to generate its result. Note that giving an empty list paired with a
non-boolean will return that term, rather than fail.

See Also list mk ∀
Failure This may give mk simple ∀ error messages.

SML

val list mk simple ∃ : TERM list ∗ TERM −> TERM ;

Description Existentially quantify a term with a list of variables.

Definition

list mk simple ∃ ([px1q,px2q,...], pbodyq) = p∃ x1 x2 ... • bodyq

This uses mk simple ∃ (q.v) to generate its result. Note that giving an empty list paired with a
non-boolean will return that term, rather than fail.

See Also list mk ∃
Failure This may give mk simple ∃ error messages.

SML

val list mk → type : TYPE list −> TYPE ;

Description Create the type of a multi-argument function.

Definition

list mk → type [p:ty1q,...,ptynq] =
p:ty1 → ... → tynq

The supplied list may not be empty.

Errors

3017 An empty list argument is not allowed

SML

val list mk ∧ : TERM list −> TERM ;

Description Conjoin a list of terms:

Definition

list mk ∧ [paq, pbq, pcq,...] = pa ∧ b ∧ c ...q
Errors

3017 An empty list argument is not allowed
3031 ?0 is not of type p:BOOLq

SML

val list mk ∨ : TERM list −> TERM ;

Description A function to make a disjunction of a list of terms.

Definition

list mk ∨ [paq, pbq, pcq,...] = pa ∨ b ∨ c ...q
Errors

3017 An empty list argument is not allowed
3031 ?0 is not of type p:BOOLq
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SML

val list mk ⇒ : TERM list −> TERM ;

Description Makes a multiple implication term, using mk ⇒ (q.v.).

Definition

list mk ⇒ [pt1q,pt2q,...,ptnq] = pt1 ⇒ t2 ⇒ ... ⇒ tnq

Note that giving a singleton list containing a non-boolean will return that term, rather than fail.

Errors

3015 ?1 is not of type p:BOOLq
3017 An empty list argument is not allowed
3031 ?0 is not of type p:BOOLq

SML

val list mk ∀ : TERM list ∗ TERM −> TERM ;

Description Repeatedly universally quantify a term.

Definition

list mk ∀ ([paq,pbq,pcq,...], pbodyq) = p∀ a b c ...• bodyq

This uses mk ∀ to generate its result.

Failure This may give the errors of mk ∀.
SML

val list mk ∃ : TERM list ∗ TERM −> TERM ;

Description Repeatedly existentially quantify a term.

Definition

list mk ∃ ([paq,pbq,pcq,...], pbodyq) = p∃ a b c ...• bodyq

This uses mk ∃ to generate its result.

Failure This may give the errors of mk ∃.
SML

val list mk ε : TERM list ∗ TERM −> TERM ;

Description Repeatedly apply ε to a term.

Definition

list mk ε ([paq,pbq,pcq,...], pbodyq) = pε a b c ...• bodyq

Failure This may give the errors of mk ε.

SML

val list mk λ : (TERM list ∗ TERM ) −> TERM ;

Description Repeatedly λ-abstract from a term.

Definition

list mk λ ([paq,pbq,pcq,...], pbodyq) = pλ a b c ...• bodyq

This function is implemented using mk λ, not mk simple λ.

See Also list mk simple λ

Failure May give rise to the error message from mk λ.
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SML

val list term union : (TERM list list) −> TERM list ;

Description Take the union of a number of lists of terms viewed as sets, removing any α-
convertible duplicates.

See Also list union for precise ordering of result.

SML

val list variant : TERM list −> TERM list −> TERM list ;

Description list variant stoplist vlist returns a list of variants of the list of variables vlist ,
whose names are not present in the stoplist , which is also a list of term variables. No names are
duplicated, the function returning one new variable for each member of vlist . The variants are
generated by sufficient appending of the variant string (see set variant string).

Errors

3007 ?0 is not a term variable

SML

val mk app : (TERM ∗ TERM ) −> TERM ;

Description This produces a function application.

Definition

mk app (pf q, ptq) = pf tq

Note that many derived term constructs, e.g. all quantifications, are also applications. Thus

Example

mk app (p$∀q, pλ x • tq) = p∀ x • tq
Errors

3005 Cannot apply ?0 to ?1 as types are incompatible
3006 Type of ?0 not of form p:ty1 → ty2q

SML

val mk binder : string −> int −> (TYPE −> TYPE −> TERM ) −>
(TERM ∗ TERM ) −> TERM ;

Description A generic method of implementing binder constructor functions:

Definition

mk binder area msg binder nm (pvarstructq, pbodyq) =
pbinder ′(λ varstruct• body)q =
pbinder ′ varstruct• bodyq

binder ′ is formed by applying binder to the types of the varstruct and body . varstruct may be
any allowed variable structure.

See Also mk simple binder

Errors

4016 ?0 is not an allowed variable structure

Failure If the term cannot be made, then the error will be from area, with a message indexed
by msg . If the first term argument is not an allowed variable structure then failure 4016 is raised
from area area.
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SML

val mk bin op : string −> int −> int −> (TYPE −> TYPE −> TERM ) −>
(TERM ∗ TERM ) −> TERM ;

Description mk bin op area msg1 msg2 rator fn (t 1 , t 2 ) attempts to form pt 1 rator t 2q.
rator ′ is gained by applying rator fn to the types of t 1 and t 2 .

Example

mk bin op "mk ∧" 3031 3015 (fn => fn => p$∧q) (paq, pbq) = pa ∧ bq

Failure The failure message for failing to apply rator to the first term will be from area area,
and will have the text indexed by msg1 , with the two terms as strings for arguments. If the failure
is from applying the rators plus first term to the second term the error message will be from area
area, and will have the text indexed by msg2 , with the two terms as strings for arguments. It is
not unusual for one of these strings of terms to be thrown away by the message msg2 provided
by the caller of this function.

SML

val mk char : string −> TERM ;

Description Construct a character literal.

Example

mk char "a" = p‘a‘q
Errors

3023 String ?0 is not a single character

SML

val mk const : (string ∗ TYPE ) −> TERM ;

Description This produces a constant.

Definition

mk const("c",p:tyq) = pc : tyq

The function makes no checks against the declaration of the constant, the declaration of the type
constructors of the type supplied, or the appropriateness of the type supplied: see get const info
(q.v.). However it will not form constants whose types clash with those constants required by the
implementation of the abstract data type THM (q.v.). These are =, ⇒, ∀, and ∃.
Errors

3002 Type of constant with name "=" must be of form:pty1 → ty1 → BOOLq
3003 Type of constant with name "⇒" must be of form:pBOOL → BOOL → BOOLq
3004 Type of constant with name ?0 must be of form:p(ty1 → BOOL) → BOOLq

SML

val mk ctype : string ∗ TYPE list −> TYPE ;

Description Create a compound type from a type constructor and sufficient arguments. The
function makes no checks against the declaration or arity of the type constructor or the type
arguments: see get type info (q.v.).

Definition

mk ctype ("tc", [p:ty1q,p:ty2q,...]) = p:(ty1 ,ty2 ,...)tcq
mk ctype ("tc", [p:tyq]) = p:ty tcq
mk ctype ("tc", []) = p:tcq
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SML

val mk empty list : TYPE −> TERM

Description A derived term constructor function for generating an empty list term with ele-
ments of a given type.

Definition

mk empty list p: tyq = p[] : ty LISTq

See Also mk list

SML

val mk enum set : TERM list −> TERM

Description A derived term constructor function for generating enumerated sets. The argu-
ment is a list of the members of the set. The type of a set of elements of type p :TY q is p :TY SETq.
If the term list is empty the function will fail (see mk ∅). The set must be of terms with the
same HOL type.

Definition

mk enum set [paq, pbq, ...] = p{a; b; ...}q
Errors

3012 ?0 and ?1 do not have the same types
3017 An empty list argument is not allowed

SML

val mk eq : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating equations.

Definition

mk eq (paq,pbq) = pa = bq
mk eq (pa:BOOLq,pb:BOOL) = pa ⇔ bq
Errors

3012 ?0 and ?1 do not have the same types

SML

val mk float : INTEGER ∗ INTEGER ∗ INTEGER −> TERM ;

Description Make a floating point literal.

Definition

mk float (pxq, 0 , p0q) = pXX .q
mk float (pxq, ppq, p0q) = pXX .YY q
mk float (pxq, ppq, pzq) = pXX .YYeZZq

where XX .YY is the decimal representation of x × 10−p and ZZ is the decimal representation of
z (with p = z = 0 in the first case and z = 0 in the second).

Errors

4041 the mantissa of a HOL floating point literal must be non−negative

SML

val mk f : TERM ;

Description The term pF : BOOLq.
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SML

val mk if : (TERM ∗ TERM ∗ TERM ) −> TERM ;

Description Make a conditional.

Definition

mk if (pcq, pyq, pnq) = pif c then y else nq
Errors

3012 ?0 and ?1 do not have the same types
3031 ?0 is not of type p:BOOLq

SML

val mk let : ((TERM ∗ TERM )list ∗ TERM ) −> TERM

Description A derived term constructor function for generating let-terms. The arguments
may have any form allowed by ICL HOL Concrete Syntax. Thus they may be variable structures
formed by pairing, or single clause, non-recursive functions, whose arguments may only be variable
structures formed by pairing.

Example

mk let ([],pxq) = pxq
mk let([(pxq, p1q)], px+1q) = plet x = 1 in x + 1q
mk let([(pxq, p1q),(pyq, p2q)], px+yq) =

plet x = 1 and y = 2 in x + yq
mk let([(p(x ,y)q, p(1 ,2 )q)], px+yq) =

plet (x ,y) = (1 ,2 ) in x + yq
mk let([(p(x ,y)q, p(1 ,2 )q)], px+yq) =

plet (x ,y) = (1 ,2 ) in x + yq
mk let([(pf (x ,y)q, p(1 ,2 )q)], px+yq) =

plet f = λ (x ,y)• (1 ,2 ) in x + yq
Errors

3012 ?0 and ?1 do not have the same types
4007 ?0 is not a well−formed LHS for mk let

SML

val mk list : TERM list −> TERM

Description A derived term constructor function for generating list-terms. The argument is a
list of the members of the list. If the term list is empty the function will fail (see mk empty list).
The list must be of terms with the same HOL type.

Definition

mk list [paq, pbq, ...] = p[a; b; ...]q
Errors

3012 ?0 and ?1 do not have the same types
3017 An empty list argument is not allowed
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SML

val mk mon op : string −> int −> (TYPE −> TERM ) −>
TERM −> TERM ;

Description mk mon op area msg rator fn prandq attempts to form the term prator randq.
pratorq is gained by applying rator fn to the type of prandq.

Example

mk mon op "mk ¬" 3031 (fn => p$¬q) pt :BOOLq = p¬ tq

Failure The failure message for failing to apply rator to its arguments will be from area area,
and will have the text indexed by msg .

SML

val mk multi ¬ : (int ∗ TERM ) −> TERM ;

Description mk multi ¬ (n, t) will apply the constructor mk ¬ n times to t .

Example

mk multi ¬ (2 , pTq) = p¬(¬ T )q
Errors

3031 ?0 is not of type p:BOOLq
4030 ?0 is negative

SML

val mk pair : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating pairs.

Definition

mk pair(pt1q, pt2q) = p(t1 , t2 )q

SML

val mk set comp : (TERM ∗ TERM ) −> TERM

Description A derived term constructor function for generating set comprehensions.

Example

mk set comp (pxq, px > 5q) = p{ x | x > 5}q
Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure

SML

val mk simple binder : string −> int −> (TYPE −> TYPE −> TERM ) −>
(TERM ∗ TERM ) −> TERM ;

Description mk simple binder area msg binder fn (var , body) generates the term:

pbinder(λvar • body)q

where binder is binder fn applied to the types of var and body . var must be a term variable.

See Also mk binder
Errors

3007 ?0 is not a term variable

Failure If the term cannot be made, then the error will be from area, with a message indexed
by msg , and the two terms as string arguments. If the first of the pair of terms is not a variable
then error 3007 will be given from area area.
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SML

val mk simple term : DEST SIMPLE TERM −> TERM ;

Description Create a well-formed TERM from a statement of a top-level structure, and the
associated constituent parts.

It makes the same checks as mk const , mk app, etc(q.v.), and gives the same error messages as
these if there is a failure.

See Also DEST SIMPLE TERM
Errors

3005 Cannot apply ?0 to ?1 as types are incompatible
3006 Type of ?0 not of form p:ty1 → ty2q
3007 ?0 is not a term variable

SML

val mk simple type : DEST SIMPLE TYPE −> TYPE ;

Description This function constructs a HOL type from something of type SIMPLE DEST -
TYPE (q.v).

SML

val mk simple ∀ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating simple ∀-terms.

Definition

mk simple ∀ (pvarq, pbodyq) = p∀ var • bodyq

var must be a term variable.

See Also mk ∀
Errors

3007 ?0 is not a term variable
3015 ?1 is not of type p:BOOLq

SML

val mk simple ∃1 : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating simply abstracted ∃ 1 -terms.

Definition

mk simple ∃1 (pvarq, pbodyq) =
p∃1 var• bodyq

var must be a variable.
Errors

3007 ?0 is not a term variable
3015 ?1 is not of type p:BOOLq

See Also mk ∃ 1
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SML

val mk simple ∃ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating simple ∃-terms.

Definition

mk simple ∃ (pvarq, pbodyq) = p∃ var • bodyq

var must be a term variable.

See Also mk ∃
Errors

3007 ?0 is not a term variable
3015 ?1 is not of type p:BOOLq

SML

val mk simple λ : (TERM ∗ TERM ) −> TERM ;

Description This produces a simple λ-abstraction. It may only abstract variables.

Definition

mk simple λ (pvq, ptq) = pλ v • tq

See Also mk λ

Errors

3007 ?0 is not a term variable

SML

val mk string : string −> TERM ;

Description Construct a string literal.

Example

mk string "abc" = p"abc"q

SML

val mk term : DEST TERM −> TERM

Description Create a term from a derived term. It is an inverse to dest term (q.v), and
therefore understands how to handle paired abstractions.

The function is implemented using the individual primitive and derived term constructors (e.g.
mk const and mk ∀), with what checks they use.

Failure This function will fail with the same messages as the appropriate term constructor
functions.

SML

val mk t : TERM ;

Description The term pT : BOOLq.

SML

val mk vartype : string −> TYPE ;

Description Create a HOL type variable from a string:

Definition

mk vartype "′tv" = p: ′tvq
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SML

val mk var : (string ∗ TYPE ) −> TERM ;

Description This produces a term variable.

The function makes no checks against the declaration of the subtypes of the type supplied.

Definition

mk var("v",p:tyq) = pv : tyq

SML

val mk ∅ : TYPE −> TERM ;

Description A derived term constructor function for generating an empty (enumerated) set
with elements of a given type.

Definition

mk ∅ p: tyq = p∅ : ty SETq

See Also mk enum set

SML

val mk ⇔ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating bi-implications.

Definition

mk ⇔ (pt1q, pt2q) = pt1 ⇔ t2q
Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq

SML

val mk → type : (TYPE ∗ TYPE ) −> TYPE ;

Description Create a function type from two types. A function type is just a kind of compound
type.

Definition

mk → type (p:ty1q, p:ty2q) =
mk ctype("→",[p:ty1q,p:ty2q]) = p:ty1 → ty2q

SML

val mk ∧ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating conjunctions.

Definition

mk ∧ (pt1q, pt2q) = pt1 ∧ t2q
Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq

SML

val mk ∨ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating disjunctions.

Definition

mk ∨ (pt1q, pt2q) = pt1 ∨ t2q
Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq
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SML

val mk ¬ : TERM −> TERM ;

Description A derived term constructor function for generating negations.

Definition

mk ¬ ptq = p¬ tq
Errors

3031 ?0 is not of type p:BOOLq

SML

val mk ⇒ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating implications. It takes two
arguments: the antecedent and the consequent.

Definition

mk ⇒ (paq,pbq) = pa ⇒ bq
Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq

SML

val mk ∀ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating ∀-terms.

Definition

mk ∀ (pvarstructq, pbodyq) = p∀ varstruct• bodyq

varstruct may be any allowed variable structure.

Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure

See Also mk simple ∀
SML

val mk ∃1 : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating ∃ 1 -terms.

Definition

mk ∃1 (pvarstructq, pbodyq) =
p∃1 varstruct• bodyq

varstruct may be any allowed variable structure.

Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure

See Also mk ∃ 1
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SML

val mk ∃ : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating ∃-terms.

Definition

mk ∃ (pvarstructq, pbodyq) = p∃ varstruct• bodyq

varstruct may be any allowed variable structure.

Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure

See Also mk simple ∃
SML

val mk × type : (TYPE ∗ TYPE ) −> TYPE

Description mk × type (p :ty 1q, p :ty 2q) returns a pair type: p :ty 1 × ty 2q.

SML

val mk ε : (TERM ∗ TERM ) −> TERM ;

Description A derived term constructor function for generating ε-terms.

Definition

mk ε (pvarstructq, pbodyq) = pε varstruct• bodyq

varstruct may be any allowed variable structure.

Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure

SML

val mk λ : TERM ∗ TERM −> TERM

Description This creates a λ-abstraction of an allowed variable structure from a term.

Example

mk λ (pxq , px + yq) = pλ x• x + yq
mk λ (p(x , y)q, px + yq) = pλ (x , y)• x + yq
mk λ (p((x1 ,x2 ), (y1 ,y2 ))q, px2 + y2q) = pλ ((x1 ,x2 ), (y1 ,y2 ))• x2 + y2q

See Also mk simple λ

Errors

4016 ?0 is not an allowed variable structure

SML

val mk N : INTEGER −> TERM ;

Description Construct a numeric literal: the argument may not be negative.

Example

mk N 5 = p5q
Errors

3021 ?0 should be 0 or positive

SML

val quantifier : string −> TYPE −> TYPE −> TERM ;

Description quantifier name type dummy returns a constant, with the given name, and type
p :(type→BOOL)→BOOLq, This is an appropriate type for binders. The dummy is present only
to make the function have an acceptable signature for certain other functions.
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SML

val rename : (string ∗ TYPE ) −> string −> TERM −> TERM ;

Description rename (oname, type) cname term returns a term based on term, but with any
free variables with name oname, and type type renamed to cname.

SML

val set variant suffix : string −> string ;

Description Sets the string control variant suffix used to create variant names in string-
variant (q.v.) and its relatives. The string is initially a single prime character. The function

returns the previous setting of the control.

Errors

3028 string may not be empty

SML

val string of term : TERM −> string ;

Description This returns a display of a term in the form of a string, with no inserted new lines,
suitable for use with diag string and fail .

See Also format term is a formatted string display of a term.

SML

val string of type : TYPE −> string ;

Description This returns a display of a type in the form of a string, with no inserted new lines,
suitable for use with diag string and fail .

See Also format type is a formatted string display of a type.

SML

val string variant : string list −> string −> string ;

Description string variant vlist name returns a string that is a different from any name in
vlist . Variants are formed by repeatedly appending the variant string(see set variant string) to
the name. Note that string variant [] name gives name.

Uses Somewhat faster than variant if term variables are already destroyed, and their names
and types are directly accessible.

See Also variant

SML

val STRING : TYPE ;

Description This is the HOL type of strings, a type abbreviation for lists of objects of type
CHAR.
Definition

val STRING = p:CHAR LISTq;

See Also Theory “char”.

SML

val strip app : TERM −> TERM ∗ TERM list ;

Description Splits a term into a head term, that is not an application, and the list of argument
terms, if any, to which that head term was applied.

Example

strip app pt t1 t2 t3 ...q = (ptq, [pt1q,pt2q,pt3q,...])
strip app pTq = (pTq,[])
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SML

val strip binder : string −> TERM −> TERM list ∗ TERM ;

Description strip binder binder applied to

pbinder(λvs 1•binder(λvs 2• . . . •body) . . .)q

will return

[pvs 1q, pvs 2q, . . .], pbodyq

where the vs i are allowed variable structures. The function acts as dest binder (q.v), and will
handle paired abstraction terms. It will return an empty list and the original term if the supplied
term is not formed using the binder.

See Also strip simple binder

SML

val strip bin op : string −> TERM −> TERM list

Description This function strips a binary operator, attempting to destroy its term argument,
and recursively stripping to the right, as if by dest bin op. A term not formed from the operator
is returned unchanged, as a singleton list.

Example

strip bin op "∧" pa ∧ (b ∧ c) ∧ dq = [paq, pb ∧ cq, pdq]

SML

val strip leaves : (′a −> ′a ∗ ′a) −> ′a −> ′a list ;

Description Given a function that destroys an object into a pair of objects (and here we
are thinking of, for example, dest ∧), recursively descend the results of destruction down both
branches, destroying until failure.

Example

strip leaves dest ∧ p(a ∧ b) ∧ c ∧ dq =
[paq, pbq, pcq, pdq]

SML

val strip let : TERM −> ((TERM ∗ TERM )list)list ∗ TERM

Description This destroys a sequence of nested let constructs.

Example

strip let plet x = 1 in let y = 2 in x+yq =
([[(pxq,p1q)],[(pyq,p2q)]],px+yq)

SML

val strip simple binder : string −> TERM −> TERM list ∗ TERM ;

Description strip simple binder binder applied to

pbinder(λv 1•binder(λv 2• . . . •body) . . .)q

will return

[pv 1q, pv 2q, . . .], pbodyq

where the v i are simple variables. The function acts as dest simple binder (q.v), and will not
handle paired abstraction terms. It will return an empty list and the original term if the supplied
term is not formed using the binder.

See Also strip binder

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



5.1. Syntactic Manipulations 111

SML

val strip simple ∀ : TERM −> (TERM list ∗ TERM );

Description Strip a multiply universally simply quantified term.

Definition

strip simple ∀ p∀ a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

SML

val strip simple ∃ : TERM −> (TERM list ∗ TERM );

Description Strip a repeatedly existentially simply quantified term.

Definition

strip simple ∃ p∃ a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

SML

val strip spine left : (′a −> ′a ∗ ′a) −> ′a −> ′a list ;

Description Given a function that destroys an object into a pair of objects (and here we are
thinking of, for example, dest ∧), recursively descend the left results of destruction, destroying
until failure.
Example

strip spine left dest ∧ p(a ∧ b) ∧ c ∧ dq =
[paq, pbq, pc ∧ dq]

SML

val strip spine right : (′a −> ′a ∗ ′a) −> ′a −> ′a list ;

Description Given a function that destroys an object into a pair of objects (and here we are
thinking of, for example, dest ∧), recursively descend the right results of destruction, destroying
until failure.

See Also strip bin op for stripping terms formed by binary (constant) term operators.

Example

strip spine left dest ∧ p(a ∧ b) ∧ c ∧ dq =
strip ∧ p(a ∧ b) ∧ c ∧ dq =

[pa ∧ bq, pcq, pdq]

SML

val strip → type : TYPE −> TYPE list ;

Description Strip the type of a multi-argument function into its constituent types, only de-
scending into the right hand result of dest → type.

Definition

strip → type p:ty1 → ... → tynq =
[p:ty1q,...,ptynq]

SML

val strip ∧ : TERM −> TERM list

Description Break a term into its constituent conjuncts, descending recursively only to the
right.

Example

strip ∧ pa ∧ (b ∧ c) ∧ dq = [ paq,pb ∧ cq, pdq]
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SML

val strip ∨ : TERM −> TERM list

Description Break a term into its constituent disjuncts, descending recursively only to the
right.

Example

strip ∨ pa ∨ (b ∨ c) ∨ dq = [paq,pb ∨ cq, pdq]

SML

val strip ⇒ : TERM −> TERM list ;

Description Strip a multiple implication into a list of antecedents appended to the singleton
list of the innermost consequent.

Definition

strip ⇒ pt1 ⇒ t2 ⇒ ... ⇒ tnq = [pt1q,pt2q,...ptnq]

Note that stripping a non-boolean will result in a singleton list containing that term, not a fail.

SML

val strip ∀ : TERM −> (TERM list ∗ TERM );

Description Strip a multiply universally quantified term (perhaps with paired abstractions).

Definition

strip ∀ p∀ a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

SML

val strip ∃ : TERM −> (TERM list ∗ TERM );

Description Strip a repeatedly existentially quantified term, possibly formed with paired ab-
stractions.
Definition

strip ∃ p∃ a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

SML

val strip ε : TERM −> (TERM list ∗ TERM );

Description Strip multiple ε’s.

Definition

strip ε pε a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

SML

val strip λ : TERM −> (TERM list ∗ TERM );

Description Strip a multiple λ-abstraction.

Definition

strip λ pλ a b c ...• bodyq = [paq,pbq,pcq,...], pbodyq

This uses dest λ (q.v.) rather than dest simple λ.
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SML

val subst : (TERM ∗ TERM ) list −> TERM −> TERM ;

Description subst [(t 1 , u 1 ), (t 2 , u 2 ), . . .] t returns the term formed from t by parallel
substition of the t i for the u i . The u i can be variables or arbitrary terms but only “free”
occurrences of a u i will be changed (i.e., only occurrences in which no free variable of u i becomes
a bound variable in t). Bound variables in t are renamed as neccessary to prevent bound variable
capture.

If some u i appears more than once in the substitution list, say u i = u j for i < j , then the
later pair (t j , u j ) is ignored.

subst does not perform type instantiation: each t i must have the same type as the corresponding
u i ..
Definition

subst [(pt1q,pu1q),(pt2 ,pu2q), ...] ptq = pt [t1/u1 , t2/u2 , ...]q

See Also var subst
Errors

3012 ?0 and ?1 do not have the same types

SML

val term any : (TERM −> bool) −> TERM −> bool ;

Description Given a predicate on terms, tests to see if any sub-term of some term (or the term
itself) satisfies the predicate. The search ceases on the first satisfaction, rather than all the tests
being done and the results combined.

SML

val term consts : TERM −> (string ∗ TYPE ) list ;

Description This function extracts the subterms of a term which are constants, giving destroyed
constants in each case (duplicates are eliminated)

SML

val term diff : (TERM list ∗ TERM list) −> TERM list ;

Description Remove any terms in the first list that are α-convertible to any in the second. An
infix function.

SML

val term fail : string −> int −> TERM list −> ′a;

Description term fail area msg tml first creates a list of functions from unit to string , using
string of term (q.v.) providing displays of the list of terms. It then calls fail with the area, msg
and this list of functions. This allows terms to be presented in error messages.

SML

val term fold : ((TERM list) −> (TERM ∗ ′a) −> ′a) −> (TERM ∗ ′a) −> ′a;

Description term fold tmfun (tm, e) traverses tm (depth first) and folds tmfun on the subterms
for which it does not fail. term fold does not traverse a subterm on which tmfun did not fail.
tmfun has as its first argument a list giving the bound variables which are in scope at the point
of use. It does not attempt to apply tmfun to a bound variable of an abstraction.

SML

val term grab : (TERM list ∗ TERM ) −> TERM list ;

Description If the given term is not α-convertible to any member of the list, then add it to the
list. An infix function.
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SML

val term less : (TERM list ∗ TERM ) −> TERM list ;

Description Remove any terms in the list that are α-convertible to the given term. An infix
function.

SML

val term map : ((TERM list) −> TERM −> TERM ) −> TERM −> TERM ;

Description term map tmfun tm traverses tm (breadth first) looking for subterms for which
the application tmfun tm does not fail and replaces such subterms with tmfun tm. It does not
traverse the resulting subterms. tmfun has as its first argument a list giving the bound variables
which are in scope at the point of use. It does not attempt to apply tmfun to a bound variable
of an abstraction.

SML

val term match : TERM −> TERM −> (TYPE ∗ TYPE ) list ∗ (TERM ∗ TERM )list ;

Description term match tm 1 tm 2 attempts to find if tm 1 is an instance of tm 2 , up to
α-convertibility. If so, then it returns two lists. The first gives the correspondence between
types in tm 1 with type variables in tm 2 . The second gives the correspondence between (type
instantiated) terms in tm 1 with free variables in tm 2 . Trivial (i.e. (x , x )) correspondences are
not noted.
Errors

3054 ?0 is not a term instance of ?1

SML

val term mem : (TERM ∗ TERM list) −> bool ;

Description Is the given term α-convertible to any term in the list? An infix function.

SML

val term tycons : TERM −> (string ∗ int) list ;

Description Returns the set of type constructors and their arity present in types present within
a term (represented as a list).

SML

val term types : TERM −> TYPE list ;

Description Gives a list of all the types of constants, variables or λ-abstraction variables within
the term argument.

SML

val term tyvars : TERM −> string list ;

Description Returns the list of type variable names present in types present within a term.

SML

val term union : (TERM list ∗ TERM list) −> TERM list ;

Description Take the union of two term lists viewed as sets, removing any α-convertible du-
plicates. An infix function.

See Also union for precise ordering of result.

SML

val term vars : TERM −> (string ∗ TYPE ) list ;

Description This function extracts the subterms of a term which are variables (including ab-
straction variables), giving destroyed variables in each case.
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SML

val type any : (TYPE −> bool) −> TYPE −> bool ;

Description Given a predicate on types, tests to see if any sub-type of some type (or the type
itself) satisfies the predicate. The search ceases on the first satisfaction, rather than all the tests
being done and the results combined.

SML

val type fail : string −> int −> TYPE list −> ′a;

Description type fail area msg tyl first creates a list of functions from unit to string , using
string of type (q.v.) providing displays of the list of types. It then calls fail with the area, msg
and this list of functions. This allows types to be presented in error messages.

SML

val type map : (TYPE −> TYPE ) −> TYPE −> TYPE ;

Description type map tyfun ty traverses ty (breadth first) looking for subtypes, st , for which
the application tyfun st does not fail and replaces such subtypes with tyfun st . It does not traverse
the resulting subtypes.

SML

val type match1 : (TYPE ∗ TYPE ) list −> TYPE −> TYPE −> (TYPE ∗ TYPE )list ;

Description type match1 is similar to type match, q.v., but has an additional context pa-
rameter representing an instantiation; type match1 will fail unless the supplied context can be
extended to give the required match. For example, the first line below evaluates true, but the
second fails.

type match1 [(p:′bq, p:′bq)] p:(′a → N) → ′bq p:′a → ′bq = [(p:′a → Nq, p:′aq), (p:′bq, p:′bq)];
type match1 [(p:′b → Nq, p:′aq)] p:(′a → N) → ′bq p:′a → ′bq;

Trivial associations are included in the result so that they can be passed as the context in subse-
quent calls. The second element of each pair in the context must be a type variable.

See Also type match

Errors

3055 ?0 is not a type instance of ?1 in the supplied context
3019 ?0 is not a type variable

SML

val type match : TYPE −> TYPE −> (TYPE ∗ TYPE )list ;

Description type match ty 1 ty 2 attempts to match ty 1 with ty 2 , i.e., to determine if
ty 1 can be obtained from ty 2 by instantiating type variables. If so, it returns a representation
of the type instantation as an association list suitable for use as an argument to inst type q.v.
Trivial (i.e. (x , x )) associations are not included. For example:

type match p:(′a → N) → ′bq p:′a → ′bq = [(p:′a → Nq, p:′aq)];

See Also type match1 , inst type

Errors

3053 ?0 is not a type instance of ?1

SML

val type of : TERM −> TYPE ;

Description This gives the HOL type of a term.
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SML

val type tycons : TYPE −> (string ∗ int) list ;

Description This returns a list of names of type constructors, and the arity of their use, within
a type.

SML

val type tyvars : TYPE −> string list ;

Description Returns the list of type variable names present in a type.

SML

val variant : TERM list −> TERM −> TERM ;

Description variant stoplist v returns a variant of variable v whose name is not used for any
variable in stoplist (which must be only variables). The variants are generated by sufficient
appending of the variant string (see set variant string).

Errors

3007 ?0 is not a term variable

See Also string variant , list variant

SML

val var subst : (TERM ∗ TERM ) list −> TERM −> TERM ;

Description var subst alist term returns the term formed by, for each pair in alist , substituting
in term all free instances of the term variable which is the second of the pair with the first of the
pair. The pair of the first matching term variable in the list will be used, duplicates later in the
list will be ignored. Renaming may occur to prevent bound variable capture.

Note that the term variables must have the same types as the terms that are to replace them.

Definition

var subst [(pt1q,px1q),(pt2q,px2q),...] ptq =
pt [t1/x1 , t2/x2 ,...]q

Errors

3007 ?0 is not a term variable
3012 ?0 and ?1 do not have the same types

See Also subst

SML

val ∼=$ : (TERM ∗ TERM ) −> bool ;

Description An infix equality test that returns true only when its two term arguments are
α-convertible, and false otherwise: no exceptions can be raised. Equality of terms is gained by
using =$

SML

val N : TYPE ;

Description This is the HOL type of the natural numbers, 0 , 1 , . . ..

Definition

val N = p:Nq;

See Also Theory “N”.
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5.2 Discrimination Nets
SML

signature NetTools = sig

Description This provides the discrimination net tools that will be used to maintain and use
databases of values indexed by term form.

SML

type ′a NET;

Description This is the type of a discrimination net, its type parameter being the type of values
that are handled by the net.

SML

val empty net : ′a NET ;

Description This is the starting discrimination net, which returns an empty list of values,
regardless of term form.

SML

val list net enter : (TERM ∗ ′a) list −> (′a NET ) −> (′a NET );

Description This enters a list of values and indexing terms into a discrimination net, returning
the resulting net.

SML

val make net : (TERM ∗ ′a) list −> (′a NET );

Description This enters a list of values and indexing terms into an empty discrimination net,
returning the resulting net.

SML

val net enter : (TERM ∗ ′a) −> (′a NET ) −> (′a NET );

Description This enters a value and its indexing term into a discrimination net, returning the
resulting net.

SML

val net lookup : (′a NET ) −> TERM −> (′a list);

Description net lookup net term will return a list of at least all the values entered into net
that were indexed by terms which can be matched (by term match, q.v.) to term. I.e. term can
be produced by type and term variable instantiation from the indexing term.

A principal purpose of net lookup is to make the process of rewriting a term using a list of
equations and conversions more efficient by quickly filtering out items which are not applicable.
Consequently speed is more important than accuracy: to use the wrong metaphor, it is not
important if some inapplicable equations “slip through the net” provided all the applicable ones
do as well.

The discrimination net actually returns all values whose indexing terms have the same structure
as the term matched, ignoring types and variables. Thus only the pattern of constant names, com-
binations and abstractions will be considered, with variables in the indexing term being presumed
to match any term form, regardless of type.

If net lookup returns more than one value, then the only ordering on the resulting values specified
is that if two entries are made into the net with the same index term, then if the net lookup term
matches the index term then the second entered value will be returned before the first in the list
of matches.
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THE MANAGEMENT OF THEORIES AND THEOREMS

6.1 Standard ML Type Definitions

SML

datatype THEORY STATUS =
TSNormal | TSLocked | TSAncestor | TSDeleted;

Description Objects of this datatype indicate the status of a theory within a hierarchy, being:

Constructor Description
TSNormal Theory is present and may be written to.
TSLocked Theory is present, and cannot be written to as it is locked.
TSAncestor Theory is present, and cannot be written to as it is in an ancestor for some

hierarchy.
TSDeleted Theory has been deleted: the theory name may be reused for a new theory.

SML

datatype USER DATUM =
UD Term of TERM ∗ (USER DATUM list)

| UD Type of TYPE ∗ (USER DATUM list)
| UD String of string ∗ (USER DATUM list)
| UD Int of int ∗ (USER DATUM list);

Description This provides a monomorphic type of trees whose nodes are labelled by terms,
types, strings or integers.

Uses This type is used in the type USER DATA, and may be used elsewhere, as a means of
storing data that may be represented in a “reasonably general” structure for ProofPower related
purposes, which also is not polymorphic.

SML

type CONV;

Description This is the type name conventionally used for conversions, that is, inference rules
whose last argument is a term, and whose result is an equation whose LHS is precisely that term
(no α-conversion). Though it would be type correct, we conventionally do not use this type name
for other functions of type . . . − > TERM − > THM .

Definition

type CONV = TERM −> THM ;

SML

type SEQ;

Description This is the type of sequents, consisting of a list of assumptions and a conclusion.

Definition

type SEQ = (TERM list) ∗ TERM ;

=#provides a strict equality test on sequents, ∼=#provides an equality test on the sequents up
to α-convertibility and order of assumptions.
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SML

type THEORY INFO;

Description This is a labelled record type containing certain information associated with a
theory.

Label Type Description
status THEORY STATUS Current status of the theory.
inscope bool True if the theory is currently in scope (i.e. can its

theorems, types and constants be usefully referred to).
contents THEORY The theory contents.
children int list List of the immediate children of the theory.
name string The name of the theory, as a string.

SML

type THEORY;

Description A theory is a named collection of type names, constant names, axioms, definitions
and theorems. In the abstract data type of theorems, the “names” of theories are represented as
integers. For each type name the arity of the type is recorded and for each constant name its type
is recorded. In order to allow deletion of types, constants, axioms and definitions. So-called level
numbers are used to enables theorems that may depend on deleted material to be identified and
rejected. In order for non-critical information such as operator fixity to be stored, a theory also
includes a user-data slot which may be used to encode such information.

A theory is represented as a labelled record type, as follows:

Label Type Description
name int Internal representation of theory name.
ty env {arity : int , level : int} OE DICT A dictionary indexed by type construc-

tor names, returning arity, and definition
level.

con env {ty : TYPE , level : int} OE DICT A dictionary indexed by constant name,
returning the type and definition level.

parents int list Internal representations of names of par-
ents of theory.

del levels (int ∗ int) list A list of ranges of deleted definition lev-
els — if empty then no levels have been
deleted.

axiom dict THM OE DICT A dictionary of axioms.
defn dict THM OE DICT A dictionary of definitions.
thm dict THM OE DICT A dictionary of theorems.
current level int The current definition level.
user data USER DATA ref The user data stored in the theory.

SML

type THM;

Description This is the abstract data type of theorems in ProofPower, whose primitive
constructors are the inference rules and extensional mechanisms of the abstract data type.
=|−provides a strict equality test on the conclusion and assumptions of theorems, ∼=|−provides
an equality test on the conclusion and assumptions of theorems up to α-convertibility and order
of assumptions.
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SML

type USER DATA;

Description This is the type of a store for objects of type USER DATUM . It is implemented
as:
ML

type USER DATA = USER DATUM S DICT ;

Uses Within the type THEORY it is used to include such details as the fixity of types and
constants.
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6.2 Symbol Table

SML

signature SymbolTable = sig

Description This is the signature for the structure which contains the symbol table and its
access functions. This structure contains private functions which are invoked as one navigates
around the theory database. These private functions may give rise to error 20001 if the theory
database user data has been corrupted (e.g. by explicit and incorrect use of the lower level
interfaces).

Any of the functions in the structure which update the current theory may give rise to error 20002

Errors

20001 A symbol table entry in theory ?0 is corrupt (use restore defaults to clear)
20002 The current theory , ?0 , is not open for writing
20003 Internal error : ?0

SML

val declare alias : (string ∗ TERM ) −> unit ;

Description declare alias (s, c) declares s as an alias for the constant c. s must comply with
the HOL lexical rules for an identifier.
Errors

20301 The term ?0 is not a constant
20302 The string ?0 is already in use as an alias for ?1
20305 The constant ?0 is not in scope
20306 The string ?0 is not an identifier

SML

val declare binder : string −> unit ;

Description declare binder s declares s to have the syntactic status of a binder in the current
context. s must comply with the HOL lexical rules for an identifier and must not be the string
“,”.

See Also undeclare fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)
20202 Cannot change the fixity of ‘,‘

SML

val declare const language : string ∗ string −> unit ;

Description declare const language (s, l) adds the language indicator l to those associated with
the name s when used as a constant in the current context.
Errors

20501 There is no constant called ?0 in the current context
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SML

val declare left infix : (int ∗ string)−> unit ;
val declare right infix : (int ∗ string)−> unit ;
val declare infix : (int ∗ string)−> unit ;

Description declare left infix (p, s) declares s to have the syntactic status of an left associative
infix operator with precedence p in the current context. s must comply with the HOL lexical
rules for an identifier.

Similarly, declare right infix is used to declare right associative operators. declare infix is pro-
vided for compatibility with earlier versions of the system and is the same as declare right infix .

See Also undeclare fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)

SML

val declare nonfix : string −> unit ;

Description declare nonfix s undoes the effect of a declaration of s to have special syntactic
status (using declare binder , declare infix , declare prefix or declare postfix ).

The effect of declare nonfix s depends on the theory in which the special status for s was declared:
if it was declared in the current theory, then the declaration is just removed; if in an ancestor
theory then a declaration for s as a nonfix is inserted in the current theory. (Thus in the first
case, the syntactic status for s reverts to what it was before the earlier declaration, whereas in
the second case the syntactic status will be suppressed.)

s must must not be the string “,”.

See Also undeclare fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)
20202 Cannot change the fixity of ‘,‘
20203 There is no fixity declaration for ?0 in the current context

SML

val declare postfix : (int ∗ string) −> unit ;

Description declare postfix (p, s) declares s to have the syntactic status of a postfix operator
with precedence p in the current context. s must comply with the HOL lexical rules for an
identifier and must not be the string “,”.

See Also undeclare fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)
20202 Cannot change the fixity of ‘,‘
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SML

val declare prefix : (int ∗ string) −> unit ;

Description declare prefix (p, s) declares s to have the syntactic status of a prefix operator
with precedence p in the current context. s must comply with the HOL lexical rules for an
identifier and must not be the string “,”.

See Also undeclare fixity

Errors

20201 A fixity declaration is not allowed for ?0 (which is not an identifier)
20202 Cannot change the fixity of ‘,‘

SML

val declare terminator : string −> unit

Description declare terminator s checks that s is a valid terminator, and if so declares that s
is to be used as a lexical terminator in the current context.
Errors

20101 The string ?0 is not a valid terminator . Terminators must start
with a symbolic character , must not contain spaces,
and must not end with underscore, f or g

20102 The string ?0 is already declared as a terminator

SML

val declare type abbrev : (string ∗ string list ∗ TYPE ) −> unit ;

Description declare type abbrev (s, [α 1 , . . . , α k ], τ) declares (α 1 , . . . , α k)s as a type ab-
breviation for the type τ . The identifier s may not already have been declared as a type abbrevia-
tion or be the name of a type constructor defined in the present context, in which cases a warning
message is issued. s must comply with the HOL lexical rules for an identifier.

Errors

20401 The identifier ?0 is already declared as a type abbreviation
20402 The identifier ?0 is already declared as a type constructor
20407 The formal parameter list ?0 contains duplicate type variable names
20408 The string ?0 is not an identifier

SML

val expand type abbrev : (string ∗ TYPE list) −> TYPE ;

Description expand type abbrev s, [τ 1 , . . . , τ k ] is the expansion of the type abbreviation s
with respect to the arguments [τ 1 , . . . , τ k ].

Errors

20404 The identifier ?0 is not declared as a type abbreviation
20405 The type abbreviation ?0 should have ?1 argument not ?2
20406 The type abbreviation ?0 should have ?1 arguments not ?2

SML

val get aliases : string −> (string ∗ TERM ) list ;

Description get aliases thy returns information about identifiers which have have been declared
as aliases in the theory thy . The return value is a list of pairs. Each pair contains a name and
a constant for which that name is an alias. The same name may be used as an alias for several
different constants, and if this happens there will be multiple entries for that alias in the list.

Errors

20601 There is no theory called ?0
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SML

val get alias info : string −> (string ∗ TYPE )list OPT ;

Description get alias info c returns the list of aliases for the constant with name c, or Nil if
c is not the name of a constant. For each pair (a, τ) in the result, a is an alias for c at instances
of the type τ .

SML

val get alias : (string ∗ TYPE ) −> string ;

Description get alias(c, τ) returns the most appropriate alias for the constant with name c at
the type τ . If no aliases for the name c have been declared then c is returned otherwise the most
recent alias s associated with a type τ ′ which can be instantiated to τ is returned.

SML

val get binders : string −> string list ;

Description get binders thy returns the list of identifiers which have been declared as binders
in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get const info : string −> (TYPE ∗ ((string ∗ TYPE )list)) OPT ;

Description get const info a returns the information, (τ, cs), associated with the name a used
as a constant name or an alias for a constant, if any. cs is the list of names and types of constants
to which a might refer (as an alias or as the actual constant name). τ is the type to use for this
name during type inference, namely, the antiunifier of the types in cs.

SML

val get const language : string −> string list ;

Description get const language s returns the language indicators associated with the name
s when used as a constant in the current context. If there is no constant called s, then
get const language s returns the language indicator associated with the current theory. The
language indicator is “HOL” for all identifiers supplied as part of the ICL HOL system. The head
element of the list returned is the language indicator associated with the constant’s declaring
theory.

SML

val get current language : unit −> string ;

Description get current language () returns the language indicator associated with the current
theory.

SML

val get current terminators : unit −> string list list ;

Description get current terminators() returns the list of identifiers which have been declared
as terminators in the current context using new terminator . The names are returned in exploded
form, i.e. as a list of strings each containing one character.

SML

val get fixity : string −> Lex .FIXITY ;

Description get fixity s returns the syntactic status of s in the current context.
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SML

val get language : string −> string ;

Description get language thy returns the language indicator associated with the theory thy .

Errors

20601 There is no theory called ?0

SML

val get left infixes : string −> (int ∗ string) list ;
val get right infixes : string −> (int ∗ string) list ;

Description get left infixes thy (resp. get right infixes thy) returns the list of identifiers (and
associated precedences) which have been declared as left (resp. right) associative infix operators
in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get nonfixes : string −> string list ;

Description get nonfixes thy returns the list of identifiers which are declared as binder, infix,
prefix or postfix in an ancestor of the theory thy , but have had that special status suppressed
(using declare nonfix ) in the theory thy itself.

Errors

20601 There is no theory called ?0

SML

val get postfixes : string −> (int ∗ string) list ;

Description get postfixes thy returns the list of identifiers (and associated precedences) which
have been declared as postfix operators in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get prefixes : string −> (int ∗ string) list ;

Description get prefixes thy returns the list of identifiers (and associated precedences) which
have been declared as prefix operators in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get terminators : string −> string list ;

Description get terminators thy returns the list of identifiers which have been declared as
terminators in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get type abbrev : string −> (string list ∗ TYPE );

Description get type abbrev s returns the formal argument list and type associated with the
type abbreviation s.

Errors

20404 The identifier ?0 is not declared as a type abbreviation
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SML

val get type abbrevs : string −> (string ∗ (string list ∗ TYPE ))list ;

Description get type abbrevs thy returns information about the type abbreviation declarations
which have been made in the theory thy . The return value is a list of pairs. Each pair contains
the name of the corresponding type abbreviation together with its formal arguments and the type
for which it is an abbreviation.
Errors

20601 There is no theory called ?0

SML

val get type info : string −> (int ∗ (string list ∗ TYPE ) OPT ) OPT ;

Description get type info s returns the type information, if any, associated with s. See
DS/FMU/IED/DTD020 for more information.

SML

val get undeclared terminators : string −> string list ;

Description get undeclared terminators thy returns the list of identifiers whose status as ter-
minators has been suppressed (with undeclare terminator) in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get undeclared type abbrevs : string −> string list ;

Description get undeclared type abbrevs thy returns the list of identifiers which have have had
their status as type abbreviations suppressed in the theory thy .

Errors

20601 There is no theory called ?0

SML

val get undeclared aliases : string −> (string ∗ TERM ) list ;

Description get undeclared aliases thy returns information about aliases which have been sup-
pressed (with undeclare alias) in the theory thy . The return value is a list of pairs. Each pair
contains a name and a constant for which that name is no longer to be used as an alias. There
may be more than one entry for a given name in the list (since several undeclare alias commands
may apply to one name).

Errors

20601 There is no theory called ?0

SML

val is type abbrev : string −> bool ;

Description is type abbrev s returns true iff. s is declared as a type abbreviation

SML

val resolve alias : (string ∗ TYPE ) −> TERM ;

Description resolve alias(s, τ) returns a term of the form mk const(c, τ) where c is the “best’
resolution for the identifier s. This best resolution will be s if s has been introduced as a constant
of type τ ′ where τ ′ is an instance of τ . If s is an alias then c is taken from the alias declaration
for s in which the aliased constant has a type τ ′ which can be instantiated to τ . If more than one
such declaration is applicable the most recent one is used.

Errors

20304 The identifier ?0 is not a valid constant name (or alias) at this type
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SML

val restore defaults : unit −> unit ;

Description restore defaults() may be used to clear corrupted symbol table information in the
current theory. It does this by restoring the theory to the state it would have if no terminator,
fixity, alias, type abbreviations or language declarations had been performed. A warning message
is issued (and the interactive user is prompted as to whether to continue) before the operation is
performed.

Errors

20703 This operation will delete all symbol table information from theory ?0

SML

val set current language : string −> unit ;

Description set current language s sets the language indicator associated with the current
theory to s.

SML

val undeclare alias : (string ∗ TERM ) −> unit ;

Description undeclare alias (s, c) reverses the effect of a declaration of s as an alias for the
constant c in the current context. This includes the possibility that s is the name of c itself.

The precise effect depends on the theory in which the alias was declared: if it was declared in the
current theory, then the declaration is just removed (so that if s is declared as an alias for c in
an ancestor theory, s will still act as an alias for c in the current theory); if in an ancestor theory
then arrangements are made in the current theory to prevent s acting as an alias for c.

If s is the name of c itself, the type inferrer will no longer recognise s as a reference to c. In this
case, c may be accessed either via an alias or via an ML quotation. This gives a work-around
for the potential problem when a theory contains a constant whose name is needed as a variable
name in some application using the theory.

Errors

20301 The term ?0 is not a constant
20303 The identifier ?0 is not declared as an alias for ?1

SML

val undeclare terminator : string −> unit

Description undeclare terminator s removes s from the list of identifiers which act as termi-
nators for parsing purposes in the current context.

Errors

20103 ?0 is not in the list of terminators in the current context

SML

val undeclare type abbrev : string −> unit ;

Description undeclare type abbrev (s, [α 1 , . . . , α k ], τ) reverses the effect of a declaration of
s as a type abbreviation.

The precise effect depends on the theory in which the type abbreviation was declared: if it was
declared in the current theory, then the declaration is just removed (so that if s is declared as a
type abbreviation in an ancestor theory, s will revert to whatever that declaration said); if in an
ancestor theory then arrangements are made in the current theory to prevent s being treated as
a type abbreviation.

Errors

20403 The identifier ?0 is not declared as a type abbreviation
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6.3 The Kernel Interface

SML

signature KernelInterface = sig

Description This is the signature of the structure that gives the standard interface to the logical
kernel. This interface adds a layer of additional services to the kernel functionality. E.g., it is
used to notify the parser and type-inferrer so that they operate correctly when the current theory
changes. The functions in the structure KernrlInterface should always be used in preference to
direct use of the functions in the structure pp’Kernel except in coding extensions to the system
that need to bypass these services.

Errors

6013 ?0 is ill−formed in current theory : type name ?1 is not declared
6014 ?0 is ill−formed in current theory : type name ?1 does not have arity used
6015 ?0 is ill−formed in current theory : constant name ?1 not declared
6038 ?0 is ill−formed in current theory : constant name ?1 cannot have type used

The above are error messages various kinds of well-formedness check failures. A well-formedness
check occurs on any types, terms and theorems saved in a theory, and thus these errors may occur
for any function in this signature which saves types, terms or theorems in a theory.

SML

datatype KERNEL INFERENCE =
KISubstRule of (THM ∗ TERM ) list ∗ TERM ∗ THM ∗ THM

| KISimpleλEqRule of TERM ∗ THM ∗ THM
| KIInstTypeRule of (TYPE ∗ TYPE ) list ∗ THM ∗ THM
| KI⇒Intro of TERM ∗ THM ∗ THM
| KI⇒Elim of THM ∗ THM ∗ THM
| KIAsmRule of TERM ∗ THM
| KIReflConv of TERM ∗ THM
| KISimpleβConv of TERM ∗ THM
| KISucConv of TERM ∗ THM
| KIStringConv of TERM ∗ THM
| KICharConv of TERM ∗ THM
| KIEqSymRule of THM ∗ THM
| KIListSimple∀Elim of TERM list ∗ THM ∗ THM
| KIEqTransRule of THM ∗ THM ∗ THM
| KIMkAppRule of THM ∗ THM ∗ THM
| KI⇔MPRule of THM ∗ THM ∗ THM
| KISimple∀Intro of TERM ∗ THM ∗ THM
| KIInstTermRule of (TERM ∗ TERM ) list ∗ THM ∗ THM
| KIPlusConv of TERM ∗ THM ;

val on kernel inference : (KERNEL INFERENCE −> unit) −> unit ;

Description The call on kernel inference f registers the function f to be called whenever a
kernel inference rule is called successfully. Several functions may be registered and they will be
called in order of registration.

A value of type KERNEL INFERENCE is passed to represent the instance of the rule that has
been called. The tuple forming the argument to each constructor of the type gives the arguments
and result of the corresponding rule.
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SML

(∗ compactification mask : integer control : default : compiler−dependent ∗)
val get compactification cache : unit −> TYPE list ;
val set compactification cache : TYPE list −> unit ;
val clear compactification cache : unit −> unit ;

Description These functions and associated control value support compactification of objects
stored in the theory database.

set compactification cache and get compactification cache may be used at the beginning and
end of a ProofPower session to preserve the contents of the cache of type information which is
used to implement compactification. Internally, the cache is held as a rather more complex, and
much larger, data structure than a simple list of types and so clear compactification cache is used
automatically to empty the cache at the end of a session, thereby avoiding saving the data structure
in the database file. Restoring the cache from the list returned by get compactification cache using
set compactification cache is time-consuming and is not done automatically; however, doing this
using, e.g., the following lines of ML, may improve the space-saving in applications which are
built up in several sessions:

SML Example - End of Every Session

val saved compactification cache = get compactification cache();

SML Example - Beginning of Second and Later Sessions

set compactification cache saved compactification cache;

ML functions which compute terms can often be coded so as to produce terms in which common
subterms are shared. The compactification algorithm may actually increase the space occupied
by such terms. Producers of such functions may therefore wish to suppress the compactification
when the computed terms are stored in the theory database.

compactification mask is an integer control which is treated as a bit-mask and may used to
suppress selected aspects of the compactification algorithm. The default value of 0 should be
correct for most normal specification and proof work. The significance of the bits in the mask is
as follows:

1 Suppress compactification in new axiom
2 Suppress compactification in new const
4 Suppress compactification in new type defn
8 Suppress compactification in new spec
16 Suppress compactification in save thm
32 Suppress compactification in simple new defn

So, for example, if the mask is set to 47 (= 1 + 2 + 4 + 8 + 32 ), then compactification will only
be performed when save thm is called. The default value depends on the Standard ML compiler:
63 (i.e., no compactification) for Poly/ML and 0 (i.e., full compactification) for Standard ML of
New Jersey.
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SML

datatype KERNEL STATE CHANGE
= OpenTheory of string ∗ ((string list) ∗ (string list))
| DeleteTheory of string
| NewTheory of string
| NewParent of string ∗ (string list)
| LockTheory of string
| UnlockTheory of string
| DuplicateTheory of string ∗ string
| SaveThm of string ∗ THM
| ListSaveThm of string list ∗ THM
| DeleteConst of TERM
| DeleteType of string
| DeleteAxiom of string
| DeleteThm of string
| NewAxiom of (string list ∗ TERM )∗THM
| NewConst of string ∗ TYPE
| NewType of string ∗ int
| SimpleNewDefn of (string list ∗ string ∗ TERM ) ∗ THM
| NewTypeDefn of (string list ∗ string ∗ (string list) ∗ THM ) ∗ THM
| NewSpec of (string list ∗ int ∗ THM ) ∗ THM
| SetUserDatum of string ∗ USER DATUM ;

Description This is an encoding of the arguments of the functions of signature KernelInterface
which change the state of the theory database. When used to notify the system of a change that
has been made certain additional information is also included. If used to notify the system before
a change is made the slots will be given “null” default values (“”, [], asm rule mk t).

Operation Value Description
open theory (thy , (inthys, outthys)) thy names the theory which has been

opened. inthys names the theories which
have come into scope. outthys names the
theories which have gone out of scope.

new parent (thy , inthys) thy names the new parent theory. inthys
names the theories which have come into
scope.

SimpleNewDefn
NewTypeDefn
NewSpec
NewAxiom

(arg , thm) arg gives the argument to the operation.
thm is the new defining theorem.

SEE ALSO on kernel state change, before kernel state change
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SML

type CHECKPOINT;
val checkpoint : string −> CHECKPOINT ;
val rollback : CHECKPOINT −> unit ;

Description This opaque type and its associated functions implement a system for checkpoint-
ing and restoring the state of the theory hierarchy. It is intended primarily for programmatic use
in applications that may need to undo multiple extensions to the logical contents of the theory and
changes to user data. The check-pointing scheme is unable to keep track of theories, theorems,
definitions etc. that have been deleted. Applications that may delete such objects must make
their own arrangements for restoring the deleted objects.

The parameter to checkpoint is a theory name. The checkpoint returned contains the information
required by rollback to roll the indicated theory and all its descendants back to the state it had
when the checkpoint was taken. The theory becomes the current theory after the rollback.

Rolling back is done using delete const etc. and so rolling back the state of definitions and axioms
is restricted to changes made in theories which did not have children when the checkpoint was
taken. For uniformity, rollback does not attempt to restore the state of the theorems and the
user data in theories which had children when the checkpoint was taken. A theory that has been
introduced and has become a parent of a theory that existed when the checkpoint was taken will
not be deleted (otherwise the child theory would also have to be deleted).

Messages 12015 to 12017 are reported by rollback as comments. In general, rollback will just
report on the problem and continue trying to restore other theories. For example, if rollback is
unable to delete a theory, it continues to attempt to restore the state of the definitions, etc. in
the theories that are to be retained. This is an unlikely situation, since rollback unlocks a theory
if necessary before trying to delete it, so it will only happen if the application using rollback has
created a new theory hierarchy and a theory to be deleted has obtained ancestor status. Message
12020 is reported by rollback as a failure.

Errors

12015 it was not possible to delete theory ?0
12016 the theory ?0 has been deleted since the checkpoint was taken; this change cannot

be rolled back
12017 a failure was reported while trying to restore theory ?0 (?1 )
12020 the theory ?0 has been deleted since this checkpoint was taken and a new

theory of the same name has been created . Rolling back to this checkpoint
is not possible.

SML

val =|− : THM ∗ THM −> bool ;
val ∼=|− : THM ∗ THM −> bool ;
val =# : SEQ ∗ SEQ −> bool ;
val ∼=# : SEQ ∗ SEQ −> bool ;

Description =|− provides a strict equality test on the conclusion and assumptions of the-
orems, ∼=|− provides an equality test on the conclusion and assumptions of theorems up to
α-convertibility and order of assumptions. =# provides a strict equality test on sequents, ∼=#
provides an equality test on the sequents up to α-convertibility and order of assumptions.

SML

val asms : THM −> TERM list ;

Description This returns the assumptions(hypotheses) of a theorem.

See Also dest thm

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



6.3. The Kernel Interface 133

SML

val before kernel state change : (KERNEL STATE CHANGE −> unit) −> unit

Description before kernel state change f nominates f to be called before the theory database
is to be modified by functions from the signature KernelInterface. The argument to f encodes the
operation which caused the modification together with its arguments and certain other additional
information (usually sets to null defaults for this function). A list of such functions is maintained,
and the new function is put at the end of the list, which means it may, if desired undo or overwrite
the effects of a function nominated by an earlier call of before kernel state change.

Functions handled by before kernel state change might be used to raise errors to prevent the
state change occurring. This will prevent further checks or actions being made. Thus a careful
choice between before or on is called for.

See Also KERNEL STATE CHANGE , on kernel state change

SML

val compact type : TYPE −> TYPE ;
val compact term : TERM −> TERM ;
val compact thm : THM −> THM ;

Description These functions compactify type, term and theorem values, currently by common-
ing up type information so that only one ML instance of any type is used in the compactified
value. Depending on the value of the integer control variable compactification mask , q.v., these
interfaces are invoked automatically as values are stored in the theory database.

The compactify XXX interfaces act as identify functions: compactify XXX x returns a value
which is equal to x (in the sense of =:, = $ or = |− as appropriate), but which usually occupies
significantly less space than x .

SML

val concl : THM −> TERM ;

Description This returns the conclusion of a theorem.

See Also dest thm
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SML

val delete axiom : string −> unit

Description delete axiom key deletes the axiom stored under key key and any other object
which depends on it from the current theory. If any objects do depend on the axiom, the interactive
user will be notified and asked whether to proceed with the deletion.

After the deletion any theorems which have been proven since the introduction of the axiom will
no longer be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants,
types, and axioms in single steps, and thus may fail with a partially modified theory. This is
because checks in the interface may not be as definitive as those of the kernel. The “on kernel
state change” functions will be notified as if all necessary single step deletions, of theorems,
constants, types and axioms to achieve the goal had been done, but after all the actual changes
have been made. The “before kernel state change” functions will be notified of all the changes,
as if single steps, before any are made.

Errors

6037 Theory ?0 is locked
6071 Theory ?0 is a read−only ancestor
6076 Theory ?0 has child theories
12003 Theory ?0 does not contain an axiom under key ?1
12012 Deletion of ?0 would require the deletion of ?1

SML

val delete const : TERM −> unit

Description delete const c deletes the constant c (or the constant with the same type, up to
renaming of type variables) and any other object which depends on c from the current theory. If
c is the application of a constant to some arguments then that constant is the one deleted. If any
saved objects other than c and its defining theorem do depend on c, the interactive user will be
notified and asked whether to proceed with the deletion.

After the deletion any theorems which have been proven since the definition of c will no longer
be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants,
types, and axioms in single steps, and thus may fail with a partially modified theory. This is
because checks in the interface may not be as definitive as those of the kernel. The “on kernel
state change” functions will be notified as if all necessary single step deletions, of theorems,
constants, types and axioms to achieve the goal had been done, but after all the actual changes
have been made. The “before kernel state change” functions will be notified of all the changes,
as if single steps, before any are made.

Errors

6037 Theory ?0 is locked
6071 Theory ?0 is a read−only ancestor
6076 Theory ?0 has child theories
12001 Theory ?0 does not contain the constant ?1 with the supplied type
12012 Deletion of ?0 would require the deletion of ?1
12014 ?0 is not a constant or a constant applied to some arguments
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SML

val delete theory : string −> unit ;

Description delete theory thy removes the theory thy from the theory database. This means,
for instance, that all theorems that were proven with the deleted theory as the current theory,
and all constants and types declared within the theory, will become out of scope.

Errors

12035 Theory ?0 is not present in the current hierarchy
6037 Theory ?0 is locked
6069 Theory ?0 is in scope
6071 Theory ?0 is a read−only ancestor
6076 Theory ?0 has child theories

SML

val delete thm : string −> THM ;

Description delete thm key deletes the theorem stored under key key from the current theory.
It returns the deleted theorem.
Errors

6037 Theory ?0 is locked
6046 Key ?0 is not used for a theorem in theory ?1
6071 Theory ?0 is a read−only ancestor

SML

val delete to level :
{do warn : bool ,
caller : string ,
target : string ,
level : int} −> (string ∗ int) list ∗ (string ∗ TYPE ) list ;

val thm level : THM −> int ;

Description delete to level deletes constants, types and axioms (and any theorems that may
depend on them) down to a specified level number. do warn specifies whether or not the user
should be warned before doing this. caller is the name of the calling function for use in error
messages. target is the name of the target being deleted for use in the warning message. level is
the level of the constant, type or axiom which is the target to be deleted. The returned value
comprises the lists of types and constants that have been deleted (with their arities and types).

The level numbers for constants and types may be retrieved using the data structure returned by
get theory . thm level returns the level number associated with a theorem or axiom.
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SML

val delete type : string −> unit

Description delete type t deletes the type constructor t and any other object which depends
on t from the current theory. If any objects other than t and its defining theorem do depend on
t , the interactive user will be notified and asked whether to proceed with the deletion.

After the deletion ny theorems which have been proven since the definition of ty will no longer
be usable for further proof.

Note that the deletion will attempt to delete all necessary theorems before deleting constants,
types, and axioms in single steps, and thus may fail with a partially modified theory. This is
because checks in the interface may not be as definitive as those of the kernel. The “on kernel
state change” functions will be notified as if all necessary single step deletions, of theorems,
constants, types and axioms to achieve the goal had been done, but after all the actual changes
have been made. The “before kernel state change” functions will be notified of all the changes,
as if single steps, before any are made.

Errors

6037 Theory ?0 is locked
6071 Theory ?0 is a read−only ancestor
6076 Theory ?0 has child theories
12002 Theory ?0 does not contain the type constructor ?1
12012 Deletion of ?0 would require the deletion of ?1

SML

val dest thm : THM −> SEQ ;

Description This returns the representation of a theorem as a sequent, i.e. as a list of assump-
tions and a conclusion.

See Also asms, concl
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SML

val do in theory : string −> (′a −> ′b) −> ′a −> ′b;

Description do in theory thy f a will change to the named theory thy , apply f to a, and
return to the theory in which it was called. It will not notify the kernel state change functions
(e.g. on kernel state change) when it changes to the named theory, nor will it notify them on
its return. Thus for instance the symbol table mechanism, and so term parsing, will behave as if
no theory change had taken place before the application of f to a. This refusal to notify causes
this function to be faster than the appropriate two uses of open theory .

The function prevents the application of f from once more changing the current theory to another,
or functions that may delete the original theory. The block will provoke error 12011. These
functions are:

open theory new theory delete theory

It will also discard any changes made by before kernel state change during the application of f
at its end.

The function will intercept any exceptions (including keyboard interrupts), and will attempt
to remove the block on changing the current theory, and then return to the original theory.
However, in certain circumstances (such as multiple keyboard interrupts, or use of pp′ functions)
the exception handler itself may be interrupted or be otherwise unable to complete its work. In
these cases open theory must be used by hand to notify the proof system of the correct theory
and its context. If this raises the error 12011 then repeat the use of open theory , as each raising
of the error involves the removal of one block put in place by do in theory before the message is
generated.

Errors

12011 Blocked from changing the current theory.
This particular block has now been removed .
Exceptionally , further blocks, giving the same
error message, may still be in place. These blocks
should be cleared now by repeatedly trying open theory
until this error message is not provoked

12013 An internal error has corrupted the current theory
data. Immediately make a call of open theory
to clear this internal error

12203 The kernel interface tables were in an inconsistent state.
The tables are now being rebuilt .
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SML

val duplicate theory : (string ∗ string) −> unit ;

Description duplicate theory oldthy newthy creates a new theory, called newthy with the same
contents and parents as oldthy , but without any children. The current theory remains unchanged.

Uses To allow the user to modify and experiment with a theory that has child theories that are
not involved in the experiment, and would perhaps clash with the experiment.

Errors

6026 Theory ?0 may not be duplicated
(it must always be in the scope of any opened theory)

6042 Theory ?0 may not be duplicated (the duplicate would not be a descendant of ?1 )
12035 Theory ?0 is not present in the current hierarchy
6040 Theory ?0 is already present in current theory hierarchy

To ensure that the duplicate theory can be opened by open theory (q.v.) the system will prevent
the duplication of theories which would give rise to error 6017 of open theory if opened, and
attempts to create such duplicates will give rise to error 6026 or 6042.

SML

val get ancestors : string −> string list ;

Description This returns all the ancestors of the named theory, including the theory itself.
The named theory is the last name in the list returned. The name of the parent first added to
the named theory is next to last, preceded by its ancestors. All these are preceded by the second
parent theory and its ancestors, apart from those already added. These are preceded by any
unnoted ancestors of the third, fourth, etc parents of the named theory. The order in the list of
the ancestors of the parent theories is determined recursively by this ordering.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get axioms : string −> (string list ∗ THM ) list ;
val get axiom dict : string −> THM OE DICT ;

Description get axioms returns all the axioms stored in the indicated theory together with the
keys under which they are stored.

get axiom dict returns the mapping of keys to axioms represented as an order-preserving efficient
dictionary.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get axiom : string −> string −> THM ;

Description get axiom theory key returns the axiom with key key , found in theory theory .

To improve performance, this function uses a cache containing the values of previous calls. This
cache is rebuilt when open theory is called, by removing entries that have gone out of scope.
Opening a theory such as basic hol that is low down in the theory hierarchy will reclaim the
memory occupied by the cache.

Errors

12035 Theory ?0 is not present in the current hierarchy
12005 Theory ?0 does not have an axiom with key ?1
12010 Theory ?0 is not in scope

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



6.3. The Kernel Interface 139

SML

val get children : string −> string list ;

Description This returns the immediate children of the named theory, (not including the theory
itself).

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get consts : string −> TERM list ;

Description This returns (most general instances of) all the constants stored in a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get const keys : string −> E KEY list ;

Description This returns the efficient dictionary keys that represent the names of the constants
stored in a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get const theory : string −> string ;

Description get const theory c returns the name of the theory in which the constant c is
defined.
Errors

12201 There is no constant called ?0 in the current context

SML

val get const type : string −> TYPE OPT ;

Description If a constant with the given name is in scope, then its type is returned, otherwise
Nil .

Uses This is likely to be often used just as a rapid test for a constant being in scope.

See Also get const info

SML

val get current theory name : unit −> string ;

Description Returns the name of the current theory.

SML

val get current theory status : unit −> THEORY STATUS ;

Description This returns the current theory’s status.
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SML

val get defns : string −> (string list ∗ THM ) list ;
val get defn dict : string −> THM OE DICT ;

Description get defns returns all the defining theorems stored in the indicated theory together
with the keys under which they are stored.

get defn dict returns the mapping of keys to defining theorems represented as an order-preserving
efficient dictionary.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get defn : string −> string −> THM ;

Description get defn theory key returns the definition with key key , found in theory theory .

To improve performance, this function uses a cache containing the values of previous calls. This
cache is rebuilt when open theory is called, by removing entries that have gone out of scope.
Opening a theory such as basic hol that is low down in the theory hierarchy will reclaim the
memory occupied by the cache.

Errors

12035 Theory ?0 is not present in the current hierarchy
12004 Theory ?0 does not have a definition with key ?1
12010 Theory ?0 is not in scope

SML

val get descendants : string −> string list ;

Description This returns all the descendants of the named theory, including itself.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get parents : string −> string list ;

Description This returns the immediate parents of the named theory, (not including the theory
itself).

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get theory names : unit −> string list ;
val theory names : unit −> string list ;

Description These return the list of undeleted theories in the current hierarchy, whether in
scope or not. theory names is an alias for get theory names.

SML

val get theory status : string −> THEORY STATUS ;

Description This returns the status of the indicated theory.

Errors

12035 Theory ?0 is not present in the current hierarchy
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SML

val get theory : string −> THEORY ;
val get theory info : string −> THEORY INFO ;

Description These functions return the data structures associated with a theory in the logical
kernel.
Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get thms : string −> (string list ∗ THM ) list ;
val get thm dict : string −> THM OE DICT ;

Description get thms returns all the theorems stored in the indicated theory together with the
keys under which they are stored.

get thm dict returns the mapping of keys to theorems represented as an order-preserving efficient
dictionary.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get thm : string −> string −> THM ;

Description get thm theory key returns the theorem with key key , found in theory theory .

To improve performance, this function uses a cache containing the values of previous calls. This
cache is rebuilt when open theory is called, by removing entries that have gone out of scope.
Opening a theory such as basic hol that is low down in the theory hierarchy will reclaim the
memory occupied by the cache.

Errors

12035 Theory ?0 is not present in the current hierarchy
12006 Theory ?0 does not have a theorem with key ?1
12010 Theory ?0 is not in scope

SML

val get types : string −> TYPE list ;

Description This returns (canonical applications of) all the type constructors stored on a the-
ory.

Errors

12035 Theory ?0 is not present in the current hierarchy

SML

val get type arity : string −> int OPT ;

Description If a type with the given name is in scope, then its arity is returned, otherwise Nil .

Uses This is likely to be often used just as a rapid test for a type being in scope.

See Also get type info

SML

val get type keys : string −> E KEY list ;

Description This returns the efficient dictionary keys that represent the names of the type
constructors stored in a theory.

Errors

12035 Theory ?0 is not present in the current hierarchy
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SML

val get type theory : string −> string ;

Description get type theory ty returns the name of the theory in which the type constructor
ty is defined.

Errors

12202 There is no type constructor called ?0 in the current context

SML

val get user datum : string −> string −> USER DATUM ;

Description get user datum thy key returns the value stored in the user data slot allocated to
key in the theory thy , if any.

Errors

12035 Theory ?0 is not present in the current hierarchy
12009 No user data stored under key ?0 in theory ?1

SML

val is theory ancestor : string −> string −> bool ;

Description is theory ancestor thy1 thy2 returns true if thy1 is an ancestor of thy2 within
the current hierarchy.

Errors

12035 Theory ?0 is not present in the current hierarchy

This failure arises if either theory name is not present in the current hierarchy.

SML

val kernel interface diagnostics : bool −> {
clean flag : bool ,
const thys : int list E DICT list ,
type thys: int list E DICT list ,
int thy names : int E DICT ,
in scope : int list};

Description This function can be used to examine and optionally reset internal state used by
the kernel interface module. It is intended for diagnostic purposes. If the argument is false, it
just returns a representation of the state; if true, it also sets the internal state so that the next
call on any operation such as get const theory will cause the state to be recalculated.

SML

val list save thm : (string list ∗ THM ) −> THM

Description list save thm(keys, thm) causes thm to be save under the keys keys in the current
theory. The saved theorem is returned as the function’s result. If there is a conjecture stored
under any of the keys in the current theory, the theorem must prove each such conjecture, i.e., its
conclusion must be the same as the conjecture and it must have an empty assumption list.

See Also new conjecture, is proved conjecture

Errors

6031 Key list may not be empty
6037 Theory ?0 is locked
6039 Key ?0 has already been used for a theorem in theory ?1
6071 Theory ?0 is a read−only ancestor
103101 This theorem does not prove the conjecture stored under key ?0
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SML

val lock theory : string −> unit ;

Description lock theory thy causes thy to be locked. The contents of a locked theory are pro-
tected from further changes. A locked theory may be unlocked using unlock theory(q.v.).

Errors

12035 Theory ?0 is not present in the current hierarchy
6037 Theory ?0 is locked
6071 Theory ?0 is a read−only ancestor

SML

val new axiom : (string list ∗ TERM ) −> THM

Description new axiom(keys, tm) stores the boolean term tm an axiom in the current theory
as an axiom under keys keys.

Errors

3031 ?0 is not of type p:BOOLq
6031 Key list may not be empty
6037 Theory ?0 is locked
6047 Key ?0 has already been used for an axiom in theory ?1
6071 Theory ?0 is a read−only ancestor

SML

val new const : (string ∗ TYPE ) −> TERM ;

Description new const (name, type) introduces a new constant (with no defining theorem)
called name, with most general type type, into the current theory.

Errors

6037 Theory ?0 is locked
6049 There is a constant called ?0 already in scope
6063 There is a constant called ?0 in the descendants of the

current theory
6071 Theory ?0 is a read−only ancestor

SML

val new parent : string −> unit ;

Description Adds the given parent theory to the list of parents of the current theory, considered
as a set. It will fail if the parent theory does not exist; is already a parent of the current theory;
or if making it a parent would cause a clash by bringing a new theory into scope (perhaps the
new parent itself) that declares a new type or constant that is already in scope, or is declared in
the descendants of the current theory.

Errors

12035 Theory ?0 is not present in the current hierarchy
6037 Theory ?0 is locked
6067 Making ?0 a parent would cause a clash
6071 Theory ?0 is a read−only ancestor
6082 Theory ?0 is already a parent
6084 Suggested parent ?0 is a child of the current theory
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SML

val new spec : (string list ∗ int ∗ THM ) −> THM ;

Description new spec (keylist , ndef , ‘`∃x 1 , . . . , x n • p[x 1 , . . . , x n]′) will introduce ndef
new constants named and typed from the x i . It will also save a defining theorem under each of
the keys in keylist in the current theory of the form ‘`p[c 1 , . . . , c n]’ where c i is the constant
with the name and type of x i . If either the constant or theorem introduction fails then the
function will not change the current theory.

Errors

6016 Existentially bound variable ?0 is repeated in theorem ?1
6031 Key list may not be empty
6037 Theory ?0 is locked
6044 Must define at least one constant
6049 There is a constant called ?0 already in scope
6051 Key ?0 has already been used for a definition in theory ?1
6053 ?0 must not have assumptions
6056 ?0 is a free variable in ?1
6062 ?0 are free variables in ?1
6060 ?0 is not of the form: ‘` ∃ x1 ... xn • p[x1 ,...,xn]‘

where the pxiq are variables, and n( = ?1 ) is the number of
constants to be defined

6061 the body of ?0 contains type variables not found in type
of constants to be defined , the variables being : ?1

6063 There is a constant called ?0 in the descendants of the
current theory

6071 Theory ?0 is a read−only ancestor
6081 Sets of type variables in ?0 and ?1 differ

SML

val new theory : string −> unit ;

Description new theory thy adds a new, empty, theory called thy to the theory database. The
empty theory has no declarations within it, but does have the current theory as its sole parent.
The new theory then becomes the current theory.

Errors

6040 Theory ?0 is already present in current theory hierarchy
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SML

val new type defn :
(string list ∗ string ∗ string list ∗ THM ) −> THM ;

Description new type defn (keys,name, typars, defthm) declares a new type with name name,
and arity the length of typars. It creates a defining theorem for the type, saves it in the current
theory under the keys keys. It returns the defining theorem. defthm must be a valid well-formed
theorem of the form:

` ∃ x : type • p x

with no assumptions. The defining theorem will then be of the form:

` ∃ f : typars name → type •
TypeDefn (p: type → BOOL) f

where TypeDefn asserts that its predicate argument p is non-empty, and its function argument f
is a bijection between the new type and the subset of type delineated by p.

Errors

6031 Key list may not be empty
6034 There is a type called ?0 in the descendants of the current theory
6037 Theory ?0 is locked
6045 There is a type called ?0 already in scope
6052 Key ?0 has already been used for an type definition theorem in theory ?1
6053 ?0 must not have assumptions
6054 ?0 is not of the form: ‘` ∃ x • px‘
6055 ?0 is not of the form: ‘` ∃ x • p y‘ where pxq is a variable
6056 ?0 is a free variable in ?1
6062 ?0 are free variables in ?1
6057 ?0 contains type variables not found in type variable parameter list ,

type variables being : ?1
6071 Theory ?0 is a read−only ancestor
6079 ?0 repeated in type parameter list
6080 ?0 is not of the form: ‘` ∃ x • p y‘ where pxq equals pyq

SML

val new type : (string ∗ int) −> TYPE ;

Description new type (name, arity) introduces a new type constructor (with no defining the-
orem) called name with arity arity into the current theory. The function returns the new type
with sufficient arguments ′1 ,′ 2 , . . . to provide a well-formed type.

Errors

6034 There is a type called ?0 in the descendants of the current theory
6037 Theory ?0 is locked
6045 There is a type called ?0 already in scope
6071 Theory ?0 is a read−only ancestor
6088 The arity of a type must be ≥ 0
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SML

val on kernel state change : (KERNEL STATE CHANGE −> unit) −> unit

Description on kernel state change f nominates f to be called whenever the theory database
is modified by a function from the signature KernelInterface. The argument to f encodes the
operation which caused the modification together with its arguments and certain other additional
information. A list of such functions is maintained, and the new function is put at the end of the
list, which means it may, if desired undo or overwrite the effects of a function nominated by an
earlier call of on kernel state change.

Functions handled by on kernel state change should not be coded to raise errors that are not
handled by themselves, as the handler will not catch such errors either. If the function is to
prevent a change from happening before kernel state change should be used instead.

See Also KERNEL STATE CHANGE , before kernel state change

SML

val open theory : string −> unit ;

Description All specification and proof work is carried out in the context of some theory,
referred to as the current theory. open theory thy makes an existing theory thy the current
theory.

Errors

6017 Theory ?0 may not be opened (it is not a descendant of ?1 which must be in scope)
12035 Theory ?0 is not present in the current hierarchy

Certain theories created when the system is constructed may not be subsequently opened, and
attempts to open them give rise to error 6017.

SML

val pending reset kernel interface : unit −> unit −> unit ;

Description This function, applied to () takes a “snapshot” of the current state of the kernel
interface module (comprising the“On Kernel State Change”, “Before Kernel State Change” and
“On Kernel Inference” functions). The resulting snapshot, when applied to () will restore these
functions to their state at the time of making the snap shot.

Uses To assist in saving the overall system state.

SML

val save thm : (string ∗ THM ) −> THM

Description save thm(key , thm) causes thm to be save under the key key in the current theory.
The saved theorem is returned as the function’s result. If there is a conjecture stored under the
same key in the current theory, the theorem must prove the conjecture, i.e., its conclusion must
be the same as the conjecture and it must have an empty assumption list.

See Also new conjecture, is proved conjecture

Errors

6037 Theory ?0 is locked
6039 Key ?0 has already been used for a theorem in theory ?1
6071 Theory ?0 is a read−only ancestor
103101 This theorem does not prove the conjecture stored under key ?0
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SML

val set user datum : (string ∗ USER DATUM ) −> unit ;

Description set user datum(key , ud) assigns the new value ud to the user data slot allocated
to key in the current theory. If an old value was present it will be overwritten.

Errors

6037 Theory ?0 is locked
6071 Theory ?0 is a read−only ancestor

SML

val simple new defn : (string list ∗ string ∗ TERM ) −> THM ;

Description simple new defn (keys,name, value) declares a new constant with name name,
and with most general type being the type of value in the current theory. It creates an equational
theorem (i.e. of the form ‘`name = value’), and saves it as a definition under keys keys in the
current theory, provided the theorem is well-formed. If either the constant or theorem introduction
fails then the function does not change the current theory. The body of value may not contain
type variables that are not in the type of value itself.

Errors

6031 Key list may not be empty
6037 Theory ?0 is locked
6049 There is a constant called ?0 already in scope
6051 Key ?0 has already been used for a definition in theory ?1
6058 the body of ?0 contains type variables not found in type of term itself ,

the variables being : ?1
6059 ?0 contains the following free variables: ?1
6063 There is a constant called ?0 in the descendants of the

current theory
6071 Theory ?0 is a read−only ancestor

SML

val string of thm : THM −> string ;

Description This returns a display of a theorem in the form of a string, with no inserted new
lines, suitable for use with diag string and fail .

See Also format thm, a formatted string display of a theorem.

SML

val thm fail : string −> int −> THM list −> ′a;

Description thm fail area msg thml first creates a list of functions from unit to string , provid-
ing displays of the list of theorems. It then calls fail with the area, msg and this list of functions.
This allows theorems to be presented in error messages.

SML

val thm theory : THM −> string ;

Description thm theory thm returns the name of the theory which was current when thm was
proven. This will succeed even if the theory is out of scope, but not if the theory has been deleted.

Errors

12007 ?0 proven in theory with internal name ?1 ,
which is not present in current hierarchy
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SML

val unlock theory : string −> unit ;

Description unlock theory thy causes the locked theory thy to be unlocked, so that the contents
of thy may be changed.

Errors

12035 Theory ?0 is not present in the current hierarchy
6068 Theory ?0 has not been locked

SML

val valid thm : THM −> bool ;

Description This function uses the check for the validity of theorems: returning true if valid
and false otherwise: it cannot raise exceptions.

Uses To preempt errors caused by the primitive inference rules, which raise uncatchable errors
when given invalid theorems, and so return more helpful error messages.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



6.4. Conjectures Database 149

6.4 Conjectures Database

SML

val is proved conjecture: string −> string −> bool ;
val get proved conjectures: string −> string list ;
val get unproved conjectures: string −> string list ;

Description is proved conjecture thy key returns true if the conjecture with key key in theory
thy has been proved (i.e., there is a theorem stored under the same key in the theory which has
the conjecture as its conclusion and has no assumptions).

get proved conjectures thy (resp. get unproved conjectures thy) returns the list of conjectures in
theory thy which have (resp. have not) been proved in the sense described above.

See Also save thm, list save thm, new conjecture

Errors

20601 There is no theory called ?0
103101 This theorem does not prove the conjecture stored under key ?0
103102 The theorem with key ?0 does not prove this conjecture
103103 Theory ?0 is not in scope
103802 There is no conjecture called ?0 in theory ?1
103803 The conjectures database in theory ?0 is corrupt

(use delete all conjectures to clear).
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SML

val new conjecture : (string list ∗ TERM ) −> unit ;
val get conjecture: string −> string −> TERM ;
val get conjectures: string −> (string list ∗ (int ∗ TERM )) list ;
val delete conjecture: string −> TERM ;
val delete all conjectures: unit −> unit ;

Description new conjecture(keys, tm) stores the boolean term tm as a conjecture in the current
theory under keys keys. If any of the keys is also the key of a theorem saved in the current theory,
then each such theorem must prove the conjecture, i.e., its conclusion must be the same as tm
and it must have an empty assumption list.

delete conjecture key deletes the conjecture stored in the current theory under key key . It returns
the deleted conjecture.

delete all conjectures() deletes all the conjectures stored in the current theory. This may be used
if, for some reason, the data structure used to store the conjectures becomes corrupted.

Note, when a constants or a type is deleted from a theory, conjectures that contain the deleted
constant or type are automatically deleted from the current theory. Message 103804 is used as a
comment to inform the user when this happens.

See Also save thm, list save thm, is proved conjecture

Errors

3031 ?0 is not of type p:BOOLq
6031 Key list may not be empty
20601 There is no theory called ?0
103101 The theorem ?0 does not prove the conjecture with key ?1
103801 Key ?0 has already been used for a conjecture in the current theory
103802 There is no conjecture called ?0 in theory ?1
103803 The conjectures database in theory ?0 is corrupt

(use delete all conjectures to clear).
103804 Deletion of ?0 has caused deletion of conjecture?1 : ?2
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6.5 Theorem Finder

SML

datatype ′a TEST =
TFun of ′a −> bool

| TAll of ′a TEST list
| TAny of ′a TEST list
| TNone of ′a TEST list ;

type THM INFO TEST = THM INFO TEST ;

Description The type THM INFO TEST is used for the parameters of general theorem finder
functions, gen find thm and gen find thm in theories that represent search criteria. The con-
structor TFun is used to represent a basic criterion. TAll, TAny and TNone construct new
criteria from old by conjunction, disjunction and negated disjunction respectively.

See Also any substring tt etc. (for ways of constructing basic criteria).

SML

datatype THM TYPE = TTAxiom | TTDefn | TTSaved;

type THM INFO = {
theory : string ,
names : string list ,
thm type : THM TYPE ,
thm : THM };

Description The types THM TYPE and THM INFO are used by the theorem finder functions,
find thm etc., to represent information about a theorem stored in a theory. The representation
gives: the name of the theory; the name or names under which the theorem is stored; an indicator
of whether the theorem is an axiom, a definition or a theorem that has been proved and saved;
and the actual theorem.

SML

val find thm : TERM list −> THM INFO list ;

Description This is a simple interface for finding theorems. find thm pats searches for any
theorems in the current theory and its ancestors that contains subterms matching each of the
pattern terms tms.

The return value is a list of records containing the conclusion of the theorem and other useful
information, see the description of the type THM INFO for more details.

For example, if the theory R of real numbers is in scope, the following will find all theorems
containing both real number addition and real number multiplication.

find thm [px + y : Rq, px ∗ y : Rq];

See Also gen find thm
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SML

val gen find thm in theories : THM INFO TEST −> string list −> THM INFO list ;
val gen find thm : THM INFO TEST −> THM INFO list ;

val any substring tt : string list −> THM INFO TEST ;
val all substring tt : string list −> THM INFO TEST ;
val no substring tt : string list −> THM INFO TEST ;
val any subterm tt : TERM list −> THM INFO TEST ;
val all subterm tt : TERM list −> THM INFO TEST ;
val no subterm tt : TERM list −> THM INFO TEST ;
val any submatch tt : TERM list −> THM INFO TEST ;
val all submatch tt : TERM list −> THM INFO TEST
val no submatch tt : TERM list −> THM INFO TEST

Description gen find thm in theories is the general theorem finder function. Its first parame-
ter specifies the search criteria and its second parameter specifies the names of the theories to be
searched. It returns a list representing the theorems satisfying the criteria. See the definitions of
the parameter and return data types for more details.

gen find thm calls gen find thm in theories with the specified search criteria and the list of all
ancestors of the current theory as the list of theories to search (this include the current theory).
Thus it finds all the theorems that are currently in scope that match the specified criteria.

The remaining functions give convenient ways of specifying typical search criteria. These functions
support three kinds of basic criterion: substring search criteria test for a specified string appearing
as a substring of the name of the theorem; subterm search criteria test for the presence (up to
α-equivalence) in the conclusion of the theorem of a specified subterm; submatch search criteria
test for the presence in the conclusition of the theorem of a subterm that is an instance of a
specified pattern term. Given a list of strings or terms giving basic criteria, the functions test
for theorems satisfying all of the criteria (all . . . ), at least one of the criteria (any . . . ) or none
of the criteria (no . . . ). The constructors of the data type THM INFO TEST, q.v., allow more
complex logical combinations of criteria to be built up from these.

For example, the following will find all theorems in scope that have names containing “plus” or
“minus” as a substring and that have a conclusion that does not contain any natural number
additions.

gen find thm(TAll [any substring tt ["plus", "minus"], no subterm tt [p$+:N → N → Nq]]);

See Also find thm
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PROOF IN HOL

7.1 General Inference Rules

SML

signature DerivedRules1 = sig

Description This provides the derived rules of inference in Release 001 of ICL HOL. Though
other rules of inference may be introduced, this document’s signature should provide a core set,
at least covering the common rules of natural deduction. It subsumes the inference rules of the
abstract data type THM .

SML

signature DerivedRules2 = sig

Description This provides the further derived rules of inference for ICL HOL. They are pri-
marily concerned with handling paired abstractions.

SML

signature Rewriting = sig

Description This provides the derived rewriting rule, conversions and tactics for ICL HOL.

SML

(∗ "illformed rewrite warning" ∗)
Description This flag modifies the behaviour of REWRITE MAP C and ONCE MAP -
WARN C . When false (its default) it will not warn of illformed rewriting in subterms, with

message 26002, though if no other rewriting occurs then error message 26003 will still be used. If
true, then the warning will be given if some rewriting is successful, but elsewhere it is illformed.

SML

type CANON (∗ = THM −> (THM list) ∗);
Description This is the type abbreviation for a canonicalisation function; such functions are
typically used to derive consequences of a theorem meeting some desired criteria. An example
is the rewriting canonicalisations which are used to transform theorems into lists of equational
theorems for use in the rewriting conversions, rules and tactics.

Combinators are available to assist in the construction of new canonicalisation functions from old.

See Also THEN CAN , ORELSE CAN , REPEAT CAN , FIRST CAN , EVERY CAN as
combinators, fail can and id can as building blocks for the combinators.

SML

val ALL SIMPLE ∀ C : CONV −> CONV ;

Description This conversional applies its conversion argument to the body of a repeated simple
universal quantification.

Errors As the failure of the conversion argument.
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SML

val all simple ∀ elim : THM −> THM ;

Description Specialises all the simple universally quantified variables in a theorem:

Rule

Γ ` ∀ x1 ... xn • t [x1 , ..., xn]
Γ ` t [x1 ′, ..., xn ′]

all simple ∀ elim

where x1 ′, . . . , xn ′ are renamed from x1 , . . . , xn as necessary to avoid clashes with free variables
in the assumption list, or duplicated names in the list of specialisations.

SML

val ALL SIMPLE ∃ C : CONV −> CONV ;

Description This conversional applies its conversion argument to the body of a repeated simple
existential quantification.

Errors As the failure of the conversion argument.

SML

val all simple β conv : CONV ;

Description A conversion to eliminate all instances of simple β redexes in a term, regardless
of nesting, or even that the β redex was created as the result of an earlier reduction in the
conversion’s evaluation.
Rule

` t = t ′
all simple β conv
ptq

t ′ is t with all simple β redexes reduced.

Uses This uses an optimised term traversal algorithm, superior in speed to the general term
traversal algorithms used with conversions, and should be used in preference to them and β conv .

Errors

7020 ?0 contains no β−redexes

SML

val all simple β rule : THM −> THM ;

Description Eliminate all instances of simple β redexes in a theorem, regardless of nesting, or
even that the β redex was created as the result of an earlier reduction in the rule’s evaluation.

Rule

Γ ` t
Γ ` t ′

all simple β rule

t ′ is t with all β-redexes reduced.

Errors

7020 ?0 contains no β−redexes
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SML

val ALL ∧ C : CONV −> CONV ;
val ALL ∨ C : CONV −> CONV ;

Description These respectively apply their conversion argument to:

• All the conjuncts of a structure of conjuncts (including a term that is not a conjunct at all)
failing only if the conversion fails for all the conjuncts.

• All the disjuncts of a structure of disjuncts (including a term that is not a disjunct at all)
failing only if the conversion fails for all the disjuncts.

The result is simplified at any conjunct or disjunct where at least one branch had a successful
application of the conversion and matches the appropriate theorems of:

` ∀ t• (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ ¬ (F ∧ t) ∧ ¬ (t ∧ F ) ∧ (t ∧ t ⇔ t)

` ∀ t• (T ∨ t) ∧ (t ∨ T ) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)

Errors As the failure of the conversion argument.

SML

val all ⇒ intro :THM −> THM ;

Description Discharge all members of assumption list using ⇒ intro.

Rule

{t1 , ..., tn} ` t
` t1 ⇒ ... ⇒ tn ⇒ t

all ⇒ intro

SML

val all ∀ arb elim : THM −> THM ;

Description Specialise all the quantifiers of a possibly universally quantified theorem with a
machine generated variables or variable structures.

Rule

Γ ` ∀ vs1 [x1 ,y1 ,...] vs2 [x2 ,y2 ,...] ...•
p[x1 ,y1 ,....x2 ,y2 ,...]

Γ ` p[x1 ′,y1 ′,...,x2 ′,y2 ′,...]
∀ arb elim

where x i ′, y i ′, etc, are not variables (free or bound) in p or Γ , created by gen vars(q.v).

See Also all ∀ elim

SML

val all ∀ elim : THM −> THM ;

Description Specialises all the outer universal quantifications in a theorem:

Rule

Γ ` ∀ x1 ... xn• t [x1 , ..., xn]
Γ ` t [x1 ′, ..., xn ′]

all ∀ elim

where x1 ′, . . . , xn ′ are renamed from x1 , . . . , xn as necessary to avoid name clashes with free
variables in the assumption list.

See Also all ∀ arb elim which is faster, though the results are slightly opaque. list ∀ elim.
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SML

val all ∀ intro : THM −> THM ;

Description Generalises all the free variables (other than those in the assumption list) in a
theorem:
Rule

Γ ` t
Γ ` ∀ x1 ... xn • t

all ∀ intro

where x1 , . . . , xn are all the free variables of t . The function introduces variables in their order
of occurrence, so:

Example

all ∀ intro (` a ∨ b) = ` ∀ a b • a ∨ b

SML

val all ∀ uncurry conv : CONV ;

Description Apply ∀ uncurry conv (q.v) to the outer universal quantifications of a term, flat-
tening those binders.

Conversion

Γ ` (∀ vs1 [x ,y ,...] vs2 [x ,y ,...] ...•
f [x1 ,y1 ,...,x2 ,y2 ,...])

= (∀ x1 y1 ... x2 y2 ...•
f [x1 ,y1 ,...,x2 ,y2 ,...])

all ∀ uncurry conv
p∀ vs1 [x1 ,y1 ,...] vs2 [x2 ,y2 ,...] ...•

f [x1 ,y1 ,...,x2 ,y2 ,...]q

where the vs i [x i , y i , ...] are variable structures at least one of which must not be a simple
variable, built from variables x i , y i , ...,

Errors

27041 ?0 is not of the form: p∀ ... (x ,y) ...• f q

SML

val all ∃ uncurry conv : CONV ;

Description Apply ∃ uncurry conv (q.v) to the outer existential quantifications of a term,
flattening those binders.

Conversion

Γ ` (∃ vs1 [x ,y ,...] vs2 [x ,y ,...]•
f [x1 ,y1 ,...,x2 ,y2 ,...])

= (∃ x1 y1 ... x2 y2 ...•
f [x1 ,y1 ,...,x2 ,y2 ,...])

all ∃ uncurry conv
p∃ vs1 [x1 ,y1 ,...] vs2 [x2 ,y2 ,...] ...•
f [x1 ,y1 ,...,x2 ,y2 ,...]q

where the vs[x , y , ...] are variable structures with variables x , y , ..., at least one of which must not
be a simple variable.

See Also all ∀ uncurry conv

Errors

27048 ?0 is not of the form: p∃ ... (x ,y) ...• f q
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SML

val all β conv : CONV ;

Description A conversion to eliminate all instances of β redexes, including paired abstraction
redexes, in a term, regardless of nesting, or even that the β redex was created as the result of an
earlier reduction in the conversion’s evaluation.
Rule

` t = t ′
all β conv
ptq

t ′ is t with all β redexes reduced.

Uses This uses an optimised term traversal algorithm, superior in speed to the general term
traversal algorithms used with conversions, and should be used in preference to them and β conv .

See Also all simple β conv which only handles simple β-redexes, but does a faster traversal if
that is all that is required. all β rule.

Errors

27049 ?0 contains no β−redexes

SML

val all β rule : THM −> THM ;

Description Eliminate all instances of β redexes, including paired abstraction redexes, in the
conclusion of a theorem, regardless of nesting, or even that the β redex was created as the result
of an earlier reduction in the rule’s evaluation.
Rule

Γ ` t
Γ ` t ′

all β rule

t ′ is t with all β-redexes reduced.

See Also all β conv for the conversion. all simple β rule which only handles simple β-redexes,
but does a faster traversal if that is all that is required.

Errors

27049 ?0 contains no β−redexes

SML

val AND OR C : (CONV ∗ CONV ) −> CONV ;

Description c1 AND OR C c2 will succeed if it can apply one or both of c1 or c2 . If it
cannot compose the results of applying both conversions successfully (indicating an ill-formed
conversion result) it will return the result of the first conversion application.

See Also THEN TRY C , ORELSE C , THEN C

Errors As the failure message of the second conversion (implying that neither conversion was
successfully applied).
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SML

val app arg rule : TERM −> THM −> THM ;

Description Apply both sides of an equational theorem to an argument.

Rule

Γ ` f = g
Γ ` f x = g x

app arg rule
pxq

Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
7025 Sides of equation may not be applied to term

SML

val APP C : (CONV ∗ CONV ) −> CONV ;

Description Apply one conversion to the operator of a combination, and a second to the
operand.

Rule

` f a = f ′ a ′

APP C
(c1 : CONV ,
c2 : CONV )
pf aq

where c1 f gives ‘`f = f ′‘, and c2 f gives ‘`a = a ′‘.

Errors

3010 ?0 is not of form: pt1 t2q
7110 Results of conversions, ?0 and ?1 , ill−formed or cannot be combined

Also as the failure of the conversions.

SML

val app fun rule : TERM −> THM −> THM ;

Description Apply a function to both sides of an equational theorem.

Rule

Γ ` a = b
Γ ` f a = f b

app fun rule
pf q

Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
7024 ?0 may not be applied to each side of equation

SML

val app if conv : CONV ;

Description Move a function application into a conditional.

Conversion

` f (if a then b else c) =
(if a then f b else f c)

app if conv
pf (if a then b else c)q

Errors

7098 ?0 is not of the form: pf (if a then b else c)q
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SML

val asm elim : TERM −> THM −> THM −> THM ;

Description Eliminate an assumption with reference to contradictory assumption lists.

Rule

Γ1 , a ′ ` t ; Γ2 , ¬a ′′ ` t ′

Γ1 ∪ Γ2 ` t
asm elim
paq

where a, a ′ and a ′′, as well as t and t ′ are α-convertible. Actually, the assumptions don’t have to
be present for the function to succeed.

Errors

3031 ?0 is not of type p:BOOLq
7029 ?0 and ?1 are not of the form:‘Γ1 , aa ` t‘ and ‘Γ2 , ¬aaa ` ta‘

where ptq and ptaq are α−convertible

SML

val asm inst term rule : (TERM ∗ TERM ) list −> THM −> THM ;

Description Parallel instantiation of term variables within a theorem’s conclusion and assump-
tions to some other values.
Rule

Γ ` t [x1 , ..., xn]
Γ ′ ` t [t1 , ..., tn]

asm inst term rule
[..., (ptiq, pxiq), ...]

See Also inst term rule
Errors

3007 ?0 is not a term variable
6027 Types of element (?0 , ?1 ) in term association list differ

SML

val asm inst type rule : (TYPE ∗ TYPE ) list −> THM −> THM ;

Description Parallel instantiation of some of the type variables of both the conclusion and
assumptions of a theorem.

Rule

Γ ` t [tv1 ,...tvn]
Γ ′ ` t [σ1 ,...σn]

asm inst type rule
[(σ1 , tv1 ), ..., (σn,tvn)]

asm inst type rule talist thm will instantiate each type variable in talist with its associated type.
It will decorate free variables that would become identified with other variables by their types
becoming the same and the names originally being the same. α-convertible duplicate assumptions
will be eliminated.

See Also inst type rule

Errors

3019 ?0 is not a type variable

SML

val asm intro : TERM −> THM −> THM ;

Description Introduce a new assumption to an existing theorem.

Rule

Γ ` t2
Γ ∪ {t1} ` t2

asm intro
pt1q

Errors

3031 ?0 is not of type p:BOOLq
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SML

val asm rule : TERM −> THM ;

Description “A term is true on the assumption that it is true.”

Rule

t ` t
asm rule
ptq

A primitive inference rule.

Errors

3031 ?0 is not of type p:BOOLq

SML

val BINDER C : CONV −> CONV ;

Description Apply a conversion to the body of a binder term:

Rule

` (B x• p[x ]) = (B x• pa[x ])

BINDER C
(c : CONV )
pB x• pq

where c p[x ] gives ‘`p[x ] = pa[x ]‘, and B is a binder.

Errors

27035 ?0 is not of the form: pB x• p[x ]q where pBq is a binder
and pxq a varstruct

7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val CHANGED C : CONV −> CONV ;

Description Applies a conversion, and fails if either the conversion fails, has ill-formed results
in certain ways, or it causes no change. Even α-convertible changes count as a change for this
purpose.

Errors

7032 Conversion failed to cause a change
7104 Result of conversion, ?0 , ill−formed

It may also fail with the error message of the conversion argument.

SML

val char conv : CONV ;

Description This function defines the character literal constants, by giving a relationship be-
tween character literal constants and their ASCII code (derived by the Standard ML function
ord). A character literal is indicated by the constant’s name starting with single backquote (‘),
being a single other character, as well as being of type CHAR.

Rule

` pML(mk char("c"))q =
AbsChar pMLord "c"q

char conv
(mk char("c"))

A primitive inference rule(axiom schemata).

See Also mk char
Errors

3024 ?0 is not a character literal
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SML

val COND C : (TERM −> bool) −> CONV −> CONV −> CONV ;

Description COND C pred cnv1 cnv2 tm will be, if the term predicate pred applied to tm is
true, then cnv1 tm and otherwise the cnv2 tm.

Errors As the failure of the predicate or either conversion.

SML

val cond thm : THM ;

Description A convenient variant of the definition of the conditional.

Theorem

` ∀ a t1 t2• (if a then t1 else t2 ) =
(ε x• ((a ⇔ T ) ⇒ x = t1 ) ∧ ((a ⇔ F ) ⇒ x = t2 ))

cond thm

SML

val contr rule : TERM −> THM −> THM ;

Description Intuitionistic contradiction rule:

Rule

Γ ` F
Γ ` t

contr rule
ptq

Errors

7001 ?0 is not of form: ‘Γ ` F‘
3031 ?0 is not of type p:BOOLq

SML

val conv rule : CONV −> THM −> THM ;

Description Apply a conversion to the conclusion of a theorem, and do ⇔ modus ponens
between the original theorem and the result of the conversion

Rule

Γ1 ` t
Γ1 ∪ Γ2 ` t ′

conv rule
(c : CONV )

where c t gives Γ2`t⇔t ′.

Errors

7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion upon the conclusion of the theorem.

SML

val cthm eqn cxt : CANON −> THM −> EQN CXT ;

Description This function applies a canonicalisation (see CANON ) to a theorem, and then
attempts to convert each of the list of resulting theorems into an equational context entry using
thm eqn cxt (q.v.). The results are composed into an equational context (which is only a Stan-
dard ML list of equational context entries). Canoncalised theorems that cannot be converted by
thm eqn cxt will be discarded.
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SML

val c contr rule : TERM −> THM −> THM ;

Description Classical contradiction rule:

Rule

Γ , ¬t ′ ` F
Γ ` t

c contr rule
ptq

Note that the argument is the unnegated form of what must be present in the assumption list for
success. Works up to α-conversion.

Errors

7001 ?0 is not of form: ‘Γ ` F‘
3031 ?0 is not of type p:BOOLq
7003 Negation of ?0 is not in assumption list

SML

val disch rule : TERM −> THM −> THM ;

Description Prove an implicative theorem, removing, if α-convertibly present, the antecedent
of the implication from the assumption list, and failing if it is not present.

Rule

Γ , t1 ′ ` t2
Γ ` t1 ⇒ t2

disch rule
pt1q

See Also ⇒ intro (which does not fail if term not in assumption list)

Errors

7031 ?0 not α−convertibly present in assumption list

SML

val eq match conv1 : THM −> CONV ;

Description This matches the LHS of an universally quantified (simple or by varstruct) equa-
tional theorem to a term, instantiating the RHS accordingly. The conversion will only instantiate
its universal quantifications, and type variables not found within the assumptions, not its free
term variables.
Conversion

Γ ` t = v [t1 ,...,tn]

eq match conv1
(Γ ` ∀ x1 ... xn• u[x1 ,...,xn] =

v [x1 ,...,xn])
ptq

where pu[t1,...,tn]q is α-convertible to ptq. If there are free variables on the RHS of the sup-
plied equational theorem (when stripped of all universal quantification) they will be renamed as
necessary to avoid identification with any variables in t .

This conversion may be partially evaluated with only its theorem argument.

Uses In producing a limited rewriting facility, that only instantiates explicitly identified vari-
ables.
Errors

27003 ?0 is not of the form ‘Γ ` ∀ x1 ... xn• u = v‘
where pxiq are varstructs

7076 Could not match term ?0 to LHS of theorem ?1
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SML

val eq match conv : THM −> CONV ;

Description This matches the LHS of an equational theorem to a term, instantiating the RHS
accordingly. The equational theorem may be partially or fully universally quantified (simple or
by varstruct), without affecting the result of the conversion.

Conversion

Γ ` t = v ′

eq match conv
(Γ ` ∀ ...• u = v)
ptq

where v ′ is the result of applying to v the instantiation rules required to match u to t (including
both term and type instantiation). If there are free variables on the RHS of the supplied equational
theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid
identification with any variables in t .

This conversion may be partially evaluated with only its theorem argument.

See Also eq match conv1

Errors

7044 Cannot match ?0 and ?1
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SML

val eq rewrite thm : THM
val ⇔ rewrite thm : THM
val ¬ rewrite thm : THM
val ∧ rewrite thm : THM
val ∨ rewrite thm : THM
val ⇒ rewrite thm : THM
val if rewrite thm : THM
val ∀ rewrite thm : THM
val ∃ rewrite thm : THM
val β rewrite thm : THM

Description These are some of the default list of theorems used by those rewriting rules,
conversions and tactics whose names do not begin with ‘pure ’:

eq rewrite thm ` ∀ x•(x = x ) ⇔ T

⇔ rewrite thm ` ∀ t•((T ⇔ t) = t) ∧ ((t ⇔ T ) = t) ∧
((F ⇔ t) = (¬ t)) ∧ (t ⇔ F ) = (¬ t)

¬ rewrite thm ` ∀ t•(¬¬t) = t ∧ ((¬ T ) = F ) ∧ (¬ F ) = T

∧ rewrite thm ` ∀ t•((T ∧ t) = t) ∧ ((t ∧ T ) = t) ∧
(¬ (F ∧ t)) ∧ (¬ (t ∧ F )) ∧ (t ∧ t) = t

∨ rewrite thm ` ∀ t•(T ∨ t) ∧ (t ∨ T ) ∧ ((F ∨ t) = t) ∧ ((t ∨ F ) = t) ∧ (t ∨ t) = t

⇒ rewrite thm ` ∀ t•((T ⇒ t) = t) ∧ ((F ⇒ t) = T ) ∧ ((t ⇒ T ) = T ) ∧ ((t ⇒ t) = T )
∧ (t ⇒ F ) = (¬ t)

if rewrite thm ` ∀ t1 t2 :′a•((if T then t1 else t2 ) = t1 ) ∧ (if F then t1 else t2 ) = t2

∀ rewrite thm ` ∀ t•(∀ x•t) = t
∃ rewrite thm ` ∀ t•(∃ x•t) = t

β rewrite thm ` ∀ t1 :′a; t2 :′b•((λ x•t1 )t2 ) = t1

The theorems are saved in the theory “misc”, and given their design in the design for that theory.

See Also fst rewrite thm, snd rewrite thm, fst snd rewrite thm.

SML

val eq sym conv : CONV ;

Description Symmetry of equality:

Rule

` (t1 = t2 ) ⇔ (t2 = t1 )
eq sym conv
pt1 = t2q

See Also eq sym rule

Errors

3014 ?0 is not of form: pt = uq
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SML

val eq sym rule : THM −> THM ;

Description Symmetry of equality:

Rule

Γ ` t1 = t2
Γ ` t2 = t1

eq sym rule

A built-in inference rule.

See Also eq sym conv

Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘

SML

val eq trans rule : THM −> THM −> THM ;

Description Transitivity of equality:

Rule

Γ1 ` t1 = t2 ; Γ2 ` t2 ′ = t3
Γ1 ∪ Γ2 ` t1 = t3

eq trans rule

where t2 and t2 ′ are α convertible. A built-in inference rule.
Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
6022 ?0 and ?1 are not of the form: ‘Γ1 ` t1 = t2‘ and ‘Γ2 ` t2a = t3‘

where pt2q and pt2aq are α−convertible

SML

val EVERY CAN : CANON list −> CANON

Description EVERY CAN is a canonicalisation function combinator which combines the ele-
ments of its argument using THEN CAN :

EVERY CAN [can1 , can2 , ...] = can1 THEN CAN can2 THEN CAN ...

See Also CANON

SML

val EVERY C : CONV list −> CONV ;

Description Apply each conversion in the list, in the sequence given.

See Also THEN C (which this function iterates)

Errors

7103 List may not be empty

or as the failure of any constituent conversion, or as THEN C .
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SML

val ext rule : THM −> THM ;

Description Extensionality of functions in ICL HOL.

Rule

Γ ` f = g
Γ ` ∀ x • f x = g x

ext rule

where x is a machine-generated variable of appropriate type, not found free in the equational
theorem.
Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
7026 ?0 is not an equation of functions

SML

val fail canon : CANON

Description This is a canonicalisation function which always fails. It is the identity for
ORELSE CAN .

See Also CANON
Errors

26201 Failed as requested

SML

val fail conv : CONV ;

Description This conversion always fails.

Errors

7061 Failed as requested

SML

val fail with canon : string −> int −> (unit −> string) list −> CANON

Description This is a canonicalisation function which always fails by passing its arguments to
fail (q.v.).

See Also fail can

SML

val fail with conv : string −> CONV ;

Description This conversion always fails, with the error message being its string argument.

Errors

7075 ?0

SML

val FIRST CAN : CANON list −> CANON

Description FIRST CAN is a canonicalisation function combinator which combines the ele-
ments of its argument using ORELSE CAN :

FIRST CAN [can1 , can2 , ...] = can1 ORELSE CAN can2 ORELSE CAN ...

See Also CANON
Errors

26202 the list of canonicalisation functions is empty
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SML

val FIRST C : CONV list −> CONV ;

Description Attempt to apply each conversion in the list, in the sequence given, until one
succeeds, or all fail.

See Also ORELSE C (which this function iterates)

Errors

7103 List may not be empty

or as the failure of the last conversion.

SML

val FORWARD CHAIN CAN : CANON list −> CANON ;
val FC CAN : CANON list −> CANON ;

Description FORWARD CHAIN CAN , which has the alias FC CAN , is a parameterised
variant of fc canon. Given a list of canonicalisation functions cans, FC CAN cans behaves as
fc canon would do if the line

` A → FIRST CAN cans A

were inserted at the beginning of the table of transformations given in the description of fc canon.

For example, fc canon1 , q.v., is the same as:

FC CAN ((fn (x , y) => [x ,y ]) o ⇔ elim);

Uses In tactic programming, or, occasionally interactively, typically in circumstances where
neither fc canon nor fc canon1 is able to generate enough implications.
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SML

val forward chain canon : THM −> THM list ;
val fc canon : THM −> THM list ;
val forward chain canon1 : THM −> THM list ;
val fc canon1 : THM −> THM list ;

Description forward chain canon is a canonicalisation function which uses a theorem to gen-
erate a list of implications. (fc canon is an alias for forward chain canon.) It may be used for
constructing rules and tactics in conjunction with forward chain rule. An example of such a tac-
tic is forward chain tac. forward chain canon1 , which has alias fc canon1 , is just like fc canon
except for its treatment of bi-implications. The effects of fc canon and fc canon1 are shown
schematically in the following table (which only shows assumptions relevant to the process):

` A ∧ B → ` A ; ` B
` ∀x•A → ` A[x ′/x ]
` A ∧ B ⇒ C → map (⇒ intro (stpAq)) (xf ( stpAq ` B ⇒ C ))
` A ∨ B ⇒ C → xf ( ` (A ⇒ C ) ∧ (B ⇒ C ) )
` (∃x•A) ⇒ C → map (∀ intro px ′q) (xf ( ` A[x ′/x ] ⇒ B ))
A ` A ⇒ B → A ` B
` T ⇒ B → ` B
A ` ¬A ⇒ B → (∗ discarded ∗)
` F ⇒ B → (∗ discarded ∗)
` A ⇒ B → map (⇒ intro (stpAq)) (xf ( stpAq ` B ))
` A ⇔ B → ` A ⇒ B (∗ fc canon ∗)
` A ⇔ B → ` A ⇒ B ; ` B ⇒ A (∗ fc canon1 ∗)
` T → (∗ discarded ∗)
` A → ` scpAq
` A → ` ¬A ⇒ F

The intention here is that is that the first applicable transformation is applied repeatedly until
no further change is possible. The resulting theorems are then universally quantified over all
of the free variables in their conclusions which were not free in the original theorem. In the
table, st and sc stand for attempts to apply the theorem and conclusion stripping conversions in
the current proof context (as returned by current ad st conv and current ad sc conv). If the
stripping conversions fail then st and sc have no effect. x ′ denotes a variable name derived from
x and chosen to avoid variable capture problems. xf stands for a nested recursive application of
the transformation process.

In the transformations involving ⇒ intro the implication is only introduced if the antecedent
is in the assumptions. So, for example, A ⇒ B ⇒ A ⇒ C is transformed into B ⇒ A ⇒ C .
The transformation for A ⇒ B is only applied if it changes the theorem, and the last of the
transformations is only applied if A is neither an implication nor F .

The asymmetry in the rules is deliberate. E.g., they derive A ⇒ B ⇒ C from A ∧ B ⇒ C , but
not B ⇒ A ⇒ C . This is intended to give slightly finer control and to result in less duplication
of results in the intended application in forward chain tac(q.v.).

See Also forward chain rule, forward chain tac, FC CAN
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SML

val forward chain rule : THM list −> THM list −> THM list ;
val fc rule : THM list −> THM list −> THM list ;

Description This is a rule which uses a list of possibly universally quantified implications and
a list of other theorems to infer new theorems, using the matching modus ponens rule from the
proof context, if present, or ⇒ match mp rule2 if current ad mmp rule() returns Nil . (fc rule
is an alias for forward chain rule.) fc rule imps ants returns the list of all theorems which may
be derived by applying the matching modus ponens rule to a theorem from imps and one from
ants. As a special case, if any theorem to be returned is determined to have pFq as its conclusion,
the first such found wil be returned as a singleton list. In order to work well in conjunction with
fc canon and fc tac the theorems returned by the matching modus ponens rule are transformed
as follows:

1. Theorems of the form: ` ∀ x1 ...• t1 ⇒ t2 ⇒ ... ⇒ ¬tk ⇒ F have their final implication
changed to tk .

2. Theorems of the form: ` ∀ x1 ...• t1 ⇒ t2 ⇒ ... ⇒ tk ⇒ F have their final implication
changed to ⇒\¬tk .

3. All theorems are universally quantified over all the variables which appear free in their
conclusions but not in their assumptions (using all ∀ intro).

Note that when the matching modus ponens rule is either ⇒ match mp rule2 or
⇒ match mp rule1 , there is some control over the number of results generated, since variables
which appear free in imps are not considered as candidates for instantiation.

The rule does not check that the theorems in its first argument are (possible universally) quantified
implications.

See Also forward chain tac, forward chain canon.

SML

val FORWARD CHAIN ⇔ CAN : CANON list −> CANON ;
val FC ⇔ CAN : CANON list −> CANON ;

Description These are just like FORWARD CHAIN CAN , q.v., except that they do not break
up bi-implications. Thus, given a list of canonicalisation functions cans, FC ⇔ CAN cans be-
haves as fc canon would do if the line

` A → FIRST CAN cans A

were inserted at the beginning of the table of transformations given in the description of
fc canonand all transformations (including those coming from the proof context) that eliminate
bi-implications were suppressed.

Uses In tactic programming, or, occasionally interactively, typically in circumstances where
fc ⇔ canon is not able to generate enough implications.
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SML

val forward chain ⇔ canon : THM −> THM list ;
val fc ⇔ canon : THM −> THM list ;

Description forward chain ⇔ canon is a canonicalisation function very similar to
forward chain canon, q.v. The difference is that forward chain ⇔ canon suppresses all transfor-
mations which break up bi-implications. It is intended for use in situations where a bi-implication
is to be used as a conditional rewrite rule.

For example, the tactic ALL ASM FC T1 fc ⇔ canon rewrite tac [] can instantiate an as-
sumption of the form ∀x1 x2 ...• A ⇒ B ⇒ (C ⇔ D) and use the result to rewrite instances of
C .

See Also FC T1 , ALL FC T1 etc.

SML

val f thm : THM ;

Description “Not False” is true.

Theorem

` ¬ F
f thm

SML

val id canon : CANON

Description This is the identity for the canonicalisation function combinator THEN CAN :

id canon thm = [thm]

See Also CANON

SML

val id conv : CONV ;

Description This is an alias for refl conv , reflecting the fact that refl conv is the identity for
the conversional THEN C .
Errors

7061 Failed as requested

SML

val if app conv : CONV ;

Description Move a function application out of a conditional.

Conversion

` (if a then f b else f ′ c) =
f (if a then b else c)

if app conv
p(if a then f b else f c)q

where f and f ′ are α-convertible, and f is used on the RHS of the resulting equational theorem

Errors

7037 ?0 is not of the form: pif a then (f b) else (g c)q
7038 ?0 is not of the form: pif a then (f b) else (fa c)q

where pf q and pfaq are α−convertible
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SML

val if else elim : THM −> THM ;

Description Give the dependence of the else branch of a conditional upon the condition.

Rule

Γ ` if tc then tt else te
Γ ` ¬ tc ⇒ te

if else elim

Errors

7012 ?0 is not of the form: ‘Γ ` if tc then tt else te‘

SML

val if intro : TERM −> THM −> THM −> THM ;

Description Introduce a conditional, based on the assumptions of two theorems.

Rule

Γ1 , a ` tt ; Γ2 , ¬a ′ ` et
Γ1 ∪ Γ2 ` if a then tt else et

if intro
paq

where a and a ′ are α-convertible. Actually, the assumptions may be missing, and the rule still
works.
Example

(` x = tt), (` x = te) (∗ hypothesis ∗)
` if a then (x = tt) else (x = te) (∗ if intro paq ∗)
` x = if a then tt else te (∗ if fun rule ∗)
Errors

3031 ?0 is not of type p:BOOLq

SML

val if then elim : THM −> THM ;

Description Give the dependence of the then branch of a conditional upon the condition.

Rule

Γ ` if tc then tt else te
Γ ` tc ⇒ tt

if then elim

Errors

7012 ?0 is not of the form: ‘Γ ` if tc then tt else te‘
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SML

val initial rw canon : CANON ;

Description This is the initial rewrite canonicalisation function, defined as

val initial rw canon =
REWRITE CAN
(REPEAT CAN (FIRST CAN [
simple ∀ rewrite canon,
∧ rewrite canon,
simple ¬ rewrite canon,
f rewrite canon,
⇔ t rewrite canon]));

This is the repeated application of the first applicable operation in the following list:

1. stripping universal quantifiers;

2. dividing conjunctive theorems into their conjuncts;

3. changing `¬(t1∨t2 ) to ¬t1∧¬t2 ;

4. changing `¬∃x•t to ∀x•¬t ;

5. changing `¬¬t to t ;

6. changing `¬t to t⇔F ;

7. changing ` F to ` ∀ x • x ;

8. if none of the above apply, changing `t to `t = T .

Finally, after all this canonicalisation we then universally quantify the resulting theorems
in all free variables other than those that were free in the original.

SML

val inst term rule : (TERM ∗ TERM ) list −> THM −> THM ;

Description Parallel instantiation of term variables within a theorem’s conclusion to some other
values.
Rule

Γ ` t [x1 , ..., xn]
Γ ` t [t1 , ..., tn]

inst term rule
[..., (ptiq, pxiq), ...]

A built-in inference rule.

See Also asm inst term rule
Errors

3007 ?0 is not a term variable
6027 Types of element (?0 , ?1 ) in term association list differ
6028 Instantiation variable ?0 free in assumption list
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SML

val inst type rule : (TYPE ∗ TYPE ) list −> THM −> THM ;

Description Parallel instantiation of some of the type variables of the conclusion of a theorem.

Rule

Γ ` t [tyv1 ,...tyvn]
Γ ` t [σ1 ,...σn]

inst type rule
[(σ1 , tyv1 ), ..., (σn,tyvn)]

inst type rule talist thm will instantiate each type variable in talist with its associated type. It
will decorate free variables that would become identified with other variables (both in conclusion
and assumptions) by their types becoming the same and the names originally being the same. To
instantiate types in the assumption list, see asm inst type rule.

A primitive inference rule.

See Also asm inst type rule for something that also works on type variables in the assumption
list.
Errors

3019 ?0 is not a type variable
6006 Trying to instantiate type variable ?0 , which occurs in assumption list

SML

val LEFT C : CONV −> CONV ;

Description Apply a conversion to the first operand of a binary operator:

Rule

` f a b = f a ′ b

LEFT C
(c : CONV )
pf a bq

where c a gives `a = a ′. f may itself be a function application.

Errors

3013 ?0 is not of form: pf a bq
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val let conv : CONV ;

Description Eliminate an outermost let . . . and . . . in . . . construct.

Conversion

` (let vs1 [x1 ,y1 ,..] = t1
and ... and vsn[xn,yn,..] = tn

in t [x1 ,...,xn,...]
= t [t1x ,...,t1y ,...,tnx ,tny ,...]

let conv
plet vs1 [x1 ,y1 ,..] =
t1 and ... vsn[xn,yn,..] = tn
in t [x1 ,...,xn,...]q

Where the t ix is the component of t i matching x i when t i matches vs i [x i , y i , ..].

Errors

4009 ?0 is not of form: plet ... in ...q
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SML

val list simple ∀ elim : TERM list −> THM −> THM ;

Description Generalised ∀ elimination.

Rule

Γ ` ∀ x1 ... xn • t [x1 , ..., xn]
t [t1 , ..., tn]

list simple ∀ elim
[pt1q, ..., ptnq]

A built-in inference rule. The instantiation is done simultaneously, rather than by iteration of a
single instantiation, which may affect renaming.

See Also ∀ elim
Errors

3012 ?0 and ?1 do not have the same types
6018 ?0 is not of the form: ‘Γ ` ∀ ...xi ... • t‘ where

the pxiq are ?1 variables

SML

val list simple ∀ intro : TERM list −> THM −> THM ;

Description Generalised simple ∀ introduction.

Rule

Γ ` t [x1 , ..., xn]
Γ ` ∀ x1 ... xn • t [x1 , ..., xn]

list simple ∀ intro
[px1q, ..., pxnq]

See Also ∀ intro

Errors Same messages as simple ∀ intro.

SML

val list simple ∃ intro : TERM list −> TERM −> THM −> THM ;

Description Introduce an iterated existential quantifier by providing a list of witnesses and a
theorem asserting that the desired property holds of these witnesses.

Rule

Γ ` t [t1 ,t2 ,...]
Γ ` ∃ x1 x2 ...• t [x1 ,x2 ,...]

list simple ∃ intro
[pt1q, pt2q, ...]
p∃ x1 x2 ...• t [x1 ,x2 ,...]q

Errors

7047 ?0 cannot be matched to conclusion of theorem ?1

SML

val list ∧ intro : THM list −> THM ;

Description Conjoin a list of theorems.

Rule

[Γ1 ` t1 , ..., Γn ` tn]
Γ1 ∪ ... Γn ` t1 ∧ ... tn

list ∧ intro

Errors

7107 List may not be empty
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SML

val list ∀ elim : TERM list −> THM −> THM ;

Description Generalised ∀ elimination. Specialise a universally quantified theorem with given
values, instantiating the types of the theorem as necessary.

Rule

Γ ` ∀ x1 ... xn• t [x1 , ..., xn]
t ′[t1 , ..., tn]

list ∀ elim
[pt1q, ..., ptnq]

where t ′ is renamed from t to prevent bound variable capture and type instantiated as necessary,
the x i are varstructs, instantiable to the structures of t i . The values will be expanded using
Fst and Snd as necessary to match the structure of pxq.

Note that due to the type instantiation this function is somewhat more that a fold of ∀ elim.

See Also ∀ elim, all ∀ elim.

Errors

27014 ?0 is not of the form: ‘Γ ` ∀ vs1 ... vsi • t‘ where
i ≥ ?1

27015 ?0 is not of the form: ‘Γ ` ∀ vs1 ... vsi • t‘ where the types of the vsi
are instantiable to the types of ?1

27016 ?0 is not of the form: ‘Γ ` ∀ vs1 ... vsi • t‘ where the types of the vsi
are instantiable to the types of ?1 without instantiating
type variables in the assumptions

SML

val list ∀ intro : TERM list −> THM −> THM ;

Description Generalised ∀ introduction.

Rule

Γ ` t [x1 , ..., xn]
Γ ` ∀ x1 ... xn• t [x1 , ..., xn]

list ∀ intro
[px1q, ..., pxnq]

See Also ∀ intro, all ∀ intro.

Errors Same messages as ∀ intro.

SML

val MAP C : CONV −> CONV ;

Description This traverses a term from its leaves to its root node. It will repeat the application
of its conversion argument, until failure, on each subterm encountered en route. At each node the
conversion is applied to the sub-term that results from the application of the preceding traversal,
not the original. It traverses from left to right, though this should only matter for conversions
that work by side-effect. It fails if the conversion applies nowhere within the tree.

Errors

7005 Conversion fails on term and all its subterms
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SML

val mk app rule : THM −> THM −> THM ;

Description Given two equational theorems, one being between two functions, apply the two
functions to the LHS and RHS of the other equation.

Rule

Γ1 ` u1 = u2 ; Γ2 ` v1 = v2
Γ1 ∪ Γ2 ` u1 v1 = u2 v2

mk app rule

The second input theorem or the result may be expressed using ⇔.

A built-in inference rule.
Errors

6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
6023 ?0 and ?1 are not of the form :‘Γ1 ` u1 = u2‘ and ‘Γ2 ` v1 = v2‘

where pu1q can be functionally applied to pv1q

SML

val modus tollens rule : THM −> THM −> THM ;

Description If the consequent of an implicative theorem is false, then so must be the antecedent
(modus tollens).

Rule

Γ1 ` t1 ⇒ t2 ; Γ2 ` ¬t2 ′

Γ1 ∪ Γ2 ` ¬t1
modus tollens rule

where t2 and t2 ′ are α-convertible.
Errors

7040 ?0 is not of the form: ‘Γ ` t1 ⇒ t2‘
7051 ?0 and ?1 are not of the form: ‘Γ1 ` t1 ⇒ t2‘ and ‘Γ2 ` ¬t2a‘

where pt2q and pt2aq are α−convertible

SML

val ONCE MAP C : CONV −> CONV ;

Description This traverses a term from the root node to its leaves, attempting to apply its
conversion argument. If it successfully applies the conversion to any subterm then it will not
further traverse that subterm, but will still continue on other branches. If it fails to apply its
conversion to a leaf, its functionality is equivalent to then applying refl conv . It traverses from
left to right, though this should only matter for conversions that work by side-effect. It will fail
if the conversion succeeds nowhere in the tree, or if the results of certain conversion applications
are ill-formed.
Errors

7005 Conversion fails on term and all its subterms
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SML

val ONCE MAP WARN C : string −> CONV −> CONV ;

Description This is an equivalent to ONCE MAP C (q.v.) except that it warns the user if it
failed to recompose the theorems from the term it just traversed.

This traverses a term from the root node to its leaves, attempting to apply its conversion argument.
If it successfully applies the conversion to any subterm then it will not further traverse that
subterm, but will still continue on other branches. If it fails to apply its conversion to a leaf, its
functionality is equivalent to then applying refl conv . It traverses from left to right, though this
should only matter for conversions that work by side-effect. It will fail if the conversion succeeds
nowhere in the tree, or if the results of certain conversion applications are ill-formed.

Errors

26001 no rewriting occurred
26003 no successful rewriting occurred , rewriting gave ill−formed results on some subterms

It issues the following warning message if at any point it fails to recompose the theorems from
the subterm it just traversed, some successful rewriting occurs, and the flag “illformed rewrite-
warning” is true.

Errors

26002 rewriting gave ill−formed results on some subterms

Errors and warnings are from the area indicated by the string argument.

SML

val ORELSE CAN : (CANON ∗ CANON ) −> CANON

Description ORELSE CAN is a canonicalisation function combinator written as an infix op-
erator. (can1 ORELSE CAN can2 )thm is the same can1 thm unless evaluation of can1 thm fails
in which case it is the same as can2 thm.

See Also CANON

SML

val ORELSE C : (CONV ∗ CONV ) −> CONV ;

Description Attempt to apply one conversion, and if that fails, try the second one.

Rule

Γ ` t = t ′
(c1 : CONV ) ORELSE C (c2 : CONV )
ptq

where c1 t returns Γ`t = t ′, or c1 fails, and c2 t returns Γ`t = t ′.

See Also FIRST C (the iterated version of this function), THEN C , AND OR C , and
THEN TRY C

Errors As the failure of second conversion, should both conversions fail.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



178 Chapter 7. PROOF IN HOL

SML

val plus conv : CONV ;

Description Provides the value of the addition of two numeric literals.

Rule

` p pMLmk N mq +
pMLmk N nqq =

pMLmk N(m + n)q

plus conv
p pMLmk N mq +
pMLmk N nqq

Uses For doing fast arithmetic proofs.

Errors

6085 ?0 is not of the form: p pMLmk N mq + pMLmk N nqq
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SML

val prim rewrite conv : CONV NET −> CANON −> (THM −> TERM ∗ CONV ) OPT −>
(CONV −> CONV ) −> EQN CXT −> THM list −> CONV ;

Description The primitive rewrite conversion.

Conversion

Γ ` t = t ′

prim rewrite conv
(initial net : CONV NET )
(canon : CANON )
(eqm rule : (THM −> TERM ∗ CONV ) OPT )
(traverse : CONV −> CONV )
(with eqn cxt : EQN CXT )
(with thms : THM list) ptq

where pt’q is ptq, rewritten according to the parameters of the conversion, and Γ are the
assumptions required to allow the rewriting. The failure of the conversion constructed by
prim rewrite conv will not be caught by prim rewrite conv .

The arguments have the following effects:

initial net This is a pre-calculated conversion net, that will serve as the initial rewriting that
may be done.

canon This canonicalisation function will be applied to all of the with thms theorems, to pro-
duce a list of theorems to be rewritten with from these inputs. This will generally involve
producing canonical or simplified forms of the original theorems.

The resulting theorems are intended to be simply universally quantified equations, and
theorems which are not of this form are discarded. Rewriting attempts to instantiate some
or all of the universally quantified variables, or any type variables (which do not appear
in the assumptions), so as to to match the left-hand side of an equation to the term being
rewritten. N.b. free variables are not instantiated. An equation whose left-hand side
matches the term being rewritten in such a way that rewriting would not change the term
is treated as if it did not match the term.

eqm rule This equation matcher is mapped over the theorems resulting from the canonicalisation
to convert them into an equation context. thm eqn cxt is used if Nil is supplied.

traverse This is a conversional, which defines the traversal of term t by the rewriting conversion
derived from prim rewrite conv ’s other arguments.

with eqn cxt This is additional equational context to be added directly into the rewriting
conversion net.

with thms This is an additional set of theorems to be processed by canon and the results used
in added directly into the rewriting conversion net.

Uses This is the basis of the primary rewriting tools, by varying the first four parameters.

prim rewrite conv preprocesses its arguments in various ways. The preprocessing for an argument
takes place as soon as that argument is supplied, so, for example, the overhead of preprocessing
with eqn cxt need not be incurred in calls with the same with eqn cxt but different with thms.
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SML

val prim rewrite rule : CONV NET −> CANON −> (THM −> TERM ∗ CONV ) OPT −>
(CONV −> CONV ) −> EQN CXT −> THM list −> THM −> THM ;

Description This is the inference rule based on prim rewrite conv (q.v.), with the same pa-
rameters as that function, except for the last argument:

Rule

Γ ` t
Γ ∪ Γ1 ` t ′

prim rewrite rule
(initial net : CONV NET )
(canon : CANON )
(epp : (THM −> TERM ∗ CONV ) OPT )
(traverse : CONV −> CONV )
(with eqn cxt : EQN CXT )
(with thms : THM list)

where pt’q is the result of rewriting ptq in the manner prescribed by the arguments, and Γ1 are
the assumptions required to allow this rewriting.

SML

val prim suc conv : CONV ;

Description This conversion gives the definition schema for all natural number literals.

Rule

` pML(mk N(m+1 ))q =
Suc pMLmk N mq

prim suc conv
(mk N (m+1 ))

Rule

` pML(mk N 0 )q = Zero
prim suc conv
(mk N 0 )

Errors

3026 ?0 is not a numeric literal

See Also mk N, suc conv

SML

val prove asm rule : THM −> THM −> THM ;

Description Eliminate an assumption with reference to a the assumption being a conclusion
of a theorem.
Rule

Γ1 ` t1 ; Γ2 , t1 ` t2
Γ1 ∪ Γ2 ` t2

prove asm rule

This will in fact work even if the assumption is not present.
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SML

val RANDS C : CONV −> CONV ;

Description Apply a conversion to each of the arguments of a a function

Rule

` f a ... z = f a ′...z ′

RANDS C
(c : CONV )
pf a ... zq

where c a gives `a = a ′, etc. The function f may have no arguments in which case refl conv f
is returned.
Errors

7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val RAND C : CONV −> CONV ;

Description Apply a conversion to the operand of a combination:

Rule

` f a = f a ′

RAND C
(c : CONV )
pf aq

where c a gives `a = a ′.

Errors

3010 ?0 is not of form: pt1 t2q
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val RATOR C : CONV −> CONV ;

Description Apply a conversion to the operator of a combination:

Rule

` f a = f ′ a

RATOR C
(c : CONV )
pf aq

where c f gives ‘`f = f ′‘.

Errors

3010 ?0 is not of form: pt1 t2q
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val refl conv : CONV ;

Description The reflexivity of equality implemented as a conversion.

Rule

` t = t
refl conv
ptq

A primitive inference rule.
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SML

val REPEAT C1 : CONV −> CONV ;

Description Repeatedly apply a conversion to a term, failing if not successfully applied at least
once. To be more precise, the functionality is equivalent that of the following definition:

fun REPEAT C1 (c:CONV ) = (c THEN TRY C REPEAT C1 c)

Errors As the error of the conversion if it cannot be applied at least once.

SML

val REPEAT CAN : CANON −> CANON

Description REPEAT CAN is a canonicalisation function combinator which repeatedly ap-
plies its argument until it fails:

REPEAT CAN can thm =
((can THEN CAN REPEAT CAN can) ORELSE CAN id can) thm

See Also CANON

SML

val REPEAT C : CONV −> CONV ;

Description Repeatedly apply a conversion to a term. To be more precise, the functionality is
equivalent that of the following definition:

fun REPEAT C (c:CONV ) =
(c THEN C (REPEAT C c)) ORELSE C refl conv

See Also REPEAT C1

SML

val REPEAT MAP C : CONV −> CONV ;

Description This traverses a term from its leaves to its root node. It will attempt the ap-
plication of its conversion argument on each subterm encountered en route. If the conversion
is successfully applied to a given sub-term, then the resulting sub-term from the conversion is
re-traversed by the function. It traverses from left to right, though this should only matter for
conversions that work by side-effect. It fails if the conversion is not applicable anywhere within
the term, or if certain applications of the conversion have ill-formed results.

Errors

7005 Conversion fails on term and all its subterms

SML

val REWRITE CAN : CANON −> CANON ;

Description For rewriting, after all other canonicalisation we will usually wish to then uni-
versally quantify the resulting theorems in all free variables that are only in in the conclusion,
other than those that were free anywhere in the original theorem, before any canonicalisation. A
canonicalisation is transformed to work this way by REWRITE CAN .

When evaluating proof contexts (see, e.g., commit pc) the list of rewrite canonicalisations in the
argument (see get rw canons), arg , will be converted to a single canonicalisation in the result by:

REWRITE CAN
(REPEAT CAN (FIRST CAN (arg @

[⇔ t rewrite canon])));
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SML

val rewrite conv : THM list −> CONV ;
val pure rewrite conv : THM list −> CONV ;
val once rewrite conv : THM list −> CONV ;
val pure once rewrite conv : THM list −> CONV ;

Description These are the standard rewriting conversions. They use the canonicalisation rule
held by the proof context (see, e.g, push pc) preprocess the theorem list. The context is accessed
at the point when the rules are given a list of theorems.

If a conversion is “pure” then there is no default rewriting, otherwise the default rewriting con-
version net held by the proof context will be used in addition to user supplied material.

If a conversion is “once” then rewriting will proceed from the root of the of the conclusion of
the theorem to be rewritten, towards the leaves, and will not descend through any rewritten
subterm, using ONCE MAP WARN C . If not, rewriting will continue, moving from the root
to the leaves, repeating if any rewriting is successful, until there is no rewriting redex anywhere
within the rewritten conclusion, using REWRITE MAP C . This may cause non-terminating
looping.

Errors

26001 no rewriting occurred

Also as error 26003 and warning 26002 of REWRITE MAP C (q.v.).

SML

val REWRITE MAP C : string −> CONV −> CONV ;

Description This conversional is an equivalent to TOP MAP C (q.v.) except that it warns
the user if it failed to recompose the theorems from the term it just traversed.

REWRITE MAP C conv tm traverses tm from its root node to its leaves. It will repeat the
application of conv , until failure, on each subterm encountered en route. It then descends through
the sub-term that results from the repeated application of conv . If the descent causes any change,
on “coming back out” to the sub-term the conversional will attempt to reapply conv , and if
successful will then (recursively) reapply REWRITE MAP C conv once more. If conv cannot
be reapplied then the conversional continues to ascend back to the root.

It traverses from left to right, though this should only matter for conversions that work by side-
effect. It fails if the conversion is applied nowhere within the term.

Errors

26001 no rewriting occurred
26003 no successful rewriting occurred , rewriting gave ill−formed results on some subterms

It issues the following warning message if at any point it fails to recompose the theorems from
the subterm it just traversed, some successful rewriting occurs, and the flag “illformed rewrite-
warning” is true.

Errors

26002 rewriting gave ill−formed results on some subterms

Errors and warnings are from the area indicated by the string argument.
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SML

val rewrite rule : THM list −> THM −> THM ;
val pure rewrite rule : THM list −> THM −> THM ;
val once rewrite rule : THM list −> THM −> THM ;
val pure once rewrite rule : THM list −> THM −> THM ;
val asm rewrite rule : THM list −> THM −> THM ;
val pure asm rewrite rule : THM list −> THM −> THM ;
val once asm rewrite rule : THM list −> THM −> THM ;
val pure once asm rewrite rule : THM list −> THM −> THM ;

Description These are the standard rewriting rules. They use the canonicalisation rule held
by the proof context (see, e.g, push pc) to preprocess the theorem list. The context is accessed
at the point when the rules are given a list of theorems.

If a rule is “pure” then there is no default rewriting, otherwise the default rewriting conversion
net held by the proof context will be used in addition to user supplied material.

If a rule is “once” then rewriting will proceed from the root of the of the conclusion of the theorem
to be rewritten, towards the leaves, and will not descend through any rewritten subterm, using
ONCE MAP WARN C . If not, rewriting will continue, moving from the root to the leaves,
repeating if any rewriting is successful, until there is no rewriting redex anywhere within the
rewritten conclusion, using REWRITE MAP C . This may cause non-terminating looping.

If a rule is “asm” then the theorems rewritten with will include the canonicalised asm ruled
assumptions of the theorem being rewritten.

See Also prim rewrite rule

Errors

26001 no rewriting occurred

Also as error 26003 and warning 26002 of REWRITE MAP C (q.v.).

SML

val RIGHT C : CONV −> CONV ;

Description Apply a conversion to the second operand of a binary operator:

Rule

` f a b = f a b ′

RIGHT C
(c : CONV )
pf a bq

where c b gives ‘`b = b′‘. f may itself be a function application.

Errors

3013 ?0 is not of form: pf a bq
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.
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SML

val SIMPLE BINDER C : CONV −> CONV ;

Description Apply a conversion to the body of a simple binder term:

Rule

` (B x • p[x ]) = (B x • p′[x ])

SIMPLE BINDER C
(c : CONV )
pB x • pq

where c p[x ] gives ‘`p[x ] = p ′[x ]‘, and B is a binder.

Errors

7059 ?0 is not of the form: pB x • p[x ]q where pBq is a binder
and pxq a variable

7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val simple eq match conv : THM −> CONV ;

Description This matches the LHS of an equational theorem to a term, instantiating the RHS
accordingly. In fact the equation may be partially or fully universally quantified (simple quantifi-
cation only), without affecting the result of the conversion.

Conversion

Γ ′ ` t = v ′

simple eq match conv
(Γ ` ∀ ... • u = v)
ptq

where v ′ is the result of applying to v the instantiation rules required to match u to t (including
both term and type instantiation). If there are free variables on the RHS of the supplied equational
theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid
identification with any variables in t .

Errors

7044 Cannot match ?0 and ?1
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SML

val simple eq match conv1 : THM −> CONV ;

Description This matches the LHS of an universally quantified (simple quantifiers only) equa-
tional theorem to a term, instantiating the RHS accordingly. The conversion will only instantiate
its universal quantifications, and type variables not present in the assumptions, and not its free
term variables.
Conversion

Γ ` t = v [t1 ,...,tn]

simple eq match conv1
(Γ ` ∀ x1 ... xn • u[x1 ,...,xn] =

v [x1 ,...,xn])
ptq

where pu[t1,...,tn]q is α-convertible to ptq. If there are free variables on the RHS of the sup-
plied equational theorem(when stripped of all universal quantification) they will be renamed as
necessary to avoid identification with any variables in t .

This conversion may be partially evaluated with only its theorem argument.

Uses In producing a limited rewriting facility, that only instantiates explicitly identified vari-
ables.
Errors

7095 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u = v‘ where pxiq are variables
7076 Could not match term ?0 to LHS of theorem ?1

SML

val simple ho eq match conv : THM −> CONV

Description This conversion is like simple eq match conv but uses higher-order matching. It
uses ho match (q.v.) to match the LHS of an equational theorem to a term t . It then instantiates
the theorem (including both term and type instantiation) and carries out any βη-reductions
required to give a theorem of the form t = v ′. The equation may be partially or fully universally
quantified (simple quantification only, not quantification over pairs).

Conversion

Γ ′ ` t = v ′

simple ho eq match conv
(Γ ` ∀ ... • u = v)
ptq

where v ′ is the result of applying to v the instantiations required to match u to t (including
term and type instantiation). If there are free variables on the RHS of the supplied equational
theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid
identification with any variables in t .

Errors

7095 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u = v‘ where pxiq are variables
7076 Could not match term ?0 to LHS of theorem ?1
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SML

val simple ho eq match conv1 : THM −> CONV

Description This conversion is like simple eq match conv1 but uses higher-order matching.
It uses ho match (q.v.) to match the LHS of an equational theorem to a term t . The equation
may be partially or fully universally quantified (simple quantification only, not quantification over
pairs). It instantiates the theorem (including both term and type instantiation) and carries out
any βη-reductions required to give a theorem of the form t = v ′. Only type variables that do
not appear in the assumptions of the theorem and universally quantified term variables will be
instantiated.
Conversion

Γ ` t = v ′

simple ho eq match conv1
(Γ ` ∀ ... • u = v)
ptq

where v ′ is the result of applying to v the instantiation rules required to match u to t (including
term and type instantiation). If there are free variables on the RHS of the supplied equational
theorem (when stripped of all universal quantification) they will be renamed as necessary to avoid
identification with any variables in t .

Errors

7095 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u = v‘ where pxiq are variables
7076 Could not match term ?0 to LHS of theorem ?1

SML

val simple ⇔ match mp rule : THM −> THM −> THM ;

Description A matching Modus Ponens for ⇔.

Rule

Γ1 ` ∀ x1 ... • t1 ⇔ t2 ; Γ2 ` t1 ′

Γ1 ′ ∪ Γ2 ` t2 ′
simple ⇔ match mp rule

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i and the free vari-
ables of the first theorem, and where t2 ′ is the corresponding instance of t2 . No type instantiation
or substitution will occur in the assumptions of either theorem.

See Also ⇒ elim (Modus Ponens on ⇒), simple ⇔ match mp rule

Errors

7044 Cannot match ?0 and ?1
7046 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇔ v‘

SML

val simple ⇔ match mp rule1 : THM −> THM −> THM ;

Description A matching Modus Ponens for ⇔ that doesn’t affect assumption lists.

Rule

Γ1 ` ∀ x1 ... • t1 ⇔ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2 ′
simple ⇔ match mp rule1

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i (but not free
variables), and where t2 ′ is the corresponding instance of t2 . Types in the assumptions of the
theorems will not be instantiated.

See Also ⇒ elim (Modus Ponens on ⇒), simple ⇔ match mp rule1

Errors

7044 Cannot match ?0 and ?1
7046 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇔ v‘
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SML

val simple ⇒ match mp rule : THM −> THM −> THM ;

Description A matching Modus Ponens rule for an implicative theorem.

Rule

Γ1 ` ∀ x1 ... • t1 ⇒ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2 ′
simple ⇒ match mp rule

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i and the free vari-
ables of the first theorem, and where t2 ′ is the corresponding instance of t2 . No type instantiation
or substitution will occur in the assumptions of either theorem.

See Also simple ⇒ match mp rule1 , simple ⇒ match mp rule2

Errors

7044 Cannot match ?0 and ?1
7045 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇒ v‘

SML

val simple ⇒ match mp rule1 : THM −> THM −> THM ;
val simple ⇒ match mp rule2 : THM −> THM −> THM ;

Description Two variants on a matching Modus Ponens rule for an implicative theorem.

Rule

Γ1 ` ∀ x1 ... • t1 ⇒ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2 ′
simple ⇒ match mp rule1

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i (but not free
variables), and where t2 ′ is the corresponding instance of t2 .

simple ⇒ match mp rule2 is just like simple ⇒ match mp rule1 except that the instantiations
and substitutions returned by term match are extended to replace type variables that do not
occur in t1 or in Γ1 and x i that do not occur free in t1 by fresh variables to avoid clashes with
each other and with the type variables and free variables of Γ1 and Γ2 .

Types in the assumptions of the theorems will not be instantiated.

See Also simple ⇒ match mp rule

Errors

7044 Cannot match ?0 and ?1
7045 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇒ v‘

SML

val simple ∀ elim : TERM −> THM −> THM ;

Description Instantiate a universally quantified variable to a given value.

Rule

Γ ` ∀ x • t2 [x ]
Γ ` t2 ′[t1 ]

simple ∀ elim
pt1q

where t2 ′ is renamed from t2 to prevent bound variable capture, and x is a variable.

Errors

3012 ?0 and ?1 do not have the same types
7039 ?0 is not of the form: ‘Γ ` ∀ x • t‘ where pxq is a variable
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SML

val simple ∀ intro : TERM −> THM −> THM ;

Description Introduce a simple universally quantified theorem.

Rule

Γ ` t
Γ ` ∀ x • t

simple ∀ intro
pxq

A built-in inference rule.

See Also ∀ intro
Errors

3007 ?0 is not a term variable
6005 ?0 occurs free in assumption list

SML

val simple ∀ ∃ conv: CONV ;

Description Swap the order of a simple ∀ and ∃:
Conversion

` (∀ x• ∃ y• P [x ,y ]) ⇔
(∃ y ′• ∀ x• P [x , y ′ x ])

simple ∀ ∃ conv
p∀ x• ∃ y• P [x ,y ]q

where y ′ is renamed to distinguish it from y (for the types differ) and every other term variable
in the argument.

Errors

27031 ?0 is not of the form: p∀ x• ∃ y• P [x ,y ]q

SML

val simple ∃ elim : TERM −> THM −> THM −> THM ;

Description Eliminate an existential quantifier.

Rule

Γ1 ` ∃ x • t1 [x ]; Γ2 , t1 [y ] ` t2
Γ1 ∪ Γ2 ` t2

simple ∃ elim
pyq

where y must be variable which is not present elsewhere in the second theorem, nor in the
conclusion of the first. t1 [y ] need not actually be present in the assumptions of the second
theorem.
Errors

3007 ?0 is not a term variable
7014 ?0 has the wrong type
7109 ?0 is not of the form ‘Γ ` ∃ x • t [x ]‘
7120 ?0 occurs free in conclusion of ?1
7121 ?0 occurs free in hypotheses of ?1 other than ?2
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SML

val simple ∃ intro : TERM −> THM −> THM ;

Description Introduce an existential quantifier by reference to a witness.

Rule

Γ ` t1 [t2 ]
Γ ` ∃ x • t1 [x ]

simple ∃ intro
p∃ x • t1 [x ]q

where pxq is a variable.
Errors

3034 ?0 is not of form: p∃ var • bodyq
7047 ?0 cannot be matched to conclusion of theorem ?1

SML

val simple ∃ ∀ conv: CONV ;

Description Swap the order of a simple ∃ and ∀:
Conversion

` (∃ x• ∀ y• P [x ,y ]) ⇔
(∀ y ′• ∃ x• P [x , y ′ x ])

simple ∃ ∀ conv
p∃ x• ∀ y• P [x ,y ]q

where y ′ is renamed to distinguish it from y (for the types differ) and every other term variable
in the argument.

Errors

27032 ?0 is not of the form: p∃ x• ∀ y• P [x ,y ]q

SML

val simple ∃ ∀ conv1: CONV ;

Description Swap the order of a simple ∃ and ∀, where the first variable is always applied to
the second:
Conversion

(∃ f • ∀ x• P [f x , x ]) ⇔
(∀ x• ∃ f ′• P [f ′, x ])

simple ∃ ∀ conv1
p∃ f • ∀ x• P [f x , x ]q

where f ′ is renamed to distinguish it from f (for the types differ) and every other term variable
in the argument.

Errors

27033 ?0 is not of the form: p∃ f • ∀ x• P [f x ,x ]q

SML

val simple ∃ ε conv : CONV ;

Description Give that ε of a predicate satisfies the predicate by reference to an ∃ construct.

Rule

Γ ` (∃ x • p[x ]) ⇔ p[ε x • p [x ]]
simple ∃ ε conv
p∃ x • p[x ]q

See Also ∃ ε rule
Errors

3034 ?0 is not of form: p∃ var • bodyq
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SML

val simple ∃ ε rule : THM −> THM ;

Description Give that ε of a predicate satisfies the predicate by reference to an ∃ construct. It
can properly handle paired existence.

Rule

Γ ` ∃ x • p[x ]
Γ ` p[ε x • p x ]

simple ∃ ε rule

See Also ∃ ε conv
Errors

7092 ?0 is not of the form: ‘Γ ` ∃ x • p[x ]‘

SML

val simple ∃1 elim : THM −> THM ;

Description Express a ∃1 in terms of ∃ and a uniqueness property.

Rule

Γ ` ∃1 x • P [x ]
Γ ` ∃ x • P [x ] ∧ ∀ y • P [y ] ⇒ y = x

simple ∃1 elim

Errors

7015 ?0 is not of the form: ‘Γ ` ∃1 x • P [x ]‘

SML

val simple ∃1 intro : THM −> THM −> THM ;

Description Introduce ∃1 by reference to a witness, and a uniqueness theorem.

Rule

Γ1 ` P ′[t ′]
Γ2 ` ∀ x • P [x ] ⇒ x = t
Γ1 ∪ Γ2 ` ∃1 x • P [x ]

simple ∃1 intro

Where P ′ is α-convertible to P , and t ′ is α-convertible to t . Notice that for the resulting theorem
we take the bound variable name, x , and the form of the predicate, P , from the second theorem.

Errors

7066 ?0 not of the form: ‘Γ ` ∀ x • P [x ] ⇒ x = t‘
7067 ?0 and ?1 are not of the form: ‘Γ1 ` Pa[ta]‘ and ‘Γ2 ` ∀ x • P [x ] ⇒ x = t‘

where pPaq and pPq, ptaq and ptq are α−convertible

SML

val simple α conv : string −> CONV ;

Description Rename a bound variable name, as a conversion. This only works with simple
abstractions.
Rule

` (λ x • t [x ]) = (λ v • t [v ])

simple α conv
(v : string)
pλ x • t [x ]q

Errors

3011 ?0 is not of form: pλ var • tq
7035 Cannot rename bound variable ?0 to ?1 as this would cause variable capture
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SML

val simple β conv : CONV ;

Description Apply a β-reduction to a simple abstraction.

Conversion

` (λ x • t1 [x ]) t2 = t1 [t2 ]
simple β conv
p(λ x • t1 [x ]) t2q

A primitive inference rule.

See Also β conv

Errors

6012 ?0 is not of the form: p(λ x • t1 [x ])t2q where pxq is a variable

SML

val simple β η conv : TERM −> CONV ;

Description If t is any term, simple β η conv t is a conversion which will prove all theorems
of the form ` t = s where t and s are simply αβη-equivalent, i.e., can be reduced to α-equivalent
normal forms by β- and η-reduction involving only simple (rather than paired) λ-abstractions.

Errors

7131 ?0 and ?1 are not simply αβη−equivalent

SML

val simple β η norm conv : CONV ;

Description This conversion eliminates all simple β- and η-redexes from a term giving the βη-
normal form. It does not eliminate β- and η-redexes involving abstraction over pairs. It fails if
the term is already in normal form.

Errors

7130 ?0 contains no simple β− or η−redexes

SML

val simple ε elim rule : TERM −> THM −> THM −> THM ;

Description Given that ε of a predicate satisfies that predicate, then in a different theorem we
may eliminate an assumption that claims an otherwise unused variable satisfies the predicate.

Rule

Γ1 ` t ′ ($ε t ′′);
Γ2 , t x ` s

Γ1 ∪ Γ2 ` s
simple ε elim rule
pxq

where t , t ′ and t ′′ are α-convertible, and x is a free variable whose only free occurrence in the
second theorem is the one shown and which does not appear free in the conclusion of the first
theorem. In fact, ($ε t ′′) here can be any term, it is not constrained to be an application of the
choice function.
Errors

3007 ?0 is not a term variable
7019 ?0 is not of the form: ‘Γ ` t1 ($ε t1 )‘
7054 ?0 is not of same type as choice sub−term of first theorem
7108 Arguments not of the form p?0q, ‘Γ1 ` t ($ε t)‘ and ‘Γ2 , (t ?0 ) ` s‘
7120 ?0 occurs free in conclusion of ?1
7121 ?0 occurs free in hypotheses of ?1 other than ?2
7122 ?0 occurs free in operator of the conclusion of ?1
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SML

val SIMPLE λ C : CONV −> CONV ;

Description Apply a conversion to the body of a simple abstraction:

Rule

` (λ x • p[x ]) = (λ x • p ′[x ])

SIMPLE λ C
(c : CONV )
pλ x • pq

where c p[x ] gives ‘`p[x ] = p ′[x ]‘.

See Also SIMPLE BINDER C
Errors

3011 ?0 is not of form: pλ var • tq
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val simple λ eq rule : TERM −> THM −> THM ;

Description Given an equational theorem, return the equation formed by abstracting the term
argument (which must be a variable) from both sides.

Rule

Γ ` t1 [x ] = t2 [x ]
Γ ` (λ x • t1 [x ]) = (λ x • t2 [x ])

simple λ eq rule
pxq

A primitive inference rule.

See Also λ eq rule

Errors

3007 ?0 is not a term variable
6005 ?0 occurs free in assumption list
6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
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SML

val string conv : CONV ;

Description This function defines the constants with names starting with ”, and type
CHAR LIST (an abbreviation of CHAR LIST ). A string literal constant is indicated by the
constant name starting with a double quote(”), as well as being of type CHAR LIST . This is
equivalent to a list of character literal constants, one for each but the first (”) character of the
string constant’s name. This conversion defines this relationship, by returning the head and un-
exploded tail of the list of characters. A character literal is indicated by the constant’s name
starting with single backquote (‘), as well as being of type CHAR.

Rule

` pML(mk string("c..."))q =
Cons pML(mk char("c"))q

pML(mk string("..."))q

string conv
(mk string ("c..."))

Or:
Rule

` pML(mk string(""))q = Nil
string conv
(mk string "")

A primitive inference rule(axiom schemata).

See Also mk string

Errors

3025 ?0 is not a string literal

SML

val strip ∧ rule : THM −> THM list ;

Description Break a theorem into conjuncts as far as possible.

Rule

Γ ` t
[Γ ` t1 , ..., Γ ` tn]

strip ∧ rule

where t can be formed from the t i by ∧ intro alone, with no duplication, exception or reordering.

Example

strip ∧ rule ‘` (a ∧ b) ∧ (a ∧ c ∧ d)‘
=

[‘` a‘, ‘` b‘, ‘` a‘, ‘` c‘, ‘` d‘]

SML

val strip ⇒ rule : THM −> THM ;

Description Repeatedly apply undisch rule:

Rule

Γ ` t1 ⇒ ... ⇒ tn ⇒ t
Γ ∪ {t1 , ..., tn} ` t

strip ⇒ rule
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SML

val subst conv : (THM ∗ TERM ) list −> TERM −> CONV ;

Description Substitution of equational theorems according to a template.

Conversion

Γ1 ∪ ... Γn ` t [...,ti ,...] = t [...,ti ′,...]

subst conv
[...,(‘Γi ` ti=ti ′‘,pxiq), ...]
pt [...,xi ,...]q
pt [...,ti ,...]q

subst conv [(thm 1 , x 1 ), . . . , (thm n, x n)] template term returns a theorem in which template
determines where in term the thm i are substituted, when forming the RHS of the equation. The
x i must be variables. The template is of the form t [x 1 , . . . , x n], and wherever the x i are
free in template their associated equational theorem, thm i , is substituted into thm. The rule
will rename as necessary to avoid bound variable capture. The assumption list of the resulting
theorem will be the union of all substitution theorems, regardless of use.

The RHS of the resulting theorem will take its bound variable names from template, not term,
as shown in the following example. This provides an α-conversion facility.

This function may be partially evaluated with only one argument.

Example

subst conv [(‘` p = q‘, px1q), (‘` r = s‘, px2q)]
(p∀ y • f x1 r y + g x2 p = h yq)
(p∀ x • f p r x + g r p = h xq)
=
‘` (∀ x • f p r x + g r p = h x ) ⇔

∀ y • f q r y + g s p = h y‘

See Also subst rule
Errors

3007 ?0 is not a term variable
3012 ?0 and ?1 do not have the same types
6001 ?0 does not substitute to conclusion of theorem ?1
6002 Substitution theorem ?0 is not of the form: ‘Γ ` t1 = t2‘
6029 Substitution list contains entry (?0 ,?1 ) where the type of the variable

differs from the type of the LHS of the theorem
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SML

val subst rule : (THM ∗ TERM ) list −> TERM −> THM −> THM ;

Description Substitution of equational theorems according to a template.

Rule

[Γ1 ` t1=t1 ′, ... , Γn ` tn=tn ′]
Γ ` t [t1 ,...tn]

Γ1 ∪ ... Γn ∪ Γ ` t [t1 ′,...tn ′]
subst rule

subst rule [(thm 1 , x 1 ), . . . , (thm n, x n)] template thm returns a theorem in which template
determines where in thm the thm i are substituted. The x i must be variables. The template is
of the form t [x 1 , . . . , x n], and wherever the x i are free in template their associated equational
theorem, thm i , is substituted into thm. The rule will rename as necessary to avoid bound
variable capture. The assumption list of the resulting theorem will be the union of all substitution
theorems, regardless of use.

The conclusion of the resulting theorem will take its bound variable names from template, not
thm, as shown in the following example. This provides an α-conversion facility.

The function may be usefully partially evaluated with one or two arguments.

A primitive inference rule.

Example

subst rule [(‘` p = q‘, px1q), (‘` r = s‘, px2q)]
(p∀ y • f x1 r y + g x2 p = h yq)
(‘` ∀ x • f p r x + g r p = h x‘)
=
‘` ∀ y • f q r y + g s p = h y‘

See Also subst conv
Errors

3007 ?0 is not a term variable
6001 ?0 does not substitute to conclusion of theorem ?1
6002 Substitution theorem ?0 is not of the form: ‘Γ ` t1 = t2‘
6029 Substitution list contains entry (?0 ,?1 ) where the type of the variable

differs from the type of the LHS of the theorem
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SML

val SUB C1 : CONV −> CONV ;

Description Apply a conversion to each of the constituents of a term, failing if the term cannot
be broken up, or the conversion fails on all constituents (if only one of the two constituents of a
mk app have failures, then the offending term will be refl conved instead). Thus:

SUB C1 cnv var = fail conv var

SUB C1 cnv const = fail conv const

SUB C1 cnv (f x ) = Γ ` f x = f ′ x ′

where cnv f = Γ1 ` f = f ′

and cnv x = Γ2 ` x = x ′

and Γ = Γ1 ∪ Γ2

SUB C1 cnv (λ x • t) = Γ ` (λ x • t) = (λ x • t ′)
where cnv t = Γ ` t = t ′

Errors

7104 Result of conversion, ?0 , ill−formed
7105 ?0 has no constituents

There may be failure messages from the conversions.

SML

val SUB C : CONV −> CONV ;

Description Apply a conversion to each of the constituents of a term, however that term might
be constructed, and recombine the results. Thus:

SUB C cnv var = refl conv var

SUB C cnv const = refl conv const

SUB C cnv (f x ) = Γ ` f x = f ′ x ′

where cnv f = Γ1 ` f = f ′

and cnv x = Γ2 ` x = x ′

and Γ = Γ1 ∪ Γ2

SUB C cnv (λ x • t) = Γ ` (λ x • t) = (λ x • t ′)
where cnv t = Γ ` t = t ′

See Also SUB C1
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SML

val suc conv : CONV ;

Description This conversion gives the definition schema for non-zero natural number literals.

Rule

` pML(mk N(m+1 ))q =
Suc pMLmk N mq

suc conv
(mk N (m+1 ))

The conversion fails if given 0 .

Errors

3026 ?0 is not a numeric literal
7100 ?0 must be numeric literal > 0

See Also mk N, prim suc conv

SML

val THEN CAN : (CANON ∗ CANON ) −> CANON

Description THEN CAN is a canonicalisation function combinator written as an infix opera-
tor. (can1 THEN CAN can2 )thm is the result of applying can2 to each of the theorems in the
list can1 thm and then flattening the resulting list of lists.

See Also CANON

SML

val THEN C : (CONV ∗ CONV ) −> CONV ;

Description Combine the effect of two successful conversions.

Rule

Γ ` t = t ′′′
(c1 : CONV ) THEN C (c2 : CONV )
ptq

where c1 t returns ‘Γ1`t = t ′‘, c2 t ′ returns ‘Γ2`t ′′ = t ′′′‘, t ′ and t ′′ are α-convertible and Γ
equals Γ1∪Γ2 .

See Also EVERY C (the iterated version of this function), as well as THEN TRY C , AND-
OR C , and ORELSE C

Errors

7101 Result of first conversion, ?0 , not an equational theorem
7102 LHS (if any) of result of second conversion, ?0 , not

α−convertible to RHS of first , ?1

Errors If any, as the failures of c1 and c2 applied to t and t ′ respectively.

SML

val THEN LIST CAN : (CANON ∗ CANON list) −> CANON

Description THEN LIST CAN is a canonicalisation function combinator written as an infix
operator. (can1 THEN LIST CAN cans)thm is the result of applying each element of the list
cans to the corresponding element of the list can1 thm and then flattening the resulting list of
lists.

See Also CANON
Errors

26204 wrong number of canonicalisation functions in the list
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SML

val THEN TRY C : (CONV ∗ CONV ) −> CONV ;

Description Combine the effect of two conversions, ignoring the failure of the second if nec-
essary. That is, if the first conversion results in an equational theorem whose RHS can have
the second conversion applied, and the two resulting theorems composed, then that composition;
otherwise the result of the first conversion alone is returned.

See Also THEN C , AND OR C , ORELSE C

Errors As the failure of c1 .

SML

val TOP MAP C : CONV −> CONV ;

Description TOP MAP C conv tm traverses tm from its root node to its leaves. It will repeat
the application of conv , until failure, on each subterm encountered en route. It then descends
through the sub-term that results from the repeated application of the conversion. If the descent
causes any change, on “coming back out” to the sub-term the conversional will attempt to reapply
conv , and if successful will then (recursively) reapply TOP MAP C conv once more. If conv
cannot be reapplied then the conversional continues to ascend back to the root.

It traverses from left to right, though this should only matter for conversions that work by side-
effect. It fails if the conversion is applied nowhere within the term.

Errors

7005 Conversion fails on term and all its subterms

SML

val TRY C : CONV −> CONV ;

Description Attempt to apply a conversion, and if it fails, apply refl conv .

SML

val t thm : THM ;

Description “True” is true.

Theorem

` T
t thm

SML

val undisch rule : THM −> THM ;

Description Undischarge the antecedent of an implicative theorem into the assumption list.

Rule

Γ ` a ⇒ b
Γ ∪ {a} ` b

undisch rule

Errors

7011 ?0 is not of the form: ‘Γ ` a ⇒ b‘
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SML

val varstruct variant : TERM list −> TERM −> TERM ;

Description varstruct variant avoid vs will recreate the variable structure vs using only names
that are not found in the avoid list of variables, and also renaming to avoid duplicate variable
names in the structure. Variant names are found using string variant (q.v.). If there are dupli-
cates to be renamed, then the original name will be the rightmost in the variable structure.

Errors

3007 ?0 is not a term variable
4016 ?0 is not an allowed variable structure

Message 3007 applies to the avoid list, 27060 to the variable structure.

SML

val v ∃ intro : TERM −> THM −> THM ;

Description Introduce an existential quantified variable structure into a theorem.

Rule

Γ ` t [x ,y ,...]
Γ ` ∃ vs[x ,y ,...]• t [x ,y ,...]

v ∃ intro
pvs[x ,y ,...]q

where pvs[x,y,...]q is a varstruct built from variables pxq, pyq, etc, which may contain duplicates.

Uses If the functionality is sufficient, this is superior in efficiency to both ∃ intro and
simple ∃ intro (q.v.).

Errors

4016 ?0 is not an allowed variable structure

SML

val ⇔ elim : THM −> (THM ∗ THM );

Description Split a bi-implicative theorem into two implicative theorems.

Rule

Γ ` t1 ⇔ t2
Γ ` t1 ⇒ t2 ; Γ ` t2 ⇒ t1

⇔ elim

Errors

7062 ?0 is not of the form: ‘Γ ` t1 ⇔ t2‘

SML

val ⇔ intro : THM −> THM −> THM ;

Description Join two implicative theorems into an bi-implicative theorem.

Rule

Γ1 ` t1 ⇒ t2 ; Γ2 ` t1 ′ ⇒ t2 ′

Γ1 ∪ Γ2 ` t1 ⇔ t2
⇔ intro

where t1 and t1 ′ are α-convertible, as are t2 and t2 ′.

Errors

7040 ?0 is not of the form: ‘Γ ` t1 ⇒ t2‘
7064 ?0 and ?1 are not of the form: ‘Γ ` t1 ⇒ t2 ; Γ ` t2a ⇒ t1a‘

where pt1q and pt1aq, pt2q and pt2aq, are α−convertible
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SML

val ⇔ match mp rule : THM −> THM −> THM ;

Description A matching Modus Ponens for ⇔.

Rule

Γ1 ` ∀ x1 ...• t1 ⇔ t2 ; Γ2 ` t1 ′

Γ1 ′ ∪ Γ2 ` t2 ′
⇔ match mp rule

where we type instantiate, generalise and specialise both conclusion and assumptions to get the
first theorem’s LHS to match the conclusion of the second theorem. Universal quantification, or
the lack of it, in the first theorem makes no difference to the matching.

This may be partially evaluated with only first argument.

See Also ⇒ elim (Modus Ponens on ⇒), simple ⇔ match mp rule ⇔ mp rule ⇔ match-
mp rule1

Errors

7044 Cannot match ?0 and ?1

SML

val ⇔ match mp rule1 : THM −> THM −> THM ;

Description A matching Modus Ponens for ⇔ that doesn’t affect assumption lists.

Rule

Γ1 ` ∀ x1 ...• t1 ⇔ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2 ′
⇔ match mp rule1

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i and the free vari-
ables of the first theorem, and where t2 ′ is the corresponding instance of t2 . No type instantiation
or substitution will occur in the assumptions of either theorem.

This may be partially evaluated with only first argument.

See Also ⇒ elim (Modus Ponens on ⇒), simple ⇔ match mp rule1

Errors

7044 Cannot match ?0 and ?1
7046 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇔ v‘

SML

val ⇔ mp rule : THM −> THM −> THM ;

Description This is reminiscent of Modus Ponens, but upon bi-implicative theorems.

Rule

Γ1 ` t1 ⇔ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2
⇔ mp rule

where t1 and t1 ′ must be α-convertible.

A built-in inference rule.

See Also ⇒ elim (true Modus Ponens, on ⇒), ⇔ match mp rule (a “matching” version of
⇔ mp rule)

Errors

6024 ?0 and ?1 are not of the form: ‘Γ1 ` t1 ⇔ t2‘ and ‘Γ2 ` t1 ′‘
where pt1q and pt1 ′q are α−convertible

6030 ?0 is not of the form: ‘Γ ` t1 ⇔ t2‘
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SML

val ⇔ t elim : THM −> THM ;

Description We can always eliminate . . .⇔T .

Rule

Γ ` t ⇔ T
Γ ` t

⇔ t elim

Errors

7106 ?0 not of the form ‘Γ ` t ⇔ T‘

SML

val ⇔ t intro : THM −> THM ;

Description The conclusion of a theorem is equal to T .

Rule

Γ ` t
Γ ` t ⇔ T

⇔ t intro

SML

val ∧ intro : THM −> THM −> THM ;

Description Conjoin two theorems.

Rule

Γ1 ` t1 ; Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

∧ intro

SML

val ∧ left elim : THM −> THM ;

Description Give the left conjunct of a conjunction.

Rule

Γ ` t1 ∧ t2
Γ ` t1

∧ left elim

Errors

7007 ?0 is not of the form: ‘Γ ` t1 ∧ t2‘
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SML

val ∧ rewrite canon : THM −> THM list
val simple ¬ rewrite canon : THM −> THM list
val ⇔ t rewrite canon : THM −> THM list
val f rewrite canon : THM −> THM list
val simple ∀ rewrite canon : THM −> THM list

Description These are some of the standard canonicalisation functions used for breaking the-
orems up into lists of equations for use in rewriting. They perform the following transformations:

∧ rewrite canon (Γ ` t1 ∧ t2 ) = Γ ` t1 ; Γ ` t2
simple ¬ rewrite canon (Γ ` ¬(t1 ∨ t2 )) = (Γ ` ¬t1 ∧ ¬t2 )
simple ¬ rewrite canon (Γ ` ¬∃x•t) = (Γ ` ∀x•¬t)
simple ¬ rewrite canon (Γ ` ¬ ¬t) = (Γ ` t)
simple ¬ rewrite canon (Γ ` ¬t) = (Γ ` t ⇔ F )
⇔ t rewrite canon (Γ ` t1 = t2 ) = < failure >
⇔ t rewrite canon (Γ ` t) = (Γ ` t ⇔ T )
f rewrite canon (Γ ` F ) = (Γ ` ∀ x • x )
simple ∀ rewrite canon (Γ ` ∀x•t) = Γ ` t

Note that the functions whose names begin with simple do not handle paired quantifiers. Versions
which do handle these quantifiers are also available.

See Also ¬ rewrite canon, ∀ rewrite canon.

Errors

26203 the conclusion of the theorem is already an equation

SML

val ∧ right elim : THM −> THM ;

Description Give the right conjunct of a conjunction.

Rule

Γ ` t1 ∧ t2
Γ ` t2

∧ right elim

Errors

7007 ?0 is not of the form: ‘Γ ` t1 ∧ t2‘

SML

val ∧ thm : THM ;

Description Expanded form of definition of ∧
Theorem

∀ t1 t2 • (t1 ∧ t2 ) ⇔
(∀ b • (t1 ⇒ t2 ⇒ b) ⇒ b)

∧ thm

SML

val ∧ ⇒ rule : THM −> THM ;

Description A theorem whose conclusion is an implication from a conjunction is an equivalent
to one whose conclusion is an implication of an implication.

Rule

Γ ` (a ∧ b) ⇒ c
Γ ` a ⇒ b ⇒ c

∧ ⇒ rule

Errors

7009 ?0 is not of the form: ‘Γ ` (a ∧ b) ⇒ c‘
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SML

val ∨ cancel rule : THM −> THM −> THM ;

Description If we know a disjunction is true, and one of its disjuncts is false, then the other
must be true. If the second theorem is the negation of both disjuncts, then the second disjunct
will be eliminated. (modus tollendo ponens)

Rule

Γ1 ` t1 ∨ t2 ; Γ2 ` ¬t1 ′

Γ1 ∪ Γ2 ` t2
∨ cancel rule

And:
Rule

Γ1 ` t1 ∨ t2 ; Γ2 ` ¬t2 ′

Γ1 ∪ Γ2 ` t1
∨ cancel rule

where t1 ′ and t1 are α-convertible, as are t2 and t2 ′.

Errors

7010 ?0 is not of the form: ‘Γ ` t1 ∨ t2‘
7050 ?0 and ?1 are not of the form: ‘Γ1 ` t1 ∨ t2‘ and ‘Γ2 ` ¬t3‘

where pt3q is α−convertible to pt1q or pt2q

SML

val ∨ elim : THM −> THM −> THM −> THM ;

Description Given a disjunctive theorem, and two further theorems, each containing one of
the disjuncts in their assumptions, but with the same conclusion, we may eliminate the disjunct
assumption from the second of the theorems.

Rule

Γ1 ` t1 ∨ t2
Γ2 , t1 ′ ` t
Γ3 , t2 ′ ` t ′

Γ1 ∪ Γ2 ∪ Γ3 ` t
∨ elim

where t1 and t1 ′ are α-convertible, as are t2 and t2 ′, and t and t ′. Actually, t1 ′ and t2 ′ do not
have to be present in the assumption lists for this function to work.

Errors

7010 ?0 is not of the form: ‘Γ ` t1 ∨ t2‘
7083 ?0 , ?1 and ?2 are not of the form: ‘Γ1 ` t1 ∨ t2‘, ‘Γ2 , t1a ` t3‘

and ‘Γ3 , t2a ` t3a‘, where pt1q and pt1aq, pt2q and pt2aq,
pt3q and pt3aq are each α−convertible

SML

val ∨ left intro : TERM −> THM −> THM ;

Description Introduce a disjunct to the left of a theorem’s conclusion.

Rule

Γ ` b
Γ ` a ∨ b

∨ left intro
paq

Errors

3031 ?0 is not of type p:BOOLq
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SML

val ∨ right intro : TERM −> THM −> THM ;

Description Introduce a disjunct to the right of a theorem’s conclusion.

Rule

Γ ` b
Γ ` b ∨ a

∨ right intro
paq

Errors

3031 ?0 is not of type p:BOOLq

SML

val ∨ thm : THM ;

Description Expanded form of definition of ∨
Theorem

∀ t1 t2 • (t1 ∨ t2 ) ⇔
(∀ b • (t1 ⇒ b) ⇒ (t2 ⇒ b) ⇒ b)

∨ thm

SML

val ¬ elim : TERM −> THM −> THM −> THM ;

Description Given two contradictory theorems with the same assumptions, conclude any other
fact from the assumptions: input theorems may be in either order.

Rule

Γ1 ` a ; Γ2 ` ¬ a
Γ1 ∪ Γ2 ` b

¬ elim
pbq

Errors

3031 ?0 is not of type p:BOOLq
7004 ?0 and ?1 are not of the form: ‘Γ1 ` a‘ and ‘Γ2 ` ¬ a‘

SML

val ¬ eq sym rule : THM −> THM ;

Description If a is not equal to b then b is not equal to a.

Rule

Γ ` ¬(a = b)
Γ ` ¬(b = a)

¬ eq sym rule

Errors

7091 ?0 is not of form: ‘Γ ` ¬(a = b)‘

SML

val ¬ intro : TERM −> THM −> THM −> THM ;

Description Given two theorems with contradictory conclusions (up to α-convertibility), their
assumptions must be inconsistent, and thus any member of the lists (or indeed, anything else)
may be proven false on the assumption of the remainder (reductio ad absurdum).

Rule

Γ1 ` b ; Γ2 ` ¬ b
(Γ1 ∪ Γ2 ) \ {a} ` ¬ a

¬ intro
paq

Works up to α-conversion, and input theorems may be in either order.

Errors

3031 ?0 is not of type p:BOOLq
7004 ?0 and ?1 are not of the form: ‘Γ1 ` a‘ and ‘Γ2 ` ¬ a‘
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SML

val ¬ simple ∀ conv : CONV ;

Description Move ¬ into a ∀ construct.

Rule

` (¬ (∀ x • t [x ])) ⇔ ∃ x • ¬ t [x ]
¬ simple ∀ conv
p¬ (∀ x • t [x ])q

This will work with any simple universal quantifier.

Errors

7036 ?0 not of the form: p¬ (∀ x • t [x ])q

SML

val ¬ simple ∃ conv : CONV ;

Description Move ¬ into an ∃ construct.

Rule

` (¬ (∃ x • t [x ])) ⇔ ∀ x • ¬ t [x ]
¬ simple ∃ conv
p¬ (∃ x • t [x ])q

This will work with any simple existential quantifier.

Errors

7058 ?0 is not of the form: p¬ (∃ x • t [x ])q
where pxq is a variable

SML

val ¬ thm1 : THM ;

Description “Not t if and only if t is false.”

Theorem

` ∀ t • (¬ t) ⇔ (t ⇔ F )
¬ thm1

SML

val ¬ thm : THM ;

Description Expanded form of definition of ¬:

Theorem

∀ t • (¬ t) ⇔ (t ⇒ F )
¬ thm

SML

val ¬ t thm : THM ;

Description “Not true is false”.

Theorem

¬ T ⇔ F
¬ t thm

SML

val ¬ ¬ conv : CONV ;

Description A double negation is redundant.

Conversion

Γ ` ¬ (¬ t) ⇔ t
¬ ¬ conv
p¬ (¬ t)q

Errors

7022 ?0 is not of the form:p¬ (¬ t)q
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SML

val ¬ ¬ elim : THM −> THM ;

Description A double negation is redundant.

Rule

Γ ` ¬ (¬ t)
Γ ` t

¬ ¬ elim

Errors

7006 ?0 is not of the form: ‘Γ ` ¬ (¬ t)‘

SML

val ¬ ¬ intro : THM −> THM ;

Description We may always introduce a double negation.

Rule

Γ ` t
Γ ` ¬ (¬ t)

¬ ¬ intro

SML

val ¬ ∀ conv : CONV ;

Description Move ¬ into a ∀ construct.

Rule

` (¬ (∀ x• t [x ])) ⇔ ∃ x• ¬ t [x ]
¬ ∀ conv
p¬ (∀ x• t [x ])q

See Also ¬ simple ∀ conv which only works with simple ∀-abstractions, ¬ ∃ conv

Errors

27019 ?0 not of the form: p¬ (∀ x• t [x ])q
where pxq is a varstruct

SML

val ¬ ∀ thm : THM ;

Description Used in pushing negations through simple universal quantifications.

Theorem

` ∀ p• ¬ $∀ p ⇔ (∃ x• ¬ p x )
¬ ∀ thm

SML

val ¬ ∃ conv : CONV ;

Description Move ¬ into an ∃ construct.

Rule

` (¬ (∃ x• t [x ])) ⇔ ∀ x• ¬ t [x ]
¬ ∃ conv
p¬ (∃ x• t [x ])q

See Also ¬ simple ∃ conv which only works with simple ∃-abstractions, ¬ ∀ conv

Errors

27020 ?0 is not of the form: p¬ (∃ x• t [x ])q
where pxq is a varstruct
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SML

val ¬ ∃ thm : THM ;

Description Used in pushing negations through simple existential quantifications.

Theorem

` ∀ p• ¬ $∃ p ⇔ (∀ x• ¬ p x )
¬ ∃ thm

SML

val ⇒ elim : THM −> THM −> THM ;
val ⇒ mp rule : THM −> THM −> THM ;

Description Modus Ponens (which is why we introduce the alias ⇒ mp rule, though ⇒ elim
is shorter, conventional, and the preferred name).

Rule

Γ1 ` t1 ⇒ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2
⇒ elim

where t1 and t1 ′ must be α-convertible. A primitive inference rule.

See Also ⇔ mp rule(Modus Ponens on ⇔), ⇒ match mp rule (a “matching” version of this
function).

Errors

6010 ?0 is not of the form: ‘Γ ` t1 ⇒ t2‘
6011 ?0 and ?1 are not of the forms: ‘Γ1 ` t1 ⇒ t2‘ and ‘Γ2 ` t1 ′‘ where

pt1q and pt1 ′q are α−convertible

SML

val ⇒ intro : TERM −> THM −> THM ;

Description Prove an implicative theorem, removing, if α-convertibly present, the antecedent
of the implication from the assumption list.

Rule

Γ ` t2
Γ − {t1} ` t1 ⇒ t2

⇒ intro
pt1q

A primitive inference rule.

See Also disch rule (which fails if term not in assumption list)

Errors

3031 ?0 is not of type p:BOOLq
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SML

val ⇒ match mp rule : THM −> THM −> THM ;

Description A matching Modus Ponens rule for an implicative theorem.

Rule

Γ1 ` ∀ x1 ...• t1 ⇒ t2 ; Γ2 ` t1 ′

Γ1 ′ ∪ Γ2 ` t2 ′
⇒ match mp rule

where we type instantiate, generalise and specialise to get the first theorem’s antecedent to match
the conclusion of the second theorem. Universal quantification, or the lack of it, in the first
theorem makes no difference to the matching.

This may be partially evaluated with only the first argument.

See Also ⇒ match mp rule1 , ⇒ elim

Errors

7044 Cannot match ?0 and ?1

SML

val ⇒ match mp rule1 : THM −> THM −> THM ;
val ⇒ match mp rule2 : THM −> THM −> THM ;

Description Two variants of a matching Modus Ponens rule for an implicative theorem.

Rule

Γ1 ` ∀ x1 ...• t1 ⇒ t2 ; Γ2 ` t1 ′

Γ1 ∪ Γ2 ` t2 ′
⇒ match mp rule

where t1 ′ is an instance of t1 under type instantiation and substitution for the x i and the free
variables of the first theorem, and where t2 ′ is the corresponding instance of t2 . The type
instantiations and substitutions are obtained by matching t1 and t1 ′ using term match.

⇒ match mp rule2 is just like ⇒ match mp rule1 except that the instantiations and substitu-
tions returned by term match are extended to replace type variables that do not occur in t1 or
in Γ1 and x i that do not occur free in t1 by fresh variables to avoid clashes with each other and
with the type variables and free variables of Γ1 and Γ2 .

Types in the assumptions of the theorems will not be instantiated.

Both rules may be partially evaluated with only the first argument.

Errors

7044 Cannot match ?0 and ?1
7045 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇒ v‘

SML

val ⇒ trans rule : THM −> THM −> THM ;

Description Transitivity of ⇒.

Rule

Γ1 ` t1 ⇒ t2 ; Γ2 ` t2 ′ ⇒ t3
Γ1 ∪ Γ2 ` t1 ⇒ t3

⇒ trans rule

where t2 and t2 ′ are α-convertible.
Errors

7040 ?0 is not of the form: ‘Γ ` t1 ⇒ t2‘
7042 ?0 and ?1 are not of the form: ‘Γ1 ` t1 ⇒ t2‘ and ‘Γ2 ` t2a ⇒ t3‘

where pt2q and pt2aq are α−convertible
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SML

val ⇒ ∧ rule : THM −> THM ;

Description A theorem whose conclusion is an implication of an implication is equivalent to
one whose conclusion is a conjunction and an implication.

Rule

Γ ` a ⇒ b ⇒ c
Γ ` (a ∧ b) ⇒ c

⇒ ∧ rule

Errors

7008 ?0 is not of the form: ‘Γ ` a ⇒ b ⇒ c‘

SML

val ∀ arb elim : THM −> THM ;

Description Specialise a universally quantified theorem with a machine generated variable or
variable structure.
Rule

Γ ` ∀ vs[x ,y ,...]• p[x ,y ,...]
Γ ` p[x ′,y ′,...]

∀ arb elim

where x ′, y ′, etc, are not variables (free or bound) in p or Γ , created by gen vars(q.v).

See Also ∀ elim
Errors

27011 ?0 is not of the form: ‘Γ ` ∀ x• t‘ where pxq is a varstruct

SML

val ∀ asm rule : TERM −> TERM −> THM −> THM ;

Description Generalise an assumption (Left ∀ introduction).

Rule

Γ , p′[x ] ` q [x ]
Γ , ∀ x• p ′[x ] ` q [x ]

∀ asm rule
pxq
pp[x ]q

where p and p′ are α-convertible. x may be free in Γ . The function will work even if p′[x ] is not
present in the assumption list.

Errors

4016 ?0 is not an allowed variable structure
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SML

val ∀ elim : TERM −> THM −> THM ;

Description Specialise a universally quantified theorem with a given value, instantiating the
type of the theorem as necessary.

Rule

Γ ` ∀ x• t2 [x ]
Γ ` t2 ′[t1 ]

∀ elim
pt1q

where t2 ′ is renamed from t2 to prevent bound variable capture and possibly type instantiated,
and x is a varstruct, instantiable to the structure of t1 . The value t1 will be expanded using Fst
and Snd as necessary to match the structure of pxq.

See Also list ∀ elim, all ∀ elim.

Errors

27011 ?0 is not of the form: ‘Γ ` ∀ x• t‘ where pxq is a varstruct
27012 ?0 is not of the form: ‘Γ ` ∀ x• t‘ where the type of pxq

is instantiable to the type of ?1
27013 ?0 is not of the form: ‘Γ ` ∀ x• t‘ where the type of pxq

is instantiable to the type of ?1 without instantiating
type variables in the assumptions

SML

val ∀ intro : TERM −> THM −> THM ;

Description Introduce a universally quantified theorem.

Rule

Γ ` t
Γ ` ∀ x ′• t

∀ intro
pxq

Where px ′q is an allowed variable structure based on pxq, but with duplicate variables renamed,
the original name being rightmost in the resulting variable structure.

See Also list ∀ intro, all ∀ intro.

Errors

4016 ?0 is not an allowed variable structure
6005 ?0 occurs free in assumption list
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SML

val ∀ reorder conv : TERM −> CONV ;

Description Reorder universal quantifications.

Rule

(∀ y1 .. ym• t2 ) ⇔ (∀ x1 .. xn• t1 )

∀ reorder conv
p∀ x1 .. xn• t1q
p∀ y1 .. ym• t2q

where the x i and y i are varstructs, and the reordering, restructuring (by pairing) and renaming
requested is provable by this function. The presence of redundant quantifiers, including duplicates,
is also handled.
Example

:> ∀ reorder conv p∀ (x ,q) z• x ∧ zq p∀ (z ,z ,y) x• x ∧ zq;
val it = ` (∀ (z , z , y) x• x ∧ z ) ⇔ (∀ (x , q) z• x ∧ z ) : THM
Note that before more sophisticated attempts, the conversion
will try $α\ conv$ on the two term arguments.

See Also ∃ reorder conv
Errors

27050 Cannot prove equality of ?0 and ?1

SML

val ∀ uncurry conv : CONV ;

Description Convert a paired universally quantified term into simple universal quantifications
of the same term.
Conversion

Γ ` ∀ vs[x ,y ,...]• f [x ,y ,...] =
∀ x y ...• f [x ,y ,...]

∀ uncurry conv
p∀ vs[x ,y ,...]• f [x ,y ,...]q

where vs[x , y , ...] is an allowed variable structure with variables x , y , .... It may not be a simple
variable.

See Also λ varstruct conv , all ∀ uncurry conv .

Errors

27038 ?0 is not of the form: p∀ (x ,y)• f q

SML

val ∀ ⇔ rule : TERM −> THM −> THM ;

Description Universally quantify a variable on both sides of an equivalence.

Rule

Γ ` p[x ] ⇔ q [x ]
Γ ` (∀ x• p[x ]) ⇔ (∀ x• q [x ])

∀ ⇔ rule
pxq

where x is a varstruct.
Errors

6005 ?0 occurs free in assumption list
6020 ?0 is not of the form: ‘Γ ` t1 = t2‘
7062 ?0 is not of the form: ‘Γ ` t1 ⇔ t2‘
4016 ?0 is not an allowed variable structure
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SML

val ∃ asm rule : TERM −> TERM −> THM −> THM ;

Description Existentially quantify an assumption (Left ∃ introduction).

Rule

Γ , p′[x ] ` q
Γ , ∃ x• p′[x ] ` q

∃ asm rule
pxq
pp[x ]q

where p and p ′ are α-convertible. where the variables of the varstruct x are not free in Γ or q .
The assumption need not be present for the rule to apply.

Errors

3015 ?1 is not of type p:BOOLq
4016 ?0 is not an allowed variable structure
6005 ?0 occurs free in assumption list
27052 ?0 has members appearing free in ?1 other than in assumption ?2

Message 3015 is just passed on from low level functions, which is why it has ”?1” not ”?0”.

SML

val ∃ elim : TERM −> THM −> THM −> THM ;

Description Eliminate an existential quantifier by reference to an arbitrary varstruct satisfying
the predicate.

Rule

Γ1 ` ∃ vs[x1 ,x2 ,...]• t1 [x1 ,x2 ,...];
Γ2 , t1 [y1 ,y2 ,...] ` t2

Γ1 ∪ Γ2 ` t2
∃ elim
pvs[y1 ,y2 ,...]q

t1 [y1 , y2 , ...] need not actually be present in the assumptions of the second theorem. The y i
must be free variables, none of whom are present elsewhere in the second theorem, or in the
conclusion of the first. The y i may contain duplicates as long as the end pattern matches the
x i in required duplicates. The term argument may be a less complex variable structure than
the bound variable structure of the theorem, as Fst and Snd are used to make them match. For
example, the following rule holds true:

Rule

Γ1 ` ∃ (p,q)• t1 [p,q ];
Γ2 , t1 [Fst x , Snd x ] ` t2

Γ1 ∪ Γ2 ` t2
∃ elim
pxq

Errors

27042 ?0 does not match the bound varstruct of ?1
27046 ?0 is not of the form ‘Γ ` ∃ vs• t‘
27051 ?0 has members appearing free in conclusion of ?1
27052 ?0 has members appearing free in ?1 other than in assumption ?2

SML

val ∃ intro thm : THM ;

Description Introduction of existential quantification.

Theorem

` ∀ P x• P x ⇒ $∃ P
∃ intro thm
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SML

val ∃ intro : TERM −> THM −> THM ;

Description Introduce an existential quantifier by reference to a witness.

Rule

Γ ` t [t1 ,t2 ,...]
Γ ` ∃ vs[x ′,y ′,...]• t [x ,y ,...]

∃ intro
p∃ vs[x ,y ,...]• t [x ,y ,...]q

where pvs[x,y,...]q is varstruct built from variables pxq, pyq, etc, and the px ′q are renamed if
duplicated inside the varstruct, all but the rightmost being so renamed.

Errors

4020 ?0 is not of form: p∃ vs• tq
7047 ?0 cannot be matched to conclusion of theorem ?1

SML

val ∃ reorder conv : TERM −> CONV ;

Description Reorder existential quantifications.

Rule

(∃ y1 .. ym• t2 ) ⇔ (∃ x1 .. xn• t1 )

∃ reorder conv
p∃ x1 .. xn• t1q
p∃ y1 .. ym• t2q

where the x i and y i are varstructs, and the reordering, restructuring (by pairing) and renaming
requested is provable by this function. The presence of redundant quantifiers, including duplicates,
is also handled.
Example

:> ∃ reorder conv p∃ (x ,q) z• x ∧ zq p∃ (z ,z ,y) x• x ∧ zq;
val it = ` (∃ (z , z , y) x• x ∧ z ) ⇔ (∃ (x , q) z• x ∧ z ) : THM
Note that before more sophisticated attempts, the conversion
will try $α\ conv$ on the two term arguments.

See Also ∀ reorder conv
Errors

27050 Cannot prove equality of ?0 and ?1

SML

val ∃ uncurry conv : CONV ;

Description Convert a paired existentially quantified term into simple universal quantifications
of the same term.
Conversion

` ∃ vs[x ,y ,...]• f [x ,y ,...] =
∃ x y ...• f [x ,y ,...]

∃ uncurry conv
p∃ vs[x ,y ,...]• f [x , y ,...]q

where vs[x , y , ...] is an allowed variable structure with variables x , y , .... It may not be a simple
variable.

See Also λ varstruct conv , all ∃ uncurry conv , ∀ uncurry conv .

Errors

27047 ?0 is not of the form: p∃ (x ,y)• f q
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SML

val ∃ ε conv : CONV ;

Description Give that ε of a predicate satisfies the predicate by reference to an ∃ construct. It
can properly handle paired existence.

Rule

Γ ` (∃ x• p[x ]) = p(ε x• p x )
∃ ε conv
p∃ x• p[x ]q

If x is formed by paired then the Fst and Snd are used to extract the appropriate bits of the
ε-term for distribution in p[ε x• p x ].

See Also ∃ ε rule
Errors

27024 ?0 is not of the form: ‘Γ ` ∃ x• p[x ]‘
where pxq is a varstruct

SML

val ∃ ε rule : THM −> THM ;

Description Give that ε of a predicate satisfies the predicate by reference to an ∃ construct. It
can properly handle paired existence.

Rule

Γ ` ∃ x• p[x ]
Γ ` p[ε x• p x ]

∃ ε rule

If x is formed by paired then the Fst and Snd are used to extract the appropriate bits of the
ε-term for distribution in p[ε x• p x ].

See Also ∃ ε conv
Errors

27024 ?0 is not of the form: ‘Γ ` ∃ x• p[x ]‘
where pxq is a varstruct

SML

val ∃1 conv : CONV ;

Description This is a conversion which turns a unique existential quantifier into an equivalent
existential quantifier

Conversion

` (∃1 vs[x1 ,...]•t [x1 ,...]) ⇔
(∃vs[x1 ,...]•t [x1 ,...] ∧
∀vs[x1 ′,...]•t [x1 ′,...] ⇒
vs[x1 ′,...] = vs[x1 ,...])

∃1 conv
p∃1 vs[x1 ,...]•t [x1 ,...]q

Uses Tactic and conversion programming.

See Also strip tac, simple ∃ 1 conv

Errors

27053 ?0 is not of the form: p∃1 vs•tq
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SML

val ∃1 elim : THM −> THM ;

Description Express a ∃ 1 in terms of ∃ and a uniqueness property.

Rule

Γ ` ∃1 vs[a,b,...]• P [a,b,...]
Γ ` ∃ vs[a,b,...]• P [a,b,...] ∧

∀ vs[a ′,b ′,...]• P [x1 ,x2 ,...]
⇒

vs[a ′,b ′,...] = vs[a,b,...]

∃1 elim

where the a ′, etc, are variants of the a.

Errors

27022 ?0 is not of the form: ‘Γ ` ∃1 x• P [x ]‘
where pxq is a varstruct

SML

val ∃1 intro : THM −> THM −> THM ;

Description Introduce ∃ 1 by reference to a witness, and a uniqueness theorem.

Rule

Γ1 ` P ′[t ′]
Γ2 ` ∀ x• P [x ] ⇒ x = t
Γ1 ∪ Γ2 ` ∃1 x• P [x ]

∃1 intro

Where P ′ is α-convertible to P , and t ′ is α-convertible to t . Notice that for the resulting theorem
we take the varstruct, x , and the form of the predicate, P , from the second theorem.

Errors

27021 ?0 and ?1 are not of the form: ‘Γ1 ` Pa[ta]‘ and
‘Γ2 ` ∀ vs[x ,y ,..]• P [x ,y ...] ⇒ vs[x ,y ,..] = t‘
where pPaq and pPq, ptaq and ptq are α−convertible
and pxq is a varstruct

27054 ?0 not of the form: ‘Γ ` ∀ vs[x ,y ,..]• P [x ,y ...] ⇒ vs[x ,y ,..] = t‘

SML

val ∃1 thm : THM ;

Description Expanded form of definition of ∃1

Theorem

` ∀ P • ($∃1 P) ⇔
(∃ t • (P t) ∧

(∀ x • (P x ) ⇒ x = t))

∃1 thm

SML

val α conv : TERM −> CONV ;

Description Returns a theorem that two terms are equal, should they be α-convertible.

Rule

` t1 = t2

α conv
pt2q
pt1q

Errors

3012 ?0 and ?1 do not have the same types
7034 ?0 and ?1 are not α−convertible
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SML

val β conv : CONV ;

Description Apply a β-reduction to an abstraction.

Rule

` ((λ x• t [x ])y) = t ′[y ]
β conv
p(λ x• t1 [x ])t2q

where x may be any varstruct allowed by the ICL HOL syntax, y is an instance of this structure,
and t ′ is α-convertible to t , changed to avoid variable capture.

When the bound variable structure has a pair, where the value applied to does not, then Fst and
Snd are introduced as necessary, e.g.:

Example

β conv p(λ (x ,y)• f x y) pq =
` (λ (x ,y)• f x y) p = f (Fst p) (Snd p)

See Also simple β conv , β rule

Errors

27008 ?0 is not of the form: p(λ x• t1 [x ])t2q
where pxq is a varstruct

SML

val β rule : THM −> THM ;

Description An elimination rule for λ, which can handle paired abstractions.

Rule

Γ ` (λ x• t [x ]) y
Γ ` t [y ]

β rule

See Also β conv

Errors

27007 ?0 is not of the form: ‘Γ ` (λ x• t [x ]) y‘
where pxq is a varstruct
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SML

val ε elim rule : TERM −> THM −> THM −> THM ;

Description Given that ε of a predicate satisfies that predicate, then in a different theorem
we may eliminate an assumption that claims an otherwise unused variable structure satisfies the
predicate.

Rule

Γ1 ` t ′ ($ε t ′′);
Γ2 , t vs ` s
Γ1 ∪ Γ2 ` s

ε elim rule
pvsq

where t , t ′ and t ′′ are α-convertible, and vs is a varstruct, with no duplicates, and with its free
variables occurring nowhere else in the second theorem, or in the conclusion of the first. In fact,
($ε t ′′) here can be any term, it is not constrained to be an application of the choice function.

Errors

4016 ?0 is not an allowed variable structure
7019 ?0 is not of the form: ‘Γ ` t1 (ε t1 )‘
7054 ?0 is not of same type as choice sub−term of first theorem
27043 ?0 is repeated in the varstruct ?1
27045 Arguments ?0 ; ?1 and ?2 not of the form pvsq; ‘Γ1 ` t (ε t)‘ and

‘Γ2 , (t vs) ` s‘
27051 ?0 has members appearing free in conclusion of ?1
27052 ?0 has members appearing free in ?1 other than in assumption ?2

SML

val ε intro rule : THM −> THM ;

Description Given a theorem whose conclusion is a function application, we know that the
“function” is a predicate, and the rule states that ε of this predicate will satisfy the predicate.

Rule

Γ ` t1 t2
Γ ` t1 ($ε t1 )

ε intro rule

Errors

7016 ?0 is not of the form: ‘Γ ` t1 t2‘

SML

val η conv : CONV ;

Description The rule for η conversion.

Conversion

` (λ vs• t vs) = t
η conv
pλ vs• t vsq

where t contains no free instances of the variables of varstruct vs.
Errors

27018 ?0 is not of the form: pλ vs• t vs ′q
where pvsq is a varstruct

27023 ?0 is not of the form: pλ vs• t vsq where ptq should not contain pvsq
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SML

val λ C : CONV −> CONV ;

Description Apply a conversion to the body of an abstraction:

Rule

` (λ x• p[x ]) = (λ x• pa[x ])

λ C
(c : CONV )
pλ x• pq

where c p[x ] gives ‘`p[x ] = pa[x ]‘.

Errors

4002 ?0 is not of form: pλ vs• tq
7104 Result of conversion, ?0 , ill−formed

Also as the failure of the conversion.

SML

val λ eq rule : TERM −> THM −> THM ;

Description Given an equational theorem, return the equation formed by abstracting the term
argument (which must be an allowed variable structure) from both sides.

Rule

Γ ` t1 [x ] = t2 [x ]
Γ ` (λ x• t1 [x ]) = (λ x• t2 [x ])

λ eq rule
pxq

Errors

4016 ?0 is not an allowed variable structure
6005 ?0 occurs free in assumption list
6020 ?0 is not of the form: ‘Γ ` t1 = t2‘

SML

val λ pair conv : CONV ;

Description This conversion eliminates abstraction over pairs in favour of abstraction over
elements of pairs. The bound variables of the resulting λ-abstraction do not have pair types.

Rule

` (λ v• t) =
(λ (v1 , v2 )• t ′[(v1 , v2 )/v ])

λ pair conv
pλ v :′a × ′b• tq

Rule

` (λ (v , w)• t) =
(λ ((v1 , v2 ), (w1 , w2 ))•

t [(v1 , v2 )/v , (w1 , w2 )/v ])

λ pair conv
pλ (v , w):(′a × ′b) × (′c × ′d)• tq

and so on.
Errors

27055 The type of ?0 is not of the form σ × τ
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SML

val λ rule : TERM −> THM −> THM ;

Description An introduction rule for λ:

Rule

Γ ` s[t ]
Γ ` (λ x • s[x ]) t

λ rule
ptq

where x is a machine generated variable.

SML

val λ varstruct conv : TERM −> CONV ;

Description This conversion is a generalisation of α conv allowing one to convert a λ-
abstraction into an equivalent λ-abstraction that differs only in the form of the varstruct and
the corresponding use of Fst in the Snd in the body of the abstraction.

Rule

` (λ vs2 [x2 ,y2 ,...]• t [x2 ,y2 ,...]) =
(λ vs1 [x1 ,y1 ,...]• t ′[x1 ,y1 ,...])

λ varstruct conv
pλ vs1 [x1 ,y1 ,...]• t [x1 ,y1 ,...]q
pλ vs2 [x2 ,y2 ,...]• t ′[x2 ,y2 ,...]q

Where the types of vs1 [x1 , y1 , ...] and vs2 [x2 , y2 , ...] are the same, and t ′ and t differ only in
applications of Fst and Snd to the bound variables.

For example,

Rule

` ((λ x• Fst x + Snd x = 1 ) =
(λ (a, b)• a + b = 1 )

λ varstruct conv
pλ (a, b)• a + b = 1q
pλ x• Fst x + Snd x = 1q

See Also α conv for a more limited form of renaming.

Errors

27050 Cannot prove equality of ?0 and ?1

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.2. Subgoal Package 221

7.2 Subgoal Package

SML

signature SubgoalPackage = sig

Description This provides the subgoal package, which provides an interactive backward proof
mechanism, based on the application of tactics.

Errors

30009 There are no goals to prove
30017 Label ?0 has no corresponding goal
30023 ?0 cannot be interpreted as a goal
30028 Label may not contain ?0 , as less than 1
30041 Label ?0 has been superseded
30042 Label may not contain 0
30043 Label ?0 has been achieved
30045 Label cannot be empty
30055 The last change to the subgoal package state was made in

a context which is no longer valid
30056 The current goal contains distinct free variables

with the same names but different types, the names being ?0 ,
and a typing context is being maintained .
These free variables have not been put in the typing context

30059 The current goal contains two or more distinct free variables
with the same name but different types, the name being ?0 ,
and a typing context is being maintained .
These free variables have not been put in the typing context

30061 The tactic generated an invalid proof (?0 ). The goal state has not been changed

These messages are common to various functions in this document. Message 30055 indicates that
the goal state theorem failed the valid thm test: this could be a theory out of scope, a deletion
of a definition, etc. Messages 30056 and 30057 are just for the user’s information, though they
should give cause to worry.

SML

(∗ pp′TS ∗)
Description The theory will contain a constant named pp′TS , defined by a definition with key
“pp’TS”.

Definition

` ∀ x • (pp′TS x ) ⇔ x

This is used in creating a term form goal. Using this constant explicitly within the subgoal package
may cause unexpected behaviour.

Uses THe definition may be used when analysing goal state theorems, or using modify goal -
state thm (q.v.) - both operations are only for the advanced user or extender of the system.

SML

(∗ subgoal package quiet : bool ∗)
Description This is a system control, handled by set flag . If set to false (the default) then
the package narrates its progress as described in the design of its components. If set to true then
the package will cause no output other than the actual results of functions. This includes, e.g.,
print goal and apply tactic.

Uses For running the package offline.
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SML

(∗ subgoal package ti context : bool ∗)
Description subgoal package ti context is a system control flag, as handled by set flag , etc. If
set to true (the default) then the type context will be set and maintained, via set ti context(q.v.),
to be just the free variables of the current goal, each time the current goal changes. If false, then
the type context will be cleared and left unchanged by goal state changes. If the current goal
has free variables with the same name and differing types this will cause set ti context to ignore
those variables, raising the comment message 30056.

SML

(∗ tactic subgoal warning : integer control ∗)
Description Warning 30018 will be issued by apply tactic (and a) if the tactic requests more
subgoals than the number set by this control. This allows the user to avoid processing and printing
large numbers of subgoals when these are probably unwanted. The default value is 20. If the
value is less than zero then the warning will never be issued.

SML

(∗ undo buffer length : int ∗)
Description This is a system control, handled by set int control , etc, which sets the maximum
number of entries that can be held on the undo buffer for each main goal: i.e. how many tactic
applications, etc, may be undone. It is initially set to 12, and cannot be made negative. Any
changes to this parameter will take immediate effect upon the undo buffers stored for all the main
goals, i.e. if necessary they will be shortened at the point of changing the value, rather than at
the point of, e.g., applying a new tactic.

SML

type GOAL STATE;

Description This is an abstract data type that embodies a goal state, in particular it contains
which goals are yet to be achieved and a theorem embedding the inference work so far. The
subgoal package has a current goal state, a stack of goal states for different main goals, and a
buffer of goal states to allow some operations to be undone.

See Also print goal state
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SML

val apply tactic : TACTIC −> unit ;
val a : TACTIC −> unit ;

Description apply tactic applies a tactic to the current goal, and a is an alias for it. If suc-
cessful, the previous goal state will be put in the undo buffer, and the new goal state, current
goal, etc, will be based on the tactic’s application. If the tactic returns some subgoals then the
“first” of these will become the new current goal. If there is only one subgoal it will inherit the
label of the previous current goal, otherwise if the old label was “label” then it will be considered
in the goal state as superseded, and the new subgoals will be labeled “label.1”, “label.2”, etc. If
it produces a theorem that achieves the current goal (i.e. the list of subgoals is empty), then the
“next” goal will become the current one, and the previous goal’s label will be noted as achieved.

The subgoals created, or if none, the “next” goal, will be displayed, using the format of
print goal(q.v), but with goal labels also given. Following the display of the new goals the
subgoal package will issue warning messages about these goals if they are somehow “suspicious”:
for example it will warn if the goal state is not changed by applying the tactic.

Warning 30018 will be issued if the tactic requests more subgoals than the number set by control
tactic subgoal warning . This allows the user to avoid processing and printing large numbers of
subgoals when these are probably unwanted.

See Also print goal for the display format of the goals.

Errors

30007 There is no current goal
30008 Result of tactic, ?0 , did not match the current goal
30018 Tactic has requested ?0 subgoals, which exceeds the threshold

set by tactic subgoal warning

SML

val drop main goal : unit −> GOAL;

Description Pop the current goal state from the main goal stack throwing away it and any
work upon it, and making the previous entry on the stack the new current goal state, displaying
the current top goal, if appropriate. The function returns the main goal dropped.

Errors

30010 The subgoal package is not in use

SML

val get asm : int −> TERM ;

Description get asm n returns the nth assumption of the current goal.

Errors

30026 There is no current goal
30027 There is no assumption ?0 in the current goal
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SML

val modify goal state thm : (THM −> THM ) −> ((string list ∗ GOAL)list) −> unit ;

Description modify goal state thm rule label is a powerful hook into the subgoal package that
works as follows:

1. Extract the goal state theorem

2. Apply a user-supplied inference rule rule to the theorem.

3. Make a new goal state, in which the goal state theorem is this new theorem.

4. In the new goal state any goals found (up to α-conversion) in the association list label will
be labelled with their corresponding labels in the association list. Multiple entries for the
same goal in the list will cause the labels to be accumulated, resulting in duplicated goals in
the new goal state. If top goals() (q.v.) is used for this association list then all unchanged
goals will gain their original labels.

5. Label otherwise unlabelled goals with unused single natural number labels (the first available
ones from the list “1”, “2”,...)

6. Treat this new goal state as if it had been created by a tactics application, e.g. it becomes
the current goal state, the previous goal state is put on the undo list, the user is told the
next goal to prove, etc.

This will issue a warning on its use should the main goal have changed, and on attempting to
extract an achieved, or goal state, theorem from a goal state that is derived from the modified
one. This is so that the user is warned that the result of an apparently successful pop thm is not
an achievement of the initially set main goal.

Uses This function is intended for system builders wishing to write extensions to the package
that change the overall proof tree, not an individual goal.

Errors

30039 Two labels clash: ?0 and ?1
30040 Duplicate labels ?0 given for different terms
30051 Inference rule returned ′?0 ′ which is not a goal state theorem

SML

val pending reset subgoal package : unit −> unit −> unit ;

Description This function, applied to () takes a snapshot of the current subgoal package state
- its stack of goal states, undo and redo buffers, and implicitly the current goal label, etc. This
snapshot, if then applied to () will overwrite the then current subgoal package state with the
snapshot. This does not reset, e.g., the current theory to the one at the time of taking the
snapshot, so care must be taken in using this function.

Uses Primarily in saving the subgoal package state between sessions of ProofPower, via save-
and quit .
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SML

val pop thm : unit −> THM ;

Description If the top achieved theorem is available (i.e. the theorem whose sequent is the
main goal has been achieved), this function returns it, and then pops the previous goal state (if
any) off the main goal stack, restoring its current goal and labelling. If present, the new current
top goal will be displayed in the format used by print goal . If the current proof is incomplete the
function fails, having no effect.

If the user wishes to examine the top achieved theorem without popping the main goal stack,
then they should use top thm (q.v.).

The user will be informed if main goal has changed from the initially set main goal, by using
modify goal state thm(q.v).

See Also save pop thm, top thm

Errors

30010 The subgoal package is not in use
30011 The current proof is incomplete

SML

val print current goal : unit −> unit ;

Description Displays, with its label, the current goal of the current goal state: the goal to
which a tactic will be applied.

Errors

30026 There is no current goal

SML

val print goal state : GOAL STATE −> unit ;

Description Display the given goal state. This displays the main goal, the goals yet to be
proven, and the current goal.

SML

val print goal : GOAL −> unit ;

Description Display a goal (i.e. a conclusion and a list of assumptions) in the manner of
the other subgoal package functions. This presents the list of assumptions in the goal first,
numbered by their position, and in reverse order, and then the conclusion, distinguished from the
assumptions by a turnstile.

Example

(∗ 3 ∗) pa ⇒ ¬ bq
(∗ 2 ∗) pa ⇒

a ⇒
a ⇒ bq

(∗ 1 ∗) p¬ b ⇒ aq

(∗ ?` ∗) pa ∨ bq

where p¬ b ⇒ aq is the first assumption, and the second assumption is too long to fit on one line.
Then with no assumptions:

Example

(∗ ?` ∗) pa ∨ bq
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SML

val push goal state thm : THM −> unit ;

Description Given a theorem that is of the form of a goal state theorem (e.g. gained by
top goal state thm, q.v.), set a new current main goal to be the conclusion of the input theorem
(viewed as a term form goal). The current goal in the new goal state will be the first assumption
of the input theorem, viewed as a term form goal. If it is the only assumption of the theorem
argument then the corresponding goal will have label “”; otherwise label “1”, and the other
assumptions of the theorem will become subsequent goals with labels “2”,“3”,... This new goal
state is pushed onto the main goal stack. The current undo buffer will also be stacked, and a new
empty one made current.

Uses For the advanced user, interested in partial proof.

Errors

30005 ?0 cannot be viewed as a goal state theorem
30058 Two distinct variables with name ?0 occur free in the goal

SML

val push goal state : GOAL STATE −> unit ;

Description If the value given is “well-formed”, then this function pushes the current goal
state onto the main goal stack, and sets the given value as the current goal state. The most likely
reason that a goal state value is ill-formed is that it is not being pushed in the same context as
it was formed, e.g. it was formed in a theory that is now out of scope, e.g. because the user has
changed theory since the states creation. The current undo buffer will also be stacked, and a new
empty one made current.

See Also top goal state

SML

val push goal : GOAL −> unit ;

Description Sets a new current main goal, creating an appropriate goal state and pushing it
onto the main goal stack. The current (and only) goal in the new goal state will be the main goal,
with label “”. The current goal will be displayed. The current undo buffer will also be stacked,
and a new empty one made current.

See Also set goal

Errors

30002 The conclusion of the goal , ?0 , is not of type BOOL
30003 An assumption of the goal , ?0 , is not of type BOOL
30004 Two assumption of the goal (?0 and ?1 ) are α−convertible
30058 Two distinct variables with name ?0 occur free in the goal

SML

val redo : unit −> unit ;

Description If the last command to affect the goal state was an undo(q.v) then this command
will undo its effect (including leaving the undo buffer in its previous form, without mention of the
undo or redo).

Errors

30014 The last command to affect the goal state was not an undo

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.2. Subgoal Package 227

SML

val save pop thm : string −> THM ;

Description If the top achieved theorem is available (i.e. the theorem whose sequent is the
main goal has been achieved), this function returns it, as well as saving it under the given string
key on the current theory, and then pops the previous goal state (if any) of the main goal stack,
restoring its current goal and labelling. If present, the new current top goal will be displayed in
the format used by print goal . If the current proof is incomplete, or the key is already used in
the current theory, the function fails, having no effect.

The user will be informed if main goal has changed from the initially set main goal, by using
modify goal state thm(q.v).

The user will be informed if main goal has changed from the initially set main goal, by using
modify goal state thm(q.v).

See Also pop thm, top thm

Errors

30010 The subgoal package is not in use
30011 The current proof is incomplete

Failures also as save thm, but given as originating from this function.

SML

val set goal : GOAL −> unit ;

Description This first discards, if it exists, the current main goal (but not any previously
pushed main goals). It then sets a new current main goal, creating an appropriate goal state and
pushing it onto the main goal stack. The current (and only) goal in the new goal state will be the
main goal, with label “”. The current goal will be displayed. The current undo buffer will also
be stacked, and a new empty one made current.

Defn

set goal gl = (drop main goal() handle (Fail ) => ();
push goal gl);

Uses In restarting a proof that has “gone wrong”, perhaps by

set goal(top main goal());

See Also push goal

Errors

30002 The conclusion of the goal , ?0 , is not of type BOOL
30003 An assumption of the goal , ?0 , is not of type BOOL
30004 Two assumption of the goal (?0 and ?1 ) are α−convertible
30058 Two distinct variables with name ?0 occur free in the goal

SML

val set labelled goal : string −> unit ;

Description If the string is a valid label in the current goal state, then set the corresponding
goal as the current goal, and then display it.

Errors

30010 The subgoal package is not in use
30016 ?0 is not of the form "n1 .n2 ....nm"
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SML

val simplify goal state thm : THM −> THM ;

Description This will simplify a goal state theorem (e.g from top goal state thm, q.v.), strip-
ping off assumptions from the conclusion of the theorem up to the turnstile place marker, then
removing the place marker itself in both conclusion and assumptions.

Uses For the advanced user, interested in partial proofs.

Errors

30005 ?0 cannot be viewed as a goal state theorem

SML

val subgoal package size : unit −> int ;

Description This returns the size of the subgoal package’s storage, in words - where one word
is four bytes.

This facility is not available in all versions of ProofPower. The function will produce the following
warning message and return −1 in this case

Errors

30060 This function is not supported in this version of ProofPower

SML

val top current label : unit −> string ;

Description Returns the label of the current goal: the goal to which a tactic will be applied.

Errors

30026 There is no current goal

SML

val top goals : unit −> (string list ∗ GOAL)list ;

Description Returns all the goals yet to be achieved, and their associated labels (they may
have more than one), in the current goal state.

Uses To determine what goals are left to achieve.

Errors

30010 The subgoal package is not in use

SML

val top goal state thm : unit −> THM ;

Description This returns the goal state theorem of the current goal state. It is a partial proof
of the main goal, though in a somewhat unwieldy form, as it encodes the main goal, and its other
goals in a term form. It may be simplified by using simplify goal state thm(q.v). The theorem
is suitable for setting a new main goal, by using push goal state thm(q.v). The user is informed
if the goal state has achieved its theorem The user will also be informed if main goal has changed
from the initially set main goal, by using modify goal state thm(q.v).

Uses For the advanced user, interested in partial proofs.

Errors

30010 The subgoal package is not in use
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SML

val top goal state : unit −> GOAL STATE ;

Description This provides the current goal state as a value: note that a goal state does not
contain an undo buffer, and thus function does not return the current undo buffer.

See Also push goal state

Errors

30010 The subgoal package is not in use

SML

val top goal : unit −> GOAL;

Description Returns the current goal of the current goal state: the goal to which a tactic will
be applied.

Errors

30026 There is no current goal

SML

val top labelled goal : string −> GOAL;

Description Returns the goal with the given label, should it exist in the current goal state.
Note that superseded and achieved goals are not available from the goal state.

Errors

30016 ?0 is not of the form "n1 .n2 ....nm"

SML

val top main goal : unit −> GOAL;

Description Return the current main goal: the objective of the current proof attempt.

Errors

30025 There is no current main goal

SML

val top thm : unit −> THM ;

Description If the top achieved theorem (i.e. the theorem whose sequent is the main goal has
been achieved) is available, this function returns it, without affecting the current goal state. If
the current proof is incomplete the function fails.

The user will be informed if main goal has changed from the initially set main goal, by using
modify goal state thm(q.v).

See Also pop thm, save pop thm

Errors

30010 The subgoal package is not in use
30011 The current proof is incomplete
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SML

val undo : int −> unit ;

Description undo n will take the nth entry from the undo buffer, if there are sufficient, as the
current goal state. Attempting to go past the end of the buffer will cause a failure, rather than a
partial undoing. A single undo command can itself be undone by redo(q.v), but otherwise entries
on the undo buffer between its start and the nth entry will be discarded.

Note that the undo buffer is stacked on starting a new main goal (e.g. with push goal), and
unstacked on popping the current main goal (e.g. with pop thm or drop main goal).

Errors

30010 The subgoal package is not in use
30012 Attempted to undo ?0 time?1 with only ?2 entr?3 in the undo buffer
30013 Must undo a positive number of times

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.3. General Tactics and Tacticals 231

7.3 General Tactics and Tacticals
SML

signature Tactics1 = sig

Description This provides the first group of tactics and tacticals in ICL HOL.

SML

signature Tactics2 = sig

Description This provides the second group of tactics and tacticals in ICL HOL. These are
mainly concerned with the predicate calculus.

SML

signature Tactics3 = sig

Description This provides a third group of tactics. They are primarily concerned with adding
handling for paired abstractions.

SML

type GOAL (∗ = SEQ ∗);
type PROOF (∗ = THM list −> THM ∗);
type TACTIC (∗ = GOAL −> (GOAL list ∗ PROOF ) ∗);
Description TACTIC is the type of tactics. The types GOAL and PROOF help to abbreviate
its definition.

SML

type THM TACTIC (∗ = THM −> TACTIC ∗);

type THM TACTICAL (∗ = THM TACTIC −> THM TACTIC ∗);
Description These are the types of theorem tactics and theorem tacticals.

SML

val accept tac : THM −> TACTIC ;

Description Prove a goal by a theorem which is α-convertible to it.

Tactic

{ Γ2 } t2 accept tac
Γ1 ` t1

where t1 and t2 are α-convertible.
Errors

9102 ?0 is not α−convertible to the goals conclusion ?1

SML

val all asm ante tac : TACTIC ;

Description Apply asm ante tac to every assumption in turn:

Tactic

{ t1 , ..., tn } t
{} tn ⇒ ... ⇒ t1 ⇒ t

all asm ante tac

α-equivalent assumptions will only appear once in the resulting goal. Notice that the first as-
sumption becomes the rightmost antecedent.

See Also asm ante tac, list asm ante tac

Errors

28055 The conclusion or an assumption of goal does not have type p:BOOLq
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SML

val all var elim asm tac : TACTIC ;
val all var elim asm tac1 : TACTIC ;
val ALL VAR ELIM ASM T : (THM −> TACTIC ) −> TACTIC ;
val ALL VAR ELIM ASM T1 : (THM −> TACTIC ) −> TACTIC ;

Description These tactics and tacticals do variable elimination with all the appropriate as-
sumptions of the goal. They process one or more assumptions of the form: pvar = valueq or
pvalue = varq, where var is a variable and the subterm value satisfies a tactic-specific require-
ment, eliminating the variable var in favour of the value.

If an assumption is an equation of variables, which all of the listed tactics accept, then the tactic
will strip digits and the current variant suffix from the right of the two variable names, and will
choose to eliminate the variable with the shortest remaining name string, taking eliminating the
left hand side variable if the strings are of equal length (this is a heuristic). If the variables are
the same then the assumption is just discarded with no further effect.

all var elim asm tac will first extract all the goal’s assumptions, holding them in a “pool”. It
will examine each assumption of the required form in turn, starting at the assumptions from the
head of the assumption list. To eliminate a variable var using an assumption it requires that the
value to which it is equated is also a variable, or an isolated constant (this is more restrictive than
var elim asm tac). All the occurrences of the variable will be eliminated from the rest of the
assumptions in the pool, and from the conclusion of the goal, and the assumption discarded from
the pool. Each of the assumptions in the pool will be examined once, as the process described so
far will only exceptionally introduce new equations that can be used for variable elimination.

Finally, the remaining assumptions in the pool will be returned to the goal’s assumption list - if
an individual assumption is unchanged then it will be returned by check asm tac, otherwise it
will be stripped back into the assumption list by strip asm tac. This stripping may result in fur-
ther possible variable eliminations being enabled, and indeed certain fairly unlikely combinations
of assumptions and proof contexts may result in REPEAT all var elim asm tac not halting.
ALL VAR ELIM ASM T allows the users choice of function to be applied to the modified as-
sumptions, rather than strip asm tac.

all var elim asm tac1 works as all var elim asm tac, except that an assumption will be used
to eliminate a variable var if the value to which it is equated does not contain var free (i.e.
its requirement is as var elim asm tac). ALL VAR ELIM ASM T1 allows the users choice of
function to be applied to the modified assumptions.

All the functions fail if they find no assumptions that can be used to eliminate variables.

Uses General purpose, and in basic prove tac.

See Also prop eq prove tac for more sophisticated approach to these kinds of problems.

Errors

29028 This tactic is unable to eliminate any variable
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SML

val all β tac : TACTIC ;

Description This tactic will β-reduce all β-redexes in the goal’s conclusion, including those
redexes introduced by preceding β-reductions in the same tactic application.

Uses In most proof contexts β-reduction will be a side effect of rewriting: this tactic is intended
for cases where rewriting would do “too much”.

See Also all β rule, all β conv

Errors

27049 ?0 contains no β−redexes

SML

val all ε tac : TACTIC ;
val ALL ε T : (THM −> TACTIC ) −> TACTIC ;

Description all ε tac applies ε tac to all subterms of the conclusion of the goal of the form
εx•t . ALL ε T is similar but uses ε T rather than ε tac. The effect is to set the corresponding
terms of the form ∃x•t as lemmas, and to derive new assumptions of the form t [εx•t/x ].

Tactic

{ Γ } t [εx1•t1/y1 , ..., εx k•tk/yk ]
{ Γ } ∃x1•t1 ; ...; { Γ } ∃x k•tk ;

{strip t1 [εx1•t1/x1 ], ...,
strip tk [εx k•tk/x k ], Γ } t

ε tac

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable. This occurs when the use of the choice function is in some sense
irrelevant to the truth of the goal, e.g., (εx•T ) = (εx•T ).

SML

val ante tac : THM −> TACTIC ;

Description Replace a goal with conclusion t2 by t1⇒t2 , where the antecedent, t1 , of the
implication is the conclusion of a theorem:

Tactic

{ Γ2 } t2
{ Γ2 } t1 ⇒ t2

ante tac (Γ1 ` t1 )

where the assumptions, Γ1 , of the theorem are contained in the assumptions, Γ2 of the goal.

Uses This is often useful if one needs to transform the conclusion of theorem e.g. by rewriting
with the assumptions.

See Also asm tac, strip asm tac

Errors

28027 Conclusion of goal does not have type p:BOOLq
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SML

val asm ante tac : TERM −> TACTIC ;

Description Bring a term out of the assumption list into the goal as the antecedent of an
implication.

Rule

{ Γ , t1 ′ } t2
{ Γ } ` t1 ⇒ t2

asm ante tac
pt1q

where t1 and t1 ′ are α-convertible. Note that all assumptions α-convertible with t1 are removed.

Uses Typically to make the assumption amenable to manipulation, e.g. by a rewriting tactic.

See Also list asm ante tac, all asm ante tac, swap asm concl tac, DROP ASM T .

Errors

28052 Term ?0 is not in the assumptions
28055 The conclusion or an assumption of goal does not have type p:BOOLq

SML

val asm tac : THM −> TACTIC ;

Description asm tac thm is a tactic which adds the conclusion of the theorem, thm, into the
assumptions of a goal:

Tactic

{ Γ2 } t2
{ t1 , Γ2 } t2

asm tac
Γ1 ` t1
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SML

val back chain tac : THM list −> TACTIC ;
val bc tac : THM list −> TACTIC ;

Description back chain tac is a tactic which uses theorems whose conclusions are possibly
universally quantified implications or bi-implications, to reason backwards from the conclusion
of a goal. (bc tac is an alias for back chain tac.) The tactic repeatedly performs the following
steps:

1. Scan the list of theorems looking for an implication, t1 ⇒ t2 , or a bi-implication t1 ⇔ t2
for which the conclusion of the goal is a substitution instance, t2 ′ say, of t2 . If no such
theorem is found then stop.

2. If in step 1, an applicable theorem, say thm, has been found reduce the goal to the corre-
sponding instance of t1 (or an existentially quantified version thereof) using bc thm tac,
q.v.

3. Repeatedly apply ∀ tac or ∧ tac until neither of these is applicable.

4. Delete thm from the list of theorems and return to step 1.

In step 4, only the first appearance of thm is removed from the list, so that one can arrange for
a theorem to be used more than once by the tactic by putting several copies of it in the list.

For example:

Example

{ Γ } t3 ′

{ Γ } t4 ′; { Γ } t5 ′

⇒ tac
[Γ1 ` t1 ∧ (∀x•t2 ) ⇒ t3 ,
Γ2 ` t4 ⇔ t1 ,
Γ3 ` t5 ⇒ t2 ,

(Here t3 ′ is some substitution instance of t3 and t4 ′ and t5 ′ are the corresponding instances of
t4 and t5 .)

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

See Also bc thm tac (which is used to perform step 2).

Errors

29012 Theorem ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇔ v‘
or ‘Γ ` ∀ x1 ... xn • u ⇒ v‘
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SML

val back chain thm tac : THM −> TACTIC ;
val bc thm tac : THM −> TACTIC ;

Description back chain thm tac is a tactic which uses a theorem whose conclusion is a pos-
sibly universally quantified implication or bi-implication to chain backwards one step from the
conclusion of a goal. (bc thm tac is an alias for back chain thm tac.) The effect is as follows:

Tactic

{ Γ } t2 ′

{ Γ } t1 ′
bc thm tac
Γ1 ` t1 ⇒ t2

Tactic

{ Γ } t2 ′

{ Γ } t1 ′
bc thm tac
Γ1 ` t1 ⇔ t2

where t2 ′ is an instance (under type instantiation and substitution) of t2 and t1 ′ is the corre-
sponding instance of t1 . If t1 ′ contains free variables which do not appear in the assumptions of
the instantiated theorem or in t2 ′, then the new subgoal t1 ′ will be existentially quantified over
these variables. For example,

Example

{ Γ } a < b
{ Γ } ∃ i• a < i ∧ i < b

bc thm tac
` ∀ m i n• m < i ∧ i < n ⇒ m < n

Note that, bi-implications are in effect treated as right-to-left rewrite rules at the top level by this
tactic. The standard rewriting mechanisms may be used for left-to-right rewriting.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

See Also back chain tac (which supplies a more general facility).

Errors

29011 Conclusion of the goal is not an instance of : ?0
29012 Theorem ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u ⇔ v‘

or ‘Γ ` ∀ x1 ... xn • u ⇒ v‘

SML

val bad proof : string −> ′a

Description bad proof name is equivalent to error name 9001 []. bad proof is for use in low
level tactical programming to report the error situation when the proof generated by a tactic is
supplied with the wrong number of arguments. (This will not happen for the usual use of tactics
with tac proof or within the subgoal package):

Errors

9001 the proof of the subgoals has produced the wrong number of theorems

Uses Specialised low-level tactic programming.
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SML

val CASES T2 : TERM −> (THM −> TACTIC ) −>
(THM −> TACTIC ) −> TACTIC ;

Description Do a case split on a given boolean term using two tactic generating functions:

CASES T2 t1 ttac1 ttac2 ({Γ} t2 ) = ttac1 (t1 ` t1 )({Γ} t2 ) ; ttac2 (¬t1 ` ¬t1 )({Γ} t2 )

See Also cases tac, ∨ THEN , CASES T

Errors

28022 ?0 is not boolean

SML

val cases tac : TERM −> TACTIC ;

Description Do a case split on a given boolean term.

Tactic

{ Γ } t2
{strip t1 , Γ } t2 ; {strip ¬t1 , Γ } t2

cases tac
pt1q

See Also CASES T , ∨ THEN

Errors

28022 ?0 is not boolean

SML

val CASES T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description Do a case split on a given boolean term using a tactic generating function:

CASES T t1 ttac ({Γ} t2 ) = ttac(t1 ` t1 )({Γ} t2 ) ; ttac(¬t1 ` ¬t1 )({Γ} t2 )

See Also cases tac, ∨ THEN , CASES T2

Errors

28022 ?0 is not boolean

SML

val CHANGED T : TACTIC −> TACTIC ;

Description CHANGED T tac is a tactic which applies tac to the goal and fails if this results
in a single subgoal which is α−convertible to the original goal.

Uses CHANGED T can be a useful way of ensuring termination of, e.g., rewriting tactics.

Errors

9601 the tactic did not change the goal
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SML

val check asm tac : THM −> TACTIC ;

Description check asm tac thm is a tactic which checks the form of the theorem, thm, and
then takes the first applicable action from the following table:

thm action
Γ`t proves goal if its conclusion is t
Γ`T as id tac (i.e. the theorem is discarded)
Γ`F proves goal
Γ`¬t proves goal if t in assumptions, else as asm tac
Γ`t proves goal if ¬t in assumptions, else as asm tac

During the search through the assumptions in the last two cases, check asm tac also checks to
see whether any of the assumptions is equal to the conclusion of the goal, and if so proves the
goal. It also checks to see if the conclusion of the theorem is already an assumption, in which
case the tactic has no effect. When all the assumptions have been examined, if none of the above
actions is applicable, the conclusion of the theorem is added to the assumption list.

Uses Tactic programming.

See Also strip asm tac, strip tac.

SML

val concl in asms tac : TACTIC ;

Description concl in asms tac is a tactic which checks whether the conclusion of the goal is
also in the assumptions, and if so proves the goal.

Tactic

{ Γ , t } t ′
concl in asms tac

where t and t ′ are α-convertible.

Uses Tactic programming.

See Also strip tac.

Errors

28002 Goal does not appear in the assumptions

SML

val COND T : (GOAL −> bool) −> TACTIC −> TACTIC −> TACTIC ;

Description COND T p tac1 tac2 is a tactic which acts as tac1 if the predicate p holds for the
goal, otherwise it acts as tac2 .

Example

COND T (is ¬ o snd) (cases tac pX :BOOLq) strip tac

is a tactic which does a case split on pXq if the goal is a negation and behaves as strip tac
otherwise.

Uses For constructing larger tactics, in cases where the more common idiom using ORELSE
would not have the desired effect.

See Also ORELSE

Errors As determined by the arguments.
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SML

val contr tac : TACTIC ;

Description A form of proof by contradiction: t holds if ¬t`F .

(The name stands for classical contradiction, as opposed to the intuitionistic contradiction proof
of i contr tac.)

Tactic

{ Γ } t
{strip ¬t , Γ} F

contr tac

Uses Proof by contradiction.

See Also strip tac, ¬ tac.

Errors

28027 Conclusion of goal does not have type p:BOOLq

SML

val CONTR T : (THM −> TACTIC ) −> TACTIC ;

Description A form of proof by contradiction as a tactical. CONTR T thmtac is a tactic which
attempts to solve a goal (Γ , t), by applying thmtac(¬t`¬t) to the goal (Γ ,F ).

Tactic

{ Γ } t
thmtac (¬t ` ¬t) ({Γ} F )

CONTR T
thmtac

Uses Proof by contradiction in combination with a theorem tactic.

See Also contr tac, ¬ T .

Errors

28027 Conclusion of goal does not have type p:BOOLq

SML

val conv tac : CONV −> TACTIC ;

Description conv tac conv is a tactic which applies the conversion conv to the conclusion of a
goal, and replaces the conclusion of the goal with the right-hand side of the resulting equational
theorem if this is successful:
Tactic

{ Γ2 } t2
{ Γ2 } t1

asm tac conv

where conv t2 = (Γ1`t2 = t1 ).

Errors

9400 the conversion returned ‘?0‘ which is not of the form:
‘... ` ?1 ⇔ ...‘
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SML

val CONV THEN : CONV −> THM TACTICAL;

Description CONV THEN conv thmtac is a theorem tactic which first uses conv to transform
the conclusion of a theorem and then acts as thmtac.

(CONV THEN ) conv thmtac thm = thmtac (conv thm)

Uses For use in programming theorem tacticals. The function may be partially evaluated with
only its conversion, theorem tactic and theorem arguments.

Errors

9400 the conversion returned ‘?0‘ which is not of the form:
‘... ` ?1 ⇔ ...‘

SML

val discard tac : ′a −> TACTIC ;
val k id tac : ′a −> TACTIC ;

Description A tactic that discards its argument, but otherwise has no effect. k id tac is an
alias for discard tac.

Uses Can be used to remove unwanted assumptions : a (POP ASM T discard tac) discards
the top-most assumption. This usage of discard tac may strengthen the goal. ie it may result in
unprovable subgoals even when the original goal was provable.

SML

val DROP ASMS T : (THM list −> TACTIC ) −> TACTIC ;

Description DROP ASMS T thmstac is a tactic which applies asm rule to each assumption
of the subgoal, giving a list of theorems, thms say, then removes all the assumptions of the goal
and then acts as thmstac thms.
Tactic

{ Γ } t
thmstac (map asm rule Γ ) ({} t)

DROP ASMS T
thmstac

Uses To use all the assumptions as theorems.

Errors As for thmstac.

SML

val DROP ASM T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description DROP ASM T asm thmtac is a tactic which removes asm from the assumption
list and then acts as thmtac(asm`asm).

Tactic

{ Γ , asm ′ } t
thmtac (asm ` asm) ({ Γ } t)

DROP ASM T
pasmq
thmtac

where asm and asm ′ are α-convertible.

Uses To use an assumption as a theorem

Errors

9301 the term ?0 is not in the assumption list
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SML

val DROP FILTER ASMS T : (TERM −> bool) −>
(THM list −> TACTIC ) −> TACTIC ;

Description DROP FILTER ASMS T pred thmstac is a tactic which applies asm rule to each
assumption of the subgoal that satisfies pred , giving a list of theorems, thms say, then removes
all the selected assumptions of the goal and then acts as thmstac thms.

Tactic

{ Γ } t
thmstac (map asm rule (Γ ∩ pred))

({Γ \ pred} t)

DROP FILTER ASMS T
pred
thmstac

Uses To use all the selected assumptions as theorems.

Errors As for thmstac.

SML

val DROP NTH ASM T : int −> (THM −> TACTIC ) −> TACTIC ;

Description DROP NTH ASM T i thmtac is a tactic which applies asm rule to the i -th
assumption of the goal, giving a theorem, thm say, and then removes asm from the assumptions
and acts as thmtac thm.

Assumptions are numbered 1 , 2 . . ., so that, e.g., DROP NTH ASM T 1 is the same as
POP ASM T
Tactic

{ a1 , ..., an } t
thmtac (asm rule [ai ]) ({ Γ \ ai} t)

DROP NTH ASM T
i
thmtac

Uses To use an assumption as a theorem, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range
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SML

val eq sym asm tac : TERM −> TACTIC ;
val eq sym nth asm tac : int −> TACTIC ;

Description THese two tactics identify an assumption (either by being equal to the term ar-
gument, or by index number). They take it from the assumption list, use symmetry upon it to
reverse any equations (or bi-implications) (though equations embedded within other equations
will not be reversed), and then strip the result into the assumption list. The tactics fail if there
are no equations to reverse.

Tactic

{Γ1 , t [x = y , p = q ,...], Γ2} cnc
{strip t [y = x , q = p, ...], Γ1 , Γ2} cnc

eq sym asm tac
t [x = y , p = q ,...]

Tactic

{t1 ,...,tn−1 , tn[x = y , p = q ,...],
tn+1 ,...} cnc

{strip tn[y = x , q = p, ...],
t1 ,...,tn−1 , tn+1 ,...} cnc

eq sym nth asm tac
n

Definition

fun eq sym asm tac asm = DROP ASM T asm
(strip asm tac o conv rule(ONCE MAP C eq sym conv));

fun eq sym nth asm tac n = DROP NTH ASM T n
(strip asm tac o conv rule(ONCE MAP C eq sym conv));

Example

Assumption Becomes
px = yq py = xq
p∀ x y • x ⇔ yq p∀ x y • y ⇔ xq
pf (x = (p = q))q pf ((p = q) = x )q
px = y ∧ p = qq px = yq, pp = qq
Errors

9301 the term ?0 is not in the assumption list
9303 the index ?0 is out of range
28053 ?0 contains no equations

SML

val EVERY TTCL : THM TACTICAL list −> THM TACTICAL;

Description EVERY TTCL is a theorem tactical combinator.

EVERY TTCL [ttcl1 , ttcl2 , ...] = ttcl1 THEN TTCL ttcl2 THEN TTCL ...

EVERY TTCL [] acts as ID THEN .

Uses For use in programming theorem tacticals.
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SML

val EVERY T : TACTIC list −> TACTIC ;
val EVERY : TACTIC list −> TACTIC ;

Description EVERY T tlist is a tactic that applies the head of tlist to its subgoal, and re-
cursively applies the tail of tlist to each resulting subgoal. EVERY is an alias for EVERY T .
EVERY [] is equal to id tac.

Example

EVERY [∀ tac, ∧ tac, ∀ tac]
is equivalent to

∀ tac THEN ∧ tac THEN ∀ tac

Errors As for the tactics in the list.

SML

val fail tac : TACTIC ;

Description A tactic that always fails. This is the identity for the tactical ORELSE T

Uses For constructing larger tactics.

Errors

9201 failed as requested

SML

val FAIL THEN : THM TACTICAL;

Description This is a theorem tactical which always fails at the point it receives its theorem
(having already been given a theorem tactic). It acts as the identity for the theorem tactical
combinator ORELSE TTCL.

Uses For use in programming theorem tacticals.

Errors

9401 failed as requested

SML

val fail with tac : string −> int −> (unit −> string) list −> TACTIC ;

Description fail with tac area msg inserts is a tactic that always fails, reporting an error mes-
sage via the call fail area msg inserts.

Uses For constructing larger tactics.

See Also fail

Errors As determined by the arguments.

SML

val FAIL WITH THEN : string −> int −> (unit −> string) list −> THM TACTICAL;

Description FAIL WITH THEN area msg inserts is a theorem tactical that always fails when
given its theorem (having already been given a theorem tactic), reporting an error message via
the call fail area msg inserts.

Uses For constructing larger theorem tacticals.

See Also fail

Errors As determined by the arguments.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



244 Chapter 7. PROOF IN HOL

SML

val FIRST TTCL : THM TACTICAL list −> THM TACTICAL;

Description FIRST TTCL is a theorem tactical combinator. FIRST TTCL [] fails on being
applied to its theorem tactic and then theorem.

FIRST TTCL [ttcl1 , ttcl2 , ...] =
ttcl1 ORELSE TTCL ttcl2 ORELSE TTCL ...

Uses For use in programming theorem tacticals.

Errors

9402 the list of theorem tactics is empty

SML

val FIRST T : TACTIC list −> TACTIC ;
val FIRST : TACTIC list −> TACTIC ;

Description FIRST T tlist is a tactic that attempts to apply each tactics in tlist until one
succeeds, or all fail. The first successful application will be the result of the tactic, and it fails if
all the attempts fail. FIRST is an alias for FIRST T . FIRST [] fails on being applied to any
goal.

Errors

9105 the list of tactics is empty

Also as the failure of last member of a non-empty list.
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SML

val forward chain tac : THM list −> TACTIC ;
val fc tac : THM list −> TACTIC ;
val all forward chain tac : THM list −> TACTIC ;
val all fc tac : THM list −> TACTIC ;
val asm forward chain tac : THM list −> TACTIC ;
val asm fc tac : THM list −> TACTIC ;
val all asm forward chain tac : THM list −> TACTIC ;
val all asm fc tac : THM list −> TACTIC ;

Description These are tactics which use theorems whose conclusions are implications, or from
which implications can be derived using the canonicalisation function fc canon, q.v., to reason
forwards from the assumptions of a goal. (The names with fc are aliases for the corresponding
ones with forward chain.)

The basic step is to take a theorem of the form Γ ` t1 ⇒ t2 and an assumption of the form t1 ′

where t1 ′ is a substitution instance of t1 and to deduce the corresponding instance of t2 ′. The
new theorem, ∆ ` t2 ′ say, may then be stripped into the assumptions.

In the case of fc tac the implicative theorem is always derived from the list of theorems given as
an argument. In the case of asm fc tac the assumptions are also used. In all of the tactics the rule
fc canon is used to derive an implicative canonical form from the candidate implicative theorems.
Normally combination of an implicative theorem and an assumption is then tried in turn and all
resulting theorems are stripped into the assumptions of the goal. However, if the chaining results
contain a theorem whose conclusion is pFq then the first such found will be stripped into the
assumptions, and all other theorems discarded.

If one of the implications has the form t1 ⇒ t2 ⇒ t3 or t1 ∧ t2 ⇒ t3 and if assumptions match-
ing t1 and t2 are available, fc tac or asm fc tac will derive an intermediate implication t2 ⇒ t3
and asm fc tac could then be used to derive t3 . The variants with all may be used to derive t3
directly without generating any intermediate implications in the assumptions. They work like the
corresponding tactic without all but any theorems which are derived which are themselves im-
plications are not stripped into the assumptions but instead are used recursively to derive further
theorems. When no new implications are derivable all of the non-implicative theorems derived
during the process are stripped into the assumptions.

Note that the use of fc canon implies that conversions from the proof context are applied to
generate implications. E.g., in an appropriate proof-context covering set theory, a ⊆ b might be
treated as the implication ∀x•x ∈ a ⇒ x ∈ b. Also variables which appear free in a theorem
are not considered as candidates for instantiation (in order to give some control over the number
of results generated). The tacticals, FC T1 and ASM FC T1 may be used to avoid the use of
fc canon.

For example, the tactic:

asm fc tac[] THEN asm fc tac[]

will prove the goal:

{p x , ∀x•p x ⇒ q x , ∀x•q x ⇒ r x} r x .

See Also bc tac, FC T , ASM FC T , FC T1 , ASM FC T1 .
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SML

val FORWARD CHAIN T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val FC T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL FORWARD CHAIN T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL FC T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ASM FORWARD CHAIN T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ASM FC T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL ASM FORWARD CHAIN T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL ASM FC T :
(THM list −> TACTIC ) −> THM list −> TACTIC ;

Description These are tacticals which use theorems whose conclusions are implications, or
from which implications can be derived, to reason forwards from the assumptions of a goal. (The
tacticals with FC are aliases for the corresponding ones with FORWARD CHAIN .)

The description of fc tac should be consulted for the basic forward chaining algorithms used. The
significance of the final argument and of the presence or absence of ASM and ALL in the name
is exactly as for fc tac and its relatives.

The tacticals allow variation of the tactic generating function used to process the theorems derived
by the forward inference. The tactic generating function to be used is given as the first argument.

Examples fc tac is the same as: FC T (MAP EVERY strip asm tac).

To rewrite the goal with the results of the forward inference one could use FC T rewrite tac.

See Also fc tac, asm fc tac, bc tac, FC T1 .
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SML

val FORWARD CHAIN T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val FC T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL FORWARD CHAIN T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL FC T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ASM FORWARD CHAIN T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ASM FC T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL ASM FORWARD CHAIN T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

val ALL ASM FC T1 :
(THM −> THM list) −> (THM list −> TACTIC ) −> THM list −> TACTIC ;

Description These are tacticals which use theorems whose conclusions are implications, or
from which implications can be derived, to reason forwards from the assumptions of a goal. (The
tacticals with FC are aliases for the corresponding ones with FORWARD CHAIN .)

The description of fc tac should be consulted for the basic forward chaining algorithms used. The
significance of the final argument and of the presence or absence of ASM and ALL in the name
is exactly as for fc tac and its relatives.

The tacticals allow variation of the canonicalisation function used to obtain implications from the
argument theorems and of the tactic generating function used to process the theorems derived by
the forward inference. The canonicalisation function to use is the first argument and the tactic
generating function is the second. (Related tacticals with names ending in T rather than T1 are
also available for the simpler case when wants to use the same canonicalisation function as fc tac
and just to vary the tactic generating function.)

Examples If the theorem argument comprises only implications which are to be used without
canonicalisation, one might use: FC T1 id canon (MAP EVERY strip asm tac).

If one has an instance of t1 as an assumption and one wishes to use the bi-implication in a theorem
of the form ` t1 ⇒ (t2 ⇔ t3 ) for rewriting, one might use FC T1 id canon rewrite tac.

See Also fc tac, asm fc tac, bc tac, FC T .

SML

val f thm tac : THM −> TACTIC ;

Description Prove a goal by using a theorem of the form Γ`F .

Tactic

{ Γ2 } t
f thm tac (Γ1 ` F )

where the assumptions, Γ1 , of the theorem are contained in the assumptions, Γ2 , of the goal.

Errors

28021 ?0 does not have the form Γ ` F

Uses In tactic programming, to use a theorem which shows that the assumptions are contra-
dictory.

See Also strip asm tac.
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SML

val GEN INDUCTION T : THM −> (THM −> TACTIC ) −> TERM −> TACTIC ;
val gen induction tac : THM −> TERM −> TACTIC ;

Description These give general means for constructing an induction tactic from an induction
principle formulated as a theorem. The term argument is the induction variable, which must be
free in the conclusion of the goal to which the tactic is applied but not in the assumptions.

GEN INDUCTION T causes any inductive hypotheses (see below) to be passed to a tactic
generating function.

gen induction tac thm is the same as GEN INDUCTION T thm strip asm tac.

The discussion below is for the tactic computed by the call GEN INDUCTION T thm ttac y
applied to a goal with conclusion t .

The induction principle, thm has the form:

` ∀p•a ⇒ ∀x•p x

E.g. the usual principle of induction for the natural numbers:

` ∀ p• p 0 ∧ (∀ n• p n ⇒ p (n + 1 )) ⇒ (∀ n• p n)

The induction tactic takes the following steps:

1. Use ∀-elimination on thm, (with the term pλy•tq) and β-reduction to give an implicative
theorem, ` a ′ ⇒ t and use it to reduce the goal to a subgoal with conclusion a ′.

2. Repeatedly apply ∧ tac and then repeatedly apply ∀ tac.

3. To any of the resulting subgoals whose principal connective corresponds to an an implication
in thm apply ⇒ T ttac. E.g., with the usual principle of induction for the natural numbers
as formulated above ⇒ T ttacis applied in the inductive step but not in the base case, even
if the conclusion of the goal is an implication.

The tactic also renames bound variables so that names which begin with the name of the variable
in the theorem now begin with the name of the induction variable passed to the tactic.

Errors

29021 ?0 does not have the form ‘` ∀p•a ⇒ ∀x•p x‘
29023 The type of ?0 is not an instance of ?1
29024 ?0 is not a variable
29025 ?0 appears free in the assumptions of the goal
29026 ?0 does not appear free in the conclusion of the goal
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SML

val GEN INDUCTION T1 : THM −> (THM −> TACTIC ) −> TACTIC ;
val gen induction tac1 : THM −> TACTIC ;

Description These give a means for constructing an induction tactic from an induction principle
formulated as a theorem, in cases where the induction variable can be inferred from the form of
the theorem and the goal. They are in other respects very like GEN INDUCTION T and
gen induction tac thm, q.v.

The induction theorem must be a theorem of the form:

` ∀p•a ⇒ ∀x•t [p x/b]

Where t contains at least one occurrence of x . For example,

` ∀ p • p {} ∧ (∀ a x• a ∈ Finite ∧ p a ∧ ¬ x ∈ a ⇒ p ({x} ∪ a))
⇒ (∀ a• a ∈ Finite ⇒ p a)

(for which t is a ∈ Finite ⇒ b).

The induction tactic matches the conclusion, c, of the goal with t , uses the result to derive a
theorem of the form ` a ′ ⇒ c and then proceeds exactly like the corresponding induction tactic
produced by GEN INDUCTION T and gen induction tac thm q.v.

Errors

29007 ?0 does not have the form ‘`∀p:τ→BOOL•a ⇒ ∀x•t [p x/b]‘
(where pxq must also appear in ptq other than as an argument of ppq)

29009 The conclusion of the goal cannot be rewritten in the form ?0
29014 The term ?0 which matches the induction variable is not a variable

SML

val GET ASMS T : (THM list −> TACTIC ) −> TACTIC ;

Description GET ASMS T thmstac is a tactic which applies asm rule to each assumption of
the goal, giving a list of theorems, thms say, and then acts as thmstac thms.

Tactic

{ Γ } t
thmstac (map asm rule Γ )

({ a1 ,...,an } t)

GET ASMS T
thmstac

Uses To use all the assumptions as theorems.

Errors As for thmstac.

SML

val GET ASM T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description GET ASM T asm thmtac is a tactic which checks that asm is in the assumption
list and then acts as thmtac(asm`asm).

Tactic

{ Γ , asm ′ } t
thmtac (asm ` asm) ({ Γ , asm ′ } t)

GET ASM T
pasmq
thmtac

where asm and asm ′ are α-convertible.

Uses To use an assumption as a theorem

Errors

9301 the term ?0 is not in the assumption list
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SML

val GET FILTER ASMS T : (TERM −> bool) −>
(THM list −> TACTIC ) −> TACTIC ;

Description GET FILTER ASMS T pred thmstac is a tactic which applies asm rule to each
assumption of the subgoal that satisfies pred , giving a list of theorems, thms say and then acts as
thmstac thms.
Tactic

{ Γ } t
thmstac (map asm rule (Γ ∩ pred))

({ Γ } t)

GET FILTER ASMS T
pred
thmstac

Uses To use all the selected assumptions as theorems.

Errors As for thmstac.

SML

val GET NTH ASM T : int −> (THM −> TACTIC ) −> TACTIC ;

Description GET NTH ASM T i thmtac is a tactic which applies asm rule to the i -th as-
sumption of the goal, giving a theorem, thm say, and then acts as thmtac thm.

Assumptions are numbered 1 , 2 . . ., so that, e.g., GET NTH ASM T 1 is the same as
TOP ASM T
Tactic

{ a1 , ..., an } t
thmtac (asm rule [ai ]) ({ Γ } t)

GET NTH ASM T
i
thmtac

Uses To use an assumption as a theorem, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

SML

val id tac : TACTIC ;

Description A tactic that always succeeds, having no effect. This is the identity for the tactical
THEN T .
Tactic

{ Γ } t
{ Γ } t

id tac

Uses For constructing larger tactics.

SML

val ID THEN : THM TACTICAL;

Description This is the identity for the theorem tactical combinator THEN TTCL.

(ID THEN ) thmtac = thmtac

Uses For use in programming theorem tacticals.
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SML

val IF T2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −> TACTIC ;

Description Reduce a conditional by applying tactic generating functions to the two cases for
the selector.
Tactic

{ Γ } if a then tt else et
ttac1{ a, Γ } ` tt ; ttac2{ ¬a, Γ } ` et

IF T2
ttac1 ttac2

See Also ⇔ T , STRIP CONCL T

Errors

28071 Goal is not of the form: { Γ } if a then tt else et

SML

val if tac : TACTIC ;

Description Reduce a conditional subgoal by performing a case split on the selector.

Tactic

{ Γ } if a then tt else et
{strip a, Γ } tt ; {strip ¬a, Γ } et

if tac

See Also strip tac

Errors

28071 Goal is not of the form: { Γ } if a then tt else et

SML

val IF THEN2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −>
(THM −> TACTIC );

Description A theorem tactical to apply given theorem tactics to the result of eliminating the
conditional from a theorem with a conditional as its conclusion.

IF THEN ttac (Γ ` if a then tt else et) = ttac1 (a, Γ ` tt) THEN ttac2 (¬a, Γ ` et)

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also IF THEN , STRIP THM THEN

Errors

7012 ?0 is not of the form: ‘Γ ` if tc then tt else te‘

SML

val IF THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to apply a given theorem tactic to the result of eliminating the
conditional from a theorem with a conditional as its conclusion.

IF THEN ttac (Γ ` if a then tt else et) = ttac (Γ ` a ⇒ tt) THEN ttac (Γ ` ¬ a ⇒ et)

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also IF THEN2 , STRIP THM THEN

Errors

7012 ?0 is not of the form: ‘Γ ` if tc then tt else te‘
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SML

val IF T : (THM −> TACTIC ) −> TACTIC ;

Description Reduce a conditional by applying a tactic generating function to the two cases for
the selector.
Tactic

{ Γ } if a then tt else et
ttac{ a, Γ } ` tt ; ttac{ ¬a, Γ } ` et

IF T
ttac

See Also IF T2 , STRIP CONCL T

Errors

28071 Goal is not of the form: { Γ } if a then tt else et

SML

val intro ∀ tac : (TERM ∗ TERM ) −> TACTIC ;
val intro ∀ tac1 : TERM −> TACTIC ;

Description Sometimes it is helpful to prove a goal by proving a more general conjecture has
the goal as a special case. intro ∀ tac introduces a universal quantifier into the conclusion of a
goal in order to do this.

Tactic

{ Γ } t [t1/x ]
{ Γ } ∀x•t

intro ∀ tac (t1 , x )

where t is a term in which x appears free and where either t1 the same as x or x does not appear
free in the conclusion, t [t1/x ], of the original goal.

Note that t1 need not be a variable, e.g.,

Example

{ Γ } 1 + 2 > 0 ⇒ ¬1 + 2 = 0
{ Γ } ∀i•i > 0 ⇒ ¬i = 0

intro ∀ tac (p1+2q, pi :Nq)

intro ∀ tac1 is for use in the common case where one simply wants to take replace the goal by its
universal closure over some variable. intro ∀ tac1 pxq is equivalent to intro ∀ tac (pxq, pxq).

N.B. these tactics may strengthen the goal, i.e. they may result in unprovable subgoals even when
the original goal was provable.

Uses The most common use is in preparation for an inductive proof when it is necessary to
generalise the conclusion in order to give stronger assumptions in the inductive step or steps.

See Also ∀ reorder conv
Errors

28082 ?0 does not appear free in the goal
28083 ?0 appears free in the goal and is not the same as ?1
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SML

val i contr tac : TACTIC ;

Description Prove a goal by showing that the assumptions are contradictory, in an intuitionistic
manner.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } t
{ Γ } F

i contr tac

Uses If a proof is to be carried out by showing the assumptions inconsistent, then the conclusion
of the subgoal is irrelevant and may be removed.

SML

val lemma tac : TERM −> TACTIC ;

Description Introduce a lemma (the term argument) to be proved, and then added as an
assumption.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } t2
{ Γ } t1 ;

{strip t1 , Γ} t2

lemma tac
pt1q

See Also LEMMA T
Errors

9603 the term ?0 is not boolean

SML

val LEMMA T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description LEMMA T newsg thmtac is a tactic which sets newsg as a new subgoal and applies
thmtac(newsg`newsg) to the original goal.

Tactic

{ Γ } t
{ Γ } newsg ;

thmtac(newsg ` newsg) ({ Γ } t)

LEMMA T
newsg thmtac

Uses For use in tactic programming and in interactive use where lemma tac is not appropriate.

Errors

9603 the term ?0 is not boolean

See Also lemma tac.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



254 Chapter 7. PROOF IN HOL

SML

val list asm ante tac : TERM list −> TACTIC ;

Description Repeatedly apply asm ante tac.

Rule

{ Γ , t1 , ..., tn } t
{ Γ } t1 ⇒ ... ⇒ tn ⇒ t

list asm ante tac
[pt1q,...,ptnq]

α-equivalent assumptions will only appear once in the resulting goal, in their rightmost position,
(which also means that duplicates in the list are ignored).

See Also asm ante tac, all asm ante tac

Errors

28052 Term ?0 is not in the assumptions
28055 The conclusion or an assumption of goal does not have type p:BOOLq

SML

val LIST DROP ASM T : TERM list −> (THM list −> TACTIC ) −> TACTIC ;

Description LIST DROP ASM T [asm 1 , asm 2 , ...] thmtac is a tactic which removes the
asm 1 , asm 2 , ... from the assumption list and then acts as

thmtac[(asm 1`asm 1 ), (asm 2`asm 2 ), ...]

Tactic

{ Γ , asm1 ′,... } t
thmtac [(asm1 ` asm1 ),...] ({ Γ } t)

LIST DROP ASM T
[pasm1q,...]
thmtac

where asm i and asm i ′ are α-convertible.

Uses To use assumptions as theorems

Errors

9301 the term ?0 is not in the assumption list

SML

val LIST DROP NTH ASM T : int list −>
(THM list −> TACTIC ) −> TACTIC ;

Description LIST DROP NTH ASM T [i , j , ...] thmtac is a tactic which applies asm rule
to the i -th, j -th, etc assumptions of the goal, giving theorems, thm i , thm j , etc, say, and then
removes the asm i , asm j from the assumptions and acts as thmtac [thm i , thm j , ...].

Tactic

{ a1 , ..., an } t
thmtac [(asm rule [ai ]),

(asm rule [aj ]),...]
({ Γ \ {ai , aj , ...}} t)

DROP NTH ASM T
[i ,j ,...]
thmtac

Uses To use assumptions as theorems, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range
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SML

val LIST GET ASM T : TERM list −> (THM list −> TACTIC ) −> TACTIC ;

Description LIST GET ASM T [asm 1 , asm 2 , ...] thmtac is a tactic which checks that all
the asm 1 , asm 2 , ... are in the assumption list and then acts as

thmtac[(asm 1`asm 1 ), (asm 2`asm 2 ), ...]

Tactic

{ Γ , asm1 ′, ... } t
thmtac [(asm1 ` asm1 ),...]

({ Γ , asm ′,... } t)

LIST GET ASM T
[pasm1q,...]
thmtac

where asm i and asm i ′ are α-convertible.

Uses To use a list of assumptions as theorems

Errors

9301 the term ?0 is not in the assumption list

SML

val LIST GET NTH ASM T : int list −> (THM list −> TACTIC ) −> TACTIC ;

Description LIST GET NTH ASM T [i , j , ...] thmtac is a tactic which applies asm rule to
the i -th, j -th, etc, assumption of the goal, giving theorems, thm i , thm j , etc, say, and then acts
as thmtac [thm i , thm j , ...].

Tactic

{ a1 , ..., an } t
thmtac [(asm rule [ai ]),...] ({ Γ } t)

LIST GET NTH ASM T
[i ,...]
thmtac

Uses To use assumptions as theorems, treating the assumption list as an array.

Errors

9303 the index ?0 is out of range

SML

val list simple ∃ tac : TERM list −> TACTIC ;

Description Provide a list of witnesses for an interated existential subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } ∃ x1 ,x2 ... • t2 [x1 ,x2 ,...]
{ Γ } t2 [t1 ′,t2 ′...]

list simple ∃ tac
[pt1q,pt2q,...]

where t1 ′, t2 ′, . . . are t1 , t2 , . . ., type instantiated to have the same type as x1 , x2 , . . ..

See Also simple ∃ tac

Errors

29008 Cannot match witness ?0 to variable ?1
29015 The list of witnesses is longer than the list of

existentially quantified variables in ?0
29016 The list of witnesses is empty
29017 Goal is not of the form: { Γ } ∃ x • t2 [x ]
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SML

val list swap asm concl tac : TERM list −> TACTIC ;
val list swap nth asm concl tac : int list −> TACTIC ;

Description Strip the negation of current goal into the assumption list and make some assump-
tions, suitably negated, into a disjunction forming the current goal. If the list is empty then the
conclusion will become pFq.
Tactic

{ Γ } t2
{strip p¬ t2q, Γ − {pt1q,...,ptnq}}

¬ t1 ∨ ... ∨ ¬ tn

list swap asm concl tac
[pt1q,...,ptnq]

Tactic

{ Γ } t
{strip p¬ tq, Γ − {ptpq, ..., ptqq}}

¬ tp ∨ ... ¬ tq

list swap nth asm concl tac
[p,...,q ]

If any assumption is a negated term then the double negation will be eliminated.

See Also Other swap and SWAP functions.

Errors

9303 the index ?0 is out of range
28052 Term ?0 is not in the assumptions

SML

val LIST SWAP ASM CONCL T
: TERM list −> (THM −> TACTIC ) −> TACTIC ;

val LIST SWAP NTH ASM CONCL T
: int list −> (THM −> TACTIC ) −> TACTIC ;

Description Process the negation of current goal with the supplied theorem tactic and make
some assumptions, suitably negated, into a disjunction forming the current goal.

Tactic

{ Γ } t
ttac(asm rule p¬tq )
({Γ − {ptpq,...ptqq}} ¬ t1 )

LIST SWAP ASM CONCL T
[ptpq,...ptqq]
ttac

Tactic

{ Γ } t
ttac(asm rule p¬tq )

({Γ − {ptpq, ..., ptqq}} ¬ tm)

LIST SWAP NTH ASM CONCL T
[p, ..., q ]
ttac

If an assumption is a negated term then the double negation will be eliminated. If the list is
empty then the conclusion (before applying the tactic argument) will become pFq.

See Also Other swap and SWAP functions.

Errors

9303 the index ?0 is out of range
28052 Term ?0 is not in the assumptions
28027 Conclusion of goal does not have type p:BOOLq
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SML

val MAP EVERY T : ( ′a −> TACTIC ) −> ′a list −> TACTIC ;
val MAP EVERY : ( ′a −> TACTIC ) −> ′a list −> TACTIC ;

Description MAP EVERY T mapf alist maps mapf over alist , and then applies the resulting
list of tactics to the goal in sequence (in the same manner as EVERY , q.v.). MAP EVERY is
an alias for MAP EVERY T .

Errors As the individual items generated by mapping the tactic over the list.

SML

val MAP FIRST T : (′a −> TACTIC ) −> ′a list −> TACTIC ;
val MAP FIRST : (′a −> TACTIC ) −> ′a list −> TACTIC ;

Description MAP FIRST T mapf alist maps mapf over alist , and then attempts to apply
each resulting tactic in order, until one succeeds or all fail (in the same manner as FIRST , q.v.).
MAP FIRST is an alias for MAP FIRST T .

Errors As the last tactic.

SML

val map shape : ((′a list −> ′b) ∗ int) list −> ′a list −> ′b list

Description map shape is a means of composing functions on lists. It is intended for composing
the proofs produced by tactics in tacticals such as THEN . Its effect is as follows:

map shape [(f1 , n1 ), (f2 , n2 )... ] [a1 , a2 , ...]
= [f1 [a1 , ..., a(n1 )], f2 [a(n1+1 ), ..., a(n1+n2 )], ...]

where, if there are not enough a i , then unused f j are ignored and the last f j to be used
may receive less than n j elements in its argument. (This case is not expected to occur in the
application of map shape in tactic programming.)

Uses Specialised low-level tactic programming.

SML

val ORELSE TTCL : (THM TACTICAL ∗ THM TACTICAL) −> THM TACTICAL;

Description ORELSE TTCL is a theorem tactical combinator. It is an infix operator.
(tcl1 ORELSE TTCL tcl2 )th is tcl1 th unless evaluation of tcl1 th fails, in which case it is tcl2 th.

Uses For use in programming theorem tacticals.

SML

val ORELSE T : (TACTIC ∗ TACTIC ) −> TACTIC ;
val ORELSE : (TACTIC ∗ TACTIC ) −> TACTIC ;

Description ORELSE T is a tactical used as an infix operator. tac1 ORELSE T tac2 is a
tactic which behaves as tac1 unless application of tac1 fails, in which case it behaves as tac2 .
ORELSE is an alias for ORELSE T

See Also LIST ORELSE T

Errors As the failure of tac2 .
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SML

val pair rw canon : CANON ;

Description This is the rewrite canonicalisation function for the theory of pairs, defined as

val pair rw canon =
REWRITE CAN
(REPEAT CAN (FIRST CAN [
∀ rewrite canon,
∧ rewrite canon,
¬ rewrite canon,
f rewrite canon,
⇔ t rewrite canon]));

This is the repeated application of the first applicable operation in the following list:

1. stripping universal quantifiers (paired or simple);

2. dividing conjunctive theorems into their conjuncts;

3. changing `¬(t1∨t2 ) to ¬t1∧¬t2 ;

4. changing `¬∃vs•t to ∀vs•¬t ;

5. changing `¬¬t to t⇔F ;

6. changing `¬t to t⇔F ;

7. if none of the above apply, changing `t to `t⇔T .

Finally, after all this canonicalisation we then universally quantify the resulting theorems in all
free variables other than those that were free in the original.

SML

val POP ASM T : (THM −> TACTIC ) −> TACTIC ;

Description POP ASM T thmtac is a tactic which removes the top entry, asm say, from the
assumption list and then acts as thmtac(asm`asm).

Tactic

{ asm, Γ } t
thmtac (asm ` asm) ({ Γ } t)

POP ASM T
pasmq
thmtac

Uses To use an assumption as a theorem

Errors

9302 the assumption list is empty
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SML

val prim rewrite tac : CONV NET −> CANON −> (THM −> TERM ∗ CONV ) OPT −>
(CONV −> CONV ) −> EQN CXT −> THM list −> TACTIC ;

Description This is the tactic based on prim rewrite conv (q.v.), with the same parameters
as that function, except for the last argument:

Tactic

{ Γ } ` t
{ Γ } ` t ′

prim rewrite tac
(initial net : CONV NET )
(canon : CANON )
(epp : (THM −> TERM ∗ CONV ) OPT )
(traverse : CONV −> CONV )
(with eqn cxt : EQN CXT )
(with thms : THM list)

where pt’q is the result of rewriting ptq in the manner prescribed by the arguments.

SML

val prove tac : THM list −> TACTIC ;

Description This tactic is an automatic proof procedure appropriate to the current proof con-
text.

At the point of applying this tactic to its theorems it will access the current setting of proof
context field pr tac, apply it to the theorem list immediately, and then to the goal, with its
assumptions temporarily removed when available (i.e. the result is partially evaluated with only
the list of theorems). The original assumptions will be returned to the resulting subgoals using
check asm tac.
Tactic

{ Γ } t
current ad pr tac()thms({}, t)

THEN MAP EVERY check asm tac Γ

prove tac
thms

See Also PC T1 to defer accessing the proof context until application to the goal; and,
asm prove tac for the form that does react to the presence of assumptions.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.

It is possible that if prove tac does not prove all its subgoals, then there may be an identification
of newly introduced variables with free variables in the assumptions that were temporarily put to
one side. This will lead to failures in the execution of the proof parts of the tactics that constitute
the current proof context’s automatic prover. Such a failure may not give particularly helpful
messages concerning the cause of the failure. The problem is avoided by using asm prove tac, or
by a call to rename tac to change the offending variable names.
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SML

val prove thm : (string ∗ TERM ∗ TACTIC ) −> THM ;

Description prove thm (key , gl , tac) applies the tactic tac to the goal ([], tm), and, if the tactic
succeeds in proving the goal saves the theorem under the key given, and returns the resulting
theorem.

prove thm performs α-conversion as necessary to ensure that the theorem returned has the same
form as the specified goal. In circumstances where these adjustments are known not to be neces-
sary, simple tac proof may be used to avoid the overhead.

Defn

prove thm (key , tm, tac) = save thm(key , tac proof (([],tm).tac));

Uses The subgoal package is the normal interactive mechanism for developing proofs using
tactics. prove thm is typically used in tactic programming and other proof procedures, in cases
where it is necessary to ensure that the correct goal is proved and saved.

Errors

9501 the tactic returned unsolved subgoals: ?0
9502 evaluation of the tactic failed : ?0
9503 the proof returned by the tactic failed : ?0
9504 the proof returned by the tactic proved ?0 which could not be

converted into the desired goal .
9507 the conclusion ?0 is not of type p:BOOLq

See Also simple tac proof , prove thm.

SML

val prove ∃ tac : TACTIC ;

Description This tactic is an automatic proof procedure for existential proofs, appropriate to
the current proof context.

At the point of applying this tactic to a goal it will access the current setting of proof context
field prove ∃, apply it to the goal, with its assumptions temporarily removed, using conv tac.
The original assumptions will be returned to the resulting subgoals using check asm tac.

Tactic

{ Γ } t
conv tac(current ad cs ∃ conv())({}, t)
THEN MAP EVERY check asm tac Γ

prove ∃ tac
thms

See Also asm prove ∃ tac that does react to any assumptions that are present.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.
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SML

val rename tac : (TERM ∗ string)list −> TACTIC ;

Description rename tac renames variables (bound or free) in a goal. It is typically used when
a goal contains several variables with the same name or to introduce names which are better
mnemonics. For the latter purpose, the argument controls the algorithm used to make variants
of the names.

The renaming affects both the conclusions and the assumptions of the goal. Variables are renamed
to ensure that the new goal satisfies the following conditions:

• No two free variables with different types have the same name.

• No bound variable has the same name as a free variable or a variable which is bound in an
outer scope.

• No variable shall have the same name as any constant in scope.

Before a variable is checked, it is looked up in the renaming association list, and if present it
is treated as if the name were the corresponding string. The function variant , q.v., is used to
rename variables.

The function may be partially evaluated with only the renamings argument.

Note that applying the tactic in the subgoal package will give rise to the message “The subgoal
<label> is α-convertible to its goal”.

For example,

Tactic

{ k = 1 }
(∀ i :N×N• ∃i :N•i = 0 )
∧ (∀ j :N×N
• (∃k :N•k = Fst j )
∧ ∀j :N•j = k)

{ apple = 1 }
(∀ i• ∃ i ′• i ′ = 0 )
∧ (∀ apple
• (∃ carrot ′• carrot ′ = Fst apple)
∧ ∀ banana• banana = carrot)

rename tac
[(pj :N×Nq,"apple"),
(pj :Nq, "banana"),
(pk :Nq, "carrot")]

Uses In clarifying goals where the variable names clash or are unparseable or are inconvenient.

Errors

3007 ?0 is not a term variable

SML

val REPEAT N T : int −> TACTIC −> TACTIC ;
val REPEAT N : int −> TACTIC −> TACTIC ;

Description REPEAT N T n is a tactical which repeatedly applies its tactic argument
n times. Unlike REPEAT it fails if the tactic fails. If n is not greater than 0 then
REPEAT N T n tac is a tactic which has no effect.

REPEAT N is an alias for REPEAT N T .

Errors As for the tactic being repeated.
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SML

val REPEAT TTCL : THM TACTICAL −> THM TACTICAL;

Description REPEAT TTCL ttcl is a theorem tactical which applies ttcl repeatedly until it
fails.

Uses For use in programming theorem tacticals. As for the argument theorem tactic.

SML

val REPEAT T : TACTIC −> TACTIC ;
val REPEAT : TACTIC −> TACTIC ;

Description REPEAT T is a tactical which repeatedly applies its tactic argument until it fails.
This may cause an infinite loop of evaluation, or even no change, if the tactic fails on the first
application. REPEAT is an alias for REPEAT T .

SML

val REPEAT UNTIL T1 : (GOAL −> bool) −> TACTIC −> TACTIC ;
val REPEAT UNTIL1 : (GOAL −> bool) −> TACTIC −> TACTIC ;

Description REPEAT UNTIL1 T1 p tac is a tactical which repeatedly applies its tac until all
outstanding subgoals either satisfy the predicate p or cause tac to fail.

If the goal already satisfies p, then REPEAT UNTIL1 T1 p tac is a tactic which has no effect.

REPEAT UNTIL1 is an alias for REPEAT UNTIL1 T1 .
Example

REPEAT UNTIL1 (is or o snd) strip tac

will repeatedly apply strip tac until all outstanding subgoals have disjunctive conclusions or cause
strip tac to fail.

SML

val REPEAT UNTIL T : (TERM −> bool) −> TACTIC −> TACTIC ;
val REPEAT UNTIL : (TERM −> bool) −> TACTIC −> TACTIC ;

Description REPEAT UNTIL1 T p tac is a tactical which repeatedly applies its tac until all
outstanding subgoals either have conclusions which satisfy the predicate p or cause tac to fail.

If the conclusion of the goal already satisfies p, then REPEAT UNTIL1 T1 p tac is a tactic which
has no effect.

REPEAT UNTIL is an alias for REPEAT UNTIL T .
Example

REPEAT UNTIL is or strip tac

will repeatedly apply strip tac until all outstanding subgoals have disjunctive conclusions or cause
strip tac to fail.
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SML

val rewrite tac : THM list −> TACTIC ;
val pure rewrite tac : THM list −> TACTIC ;
val once rewrite tac : THM list −> TACTIC ;
val pure once rewrite tac : THM list −> TACTIC ;
val asm rewrite tac : THM list −> TACTIC ;
val pure asm rewrite tac : THM list −> TACTIC ;
val once asm rewrite tac : THM list −> TACTIC ;
val pure once asm rewrite tac : THM list −> TACTIC ;

Description These are the rewriting tactics. They use the canonicalisation rule held by the
current proof context (see, e.g., push pc) to preprocess the theorem list. The context is accessed
at the point when the rules are given a list of theorems.

If a tactic is “pure” then there is no default rewriting, otherwise the default rewriting conversion
net held by the current proof context will be used in addition to user supplied material.

If a tactic is “once” then rewriting will proceed from the root of the of the conclusion of the
theorem to be rewritten, towards the leaves, and will not descend through any rewritten subterm,
using ONCE MAP WARN C . If not, rewriting will continue, moving from the root to the
leaves, repeating if any rewriting is successful, until there is no rewriting redex anywhere within
the rewritten conclusion, using REWRITE MAP C . This may cause non-terminating looping.

If a tactic is “asm” then the theorems rewritten with will include the canonicalised asm ruled
assumptions of the goal.

Errors

26001 no rewriting occurred

Also as error 26003 and warning 26002 of REWRITE MAP C (q.v.).

SML

val rewrite thm tac : THM −> TACTIC ;
val pure rewrite thm tac : THM −> TACTIC ;
val once rewrite thm tac : THM −> TACTIC ;
val pure once rewrite thm tac : THM −> TACTIC ;
val asm rewrite thm tac : THM −> TACTIC ;
val pure asm rewrite thm tac : THM −> TACTIC ;
val once asm rewrite thm tac : THM −> TACTIC ;
val pure once asm rewrite thm tac : THM −> TACTIC ;

Description These are rewriting tactics parameterised to take only one theorem. This param-
eterisation is convenient to use with the many tactic generating functions, such as LEMMA T ,
which take a theorem tactic as an argument.

See, e.g. rewrite tac for the details of the differences between these tactics.

Errors

26001 no rewriting occurred

Errors will be reported as if they are from the corresponding tac: e.g. from rewrite tac rather
than rewrite thm tac. This allows a simple implementation, and for there to be no functionality
change even in errors between using singleton lists with the originals, and these functions. The
following warning indicates the result of, perhaps only some, of the rewriting was discarded.

Errors

26002 rewriting gave ill−formed results on some subterms
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SML

val ROTATE T : int −> TACTIC −> TACTIC ;

Description ROTATE T i tac is a tactic which first applies tac and, if this does not achieve
the goal, rotates the resulting subgoals by i places. i is taken modulo the number of subgoals
produced by tac.

Thus if the result of tac is:
Tactic

{ Γ } t
{ Γ1 } t1 ; ... { Γk } tk

tac

then the result of ROTATE T i t will be:
Tactic

{ Γ } t
{ Γ (i+1 ) } t(i+1 ); ..., { Γk } tk ;

{ Γ1 } t1 ; ... { Γi } ti

ROTATE T i tac

Uses For use in tactic programming to handle tactics which return their subgoals in an incon-
venient order for the task at hand.

Errors As for tac.

SML

val simple tac proof : (GOAL ∗ TACTIC ) −> THM ;

Description simple tac proof (gl , tac) applies the tactic tac to the goal gl , and, if the tactic
returns no unsolved subgoals returns the theorem proved by the tactic.

Infelicities in the coding of the tactic may cause the theorem returned to be rather different from
the specified goal (in general, a “successful” application of a correctly coded tactic will return a
theorem which may require addition of assumptions and α-conversion to give the desired goal).
tac proof should be used rather than simple tac proof if it is important that the theorem should
achieve the goal precisely.

Uses In programming tactics or other proof procedures where speed is important and the extra
care taken by tac proof is not required.

Errors

9501 the tactic returned unsolved subgoals: ?0
9502 evaluation of the tactic failed : ?0
9503 the proof returned by the tactic failed : ?0

See Also tac proof
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SML

val simple taut tac : TACTIC ;

Description A tautology prover. If the conclusion of the goal is a tautology then taut tac will
prove the goal. A tautology is taken to be any substitution instance of a term which is formed
from boolean variables, the constants T and F and the following connectives:

∧, ∨, ⇒, ⇔, ¬, if ... then ... else

and which is true for any assignment of truth values to the variables.

Tactic

{ Γ } t
simple taut tac

See Also strip tac

Errors

28121 Conclusion of the goal is not a tautology

SML

val simple ¬ in conv : CONV ;

Description This is a conversion which moves negations inside other predicate calculus con-
nectives using whichever of the following rules applies:

¬¬t = t
¬(t1 ∧ t2 ) = ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) = ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) = t1 ∧ ¬t2
¬(t1 ⇔ t2 ) = (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬(if a then t1 else t2 )

= (if a then ¬t1 else ¬t2 )
¬∀x•t = ∃x•¬t
¬∃x•t = ∀x•¬t
¬∃1 x•t= ∀x•¬(t ∧ ∀x ′•t [x ′] ⇒ x ′ = x )
¬T = F
¬F = T

It does not handle paired quantifiers.

Uses Tactic and conversion programming. The more general ¬ in conv is just as efficient as
simple ¬ in conv in cases where both succeed.

See Also strip tac

Errors

28131 No applicable rules for the term ?0
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SML

val simple ¬ in tac : TACTIC ;

Description This is a tactic which moves negations inside other predicate calculus connectives
using the following rules:

¬¬t → t
¬(t1 ∧ t2 ) → ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) → ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) → t1 ∧ ¬t2
¬(t1 ⇔ t2 ) → (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬∀x•t → ∃x•¬t
¬∃x•t → ∀x•¬t
¬∃1 x•t→ ∀x•¬(t ∧ ∀x ′•t [x ′] ⇒ x ′ = x )
¬T → F
¬F → goal solved

It fails with paired quantifiers.

Uses The more general ¬ in tac is just as efficient as simple ¬ in tac in cases where both
succeed.

See Also strip tac, contr tac, ¬ T , ¬ in tac

Errors

28025 No applicable rule for this goal

SML

val SIMPLE ¬ IN THEN : THM TACTICAL;

Description This is a theorem tactical which applies a given theorem tactic to the result of
transforming a theorem by moving a top level negation inside other predicate calculus connectives
using the following rules:

¬¬t → t
¬(t1 ∧ t2 ) → ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) → ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) → t1 ∧ ¬t2
¬(t1 ⇔ t2 ) → (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬∀x•t → ∃x•¬t
¬∃x•t → ∀x•¬t
¬∃1 x•t→ ∀x•¬(t ∧ ∀x ′•t [x ′] ⇒ x ′ = x )
¬T → F
¬F → T

The function may be partially evaluated with only its theorem tactic and theorem arguments. It
fails with paired quantifiers.

Uses The more general ¬ IN THEN is just as efficient as SIMPLE ¬ IN THEN in cases
where both succeed.

See Also strip tac, STRIP THM THEN

Errors

28026 No applicable rule for this theorem
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SML

val simple ∀ tac : TACTIC ;

Description Reduce a universally quantified goal. It fails with paired quantifiers.

Tactic

{ Γ } ∀ x • t [x ]
{ Γ } t [x ′]

simple ∀ tac

where x ′ is a variant name of x , different from any variable in Γ or t .

Uses Tactic programming. The more general ∀ tac is just as efficient as simple ∀ tac in cases
where both succeed.

See Also ∀ tac
Errors

28081 Goal is not of the form: { Γ } ∀ x • t [x ]

SML

val simple ∃ tac : TERM −> TACTIC ;

Description Provide a witness for an existential subgoal. It fails with paired quantifiers.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } ∃ x • t2 [x ]
{ Γ } t2 [t1 ]

simple ∃ tac
pt1q

where t1 must have the same type as x .

Uses Tactic programming. The more general ∃ tac is just as efficient as simple ∃ tac in cases
where both succeed.
Errors

28091 Goal is not of the form: { Γ } ∃ x • t2 [x ]
28092 Term ?0 has the wrong type
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SML

val SIMPLE ∃ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical which applies a given theorem tactic to the result of eliminating
the outermost quantifier from a theorem of the form Γ`∃x•t . It fails with paired quantifiers.

SIMPLE ∃ THEN thmtac (Γ ` ∃x•t) = thmtac (Γ ` t [x ′/x ])

where px’q is a variant of pxq which does not appear in Γ or in the assumption or conclusion of
the goal. The function is partially evaluated with only the theorem tactic and theorem arguments.

Uses Tactic programming. Note that the more general ∃ THEN is just as efficient as
SIMPLE ∃ THEN in cases where both succeed.

Error 28094 normally arises when px ′q is also introduced by the proof of ttac, and occurs during
the application of the proof of SIMPLE ∃ THEN . The bound variable pxq should be renamed to
something that doesn’t cause this identification of distinct variables, by using rename tac(q.v.).

See Also ∃ THEN
Errors

28093 ?0 is not of the form: ‘Γ ` ∃ x • t‘
28094 Error in proof of SIMPLE ∃ THEN .

Usually indicates chosen skolem variable ?0 also
introduced by proof of supplied theorem tactic,
which gave ‘?1‘, and the two became identified :
use rename tac to rename original bound variable ?2

SML

val simple ∃1 conv : CONV ;

Description This is a conversion which turns a unique existential quantifier into an equivalent
existential quantifier

Conversion

` (∃1 x•t [x ]) ⇔
(∃x•t [x ] ∧ ∀x ′•t [x ′] ⇒ x ′ = x )

simple ∃1 conv
p∃1 x•tq

Uses Tactic and conversion programming. The more general ∃ 1 conv is just as efficient as
simple ∃ 1 conv in cases where both succeed.

See Also strip tac

Errors

4019 ?0 is not of form: p∃1 v• tq
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SML

val simple ∃1 tac : TERM −> TACTIC ;

Description Simplify a unique existentially quantified goal with a particular witness. It fails
with paired quantifiers.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } simple ∃1 x • P [x ]
{ Γ } P [t ];

{ Γ } ∀ x ′ • P [x ′] ⇒ x ′ = t

simple ∃1 tac1
ptq

where x ′ is a variant of x which does not occur free in t .

Uses Tactic programming. The more general ∃ 1 tac is just as efficient as simple ∃ 1 tac in
cases where both succeed.
Errors

28101 Goal is not of the form: { Γ } ∃1 x • P [x ]
28092 Term ?0 has the wrong type

SML

val SIMPLE ∃1 THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical which applies a given theorem tactic to the result of eliminating
the outermost quantifier from a theorem of the form Γ`∃ 1x•t . It fails with paired quantifiers.

SIMPLE ∃1 THEN thmtac (Γ ` ∃1 x•t) =
thmtac (Γ ` t [x ′/x ] ∧ ∀x ′′•P [x ′′] ⇒ x ′′ = x )

where px’q and px”q are distinct variants of pxq which do not appear free in Γ or in the assump-
tions or conclusion of the goal.

Uses Tactic programming. The more general ∃1 THEN is just as efficient as SIMPLE -
∃1 THEN in cases where both succeed.

Errors

28102 ?0 is not of the form: ‘Γ ` ∃1 x • t‘

SML

val SOLVED T : TACTIC −> TACTIC ;

Description SOLVED T tac is a tactic which applies tac to the goal and fails if it does not
solve the goal. I.e. it fails unless the tactic returns an empty list of subgoals.

SOLVED T does not check that the proof delivered by the tactic is valid. tac proof may be used
to achieve this type of effect.

Uses Tactic programming, for when a tactic that fails to prove a goal is likely to leave an untidy
goal state.

See Also tac proof

Errors

9602 the tactic did not solve the goal
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SML

val spec asm tac : TERM −> TERM −> TACTIC ;
val list spec asm tac : TERM −> TERM list −> TACTIC ;
val spec nth asm tac : int −> TERM −> TACTIC ;
val list spec nth asm tac : int −> TERM list −> TACTIC ;

Description These are four methods of specialising assumptions, differing by single or lists of
values to specialise to, and in the method of selection of the assumption. All of them leave the
old assumption in place, and place the instantiated assumption onto the assumption list using
strip asm tac. If the desired behaviour differs from any of those supplied then use GET ASM T
and its cousins to create the desired functionality.

Tactic

{ Γ , p∀ vs[x1 ′,...] • f [x1 ′,...]q } t
{strip pf [t1 ,...]q, Γ ,

p∀ vs[x1 ,...] • f [x1 ,...]q} t1

spec asm tac
p∀ vs[x1 ,...] • f [x1 ,...]q
ptmq

The following all handle paired abstractions in a similar manner.

Tactic

{ Γ , p∀ x1 ... • f [x1 ,...]q } t
{strip pf [t1 ,...]q, Γ ,

p∀ x1 x2 ... • f [x1 ,...]q,
} t

list spec asm tac
p∀ x1 ... • f [x1 ,...]q
[pt1q,pt2q,...]

Tactic

{ Γ1 ...n−1 , p∀ x ′ • f [x ′]q, Γ} t1
{strip pf [t2 ]q, Γ1 ...n−1 ,

p∀ x ′ • f [x ′]q,
Γ} t1

spec nth asm tac
n
pt2q

Tactic

{ Γ1 ...n−1 , p∀ x1 ...• f [x1 ,...]q, Γ} t
{strip pf [t1 ,...]q, Γ1 ...n−1 ,

p∀ x1 ...• f [x1 ,...]q,
Γ} t

list spec nth asm tac
n
[pt1q,...]

Definitions

fun spec asm tac asm instance =
GET ASM T asm (strip asm tac o ∀ elim instance);

fun list spec asm tac asm instances =
GET ASM T asm (strip asm tac o list ∀ elim instances);

fun spec nth asm tac n instance =
GET NTH ASM T n (strip asm tac o ∀ elim instance);

fun list spec nth asm tac n instances =
GET NTH ASM T n (strip asm tac o list ∀ elim instances);

Errors As the constituents of the implementing functions.
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SML

val SPEC ASM T : TERM −> TERM −> (THM −> TACTIC ) −> TACTIC ;
val LIST SPEC ASM T : TERM −> TERM list −> (THM −> TACTIC )

−> TACTIC ;
val SPEC NTH ASM T : int −> TERM −> (THM −> TACTIC ) −> TACTIC ;
val LIST SPEC NTH ASM T : int −> TERM list −> (THM −> TACTIC )

−> TACTIC ;

Description These are four methods of specialising assumptions, differing by single or lists of
values to specialise to, and in the method of selection of the assumption. All of them leave the old
assumption in place, and place the instantiated assumption onto the assumption list using their
theorem tactic. If the desired behaviour differs from any of those supplied then use GET ASM T
and its cousins to create the desired functionality.

Tactic

{ Γ , p∀ vs[x1 ′,...] • f [x1 ′,...]q } t
thm tac (asm rule pf [t1 ,...]q)
{Γ ,p∀ vs[x1 ,...] • f [x1 ,...]q} t1

SPEC ASM T
p∀ vs[x1 ,...] • f [x1 ,...]q
ptmq
thm tac

The following all handle paired abstractions in a similar manner.

Tactic

{ Γ , p∀ x1 x2 ... • f [x1 ,x2 ,...]q } t
thm tac (asm rule pf [t1 ,t2 ,...]q)
{Γ ,p∀ x1 x2 ... • f [x1 ,x2 ,...]q} t

LIST SPEC ASM T
p∀ x1 x2 ... • f [x1 ,x2 ,...]q
[pt1q,pt2q,...]
thm tac

Tactic

{ Γ1 ...n−1 , p∀ x ′ • f [x ′]q, Γ} t1
thm tac (asm rule pf [t2 ]q)

{Γ1 ...n−1 ,p∀ x ′ • f [x ′]q,Γ} t1

SPEC NTH ASM T
n
pt2q
thm tac

Tactic

{ Γ1 ...n−1 , p∀ x1 ...• f [x1 ,...]q, Γ} t
thm tac (asm rule pf [t1 ,...]q)

{Γ1 ...n−1 ,p∀ x1 ...• f [x1 ,...]q, Γ}
t

LIST SPEC NTH ASM T
n
[pt1q,...]
thm tac

Definitions

fun SPEC ASM T asm instance thmtac =
GET ASM T asm (thmtac o ∀ elim instance);

fun LIST SPEC ASM T asm instances thmtac =
GET ASM T asm (thmtac o list ∀ elim instances);

fun SPEC NTH ASM T n instance thmtac =
GET NTH ASM T n (thmtac o ∀ elim instance);

fun LIST SPEC NTH ASM T n instances thmtac =
GET NTH ASM T n (thmtac o list ∀ elim instances);

Errors As the constituents of the implementing functions.
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SML

val step strip tac : TACTIC ;
val step strip asm tac : THM −> TACTIC ;

Description These functions provide methods of single-stepping through the application of
strip tac and strip asm tac (q.v.).

When stripping the antecedent of an implication ,or a theorem, into the assumption list strip tac
and strip asm tac respectively do all their stripping in one application of the tactic. This is not
appropriate behaviour when:

1. Explaining the detailed behaviour of these functions by example applications.

2. Attempting to “debug” a failed or inappropriate stripping.

3. When a partial strip into the assumption list is desired.

The two functions provided give a single-step stripping of antecedents and theorems. They repre-
sent sets of objects that are partially stripped into the assumption list by making the conclusion
of the resulting goal an implication with the antecedent being the conjunction of the partially
stripped objects and the consequent being the unstripped part of the goal. Repeated use of
the provided functions closely corresponds to the processing order and effect of strip tac and
strip asm tac. Under certain unusual circumstances the match may not be exact.

Example

`? ((a ∨ b) ∧ c) ⇒ ((a ∧ c) ∨ (b ∧ c))
Single steps to:
`? (a ∧ c) ⇒ ((a ∧ c) ∨ (b ∧ c))
and `? (b ∧ c) ⇒ ((a ∧ c) ∨ (b ∧ c))
Each single step to:
a `? c ⇒ ((a ∧ c) ∨ (b ∧ c))
and b `? c ⇒ ((a ∧ c) ∨ (b ∧ c))
Each single step to:
a, c `? ⇒ ((a ∧ c) ∨ (b ∧ c))
and b, c `? ⇒ ((a ∧ c) ∨ (b ∧ c))

These five steps (two on each branch) map onto one call of strip tac.

Errors

28003 There is no stripping technique for ?0 in the current proof context
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SML

val strip asm tac : THM −> TACTIC ;

Description strip asm tac is a general purpose tactic for splitting a theorem up into useful
pieces using a range of simplification techniques, including a parameterised part, before using it
to increase the stock of assumptions.

First, before attempting to use the transformations below, strip asm tac uses the current proof
context’s theorem stripping conversion to attempt to rewrite the outermost connective in the
theorem.

Then the following simplification techniques will be tried. Using sat as an abbreviation for
strip asm tac:

sat (` a ∧ b) → sat (` a) THEN sat (` b)
sat (∃x•a) → sat (a[x ′/x ] ` a[x ′/x ])
sat (` a ∨ b)({Γ} t) → sat (a ` a) ({Γ} t) ; sat (b ` b) ({Γ} t)

I.e. strip asm tac does a case split resulting in two subgoals when it processes a disjunction.

After all of the available simplification techniques have been attempted strip asm tac then pro-
ceeds as check asm tac (q.v.) to use the simplified theorem either to prove the goal or to generate
additional assumptions.

See Also STRIP THM THEN , used to implement this function. check asm tac, strip tac,
strip asm conv .

SML

val strip concl conv : CONV ;
val strip asm conv : CONV ;

Description strip concl conv tm; applies the conclusion stripping conversion from the current
proof context, to rewrite the outermost connective in the term tm.

strip asm conv tm; applies the assumption stripping conversion from the current proof context,
to rewrite the outermost connective in the term tm.
Errors

28003 There is no stripping technique for ?0 in the current proof context
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SML

val strip concl tac : TACTIC ;
val strip tac : TACTIC ;

Description strip concl tac, more usually known by its alias, strip tac, is a general purpose
tactic for simplifying away the outermost connective of a goal. It first tries to apply the conclusion
stripping conversion from the current proof context, to rewrite the outermost connective in the
goal. If that conversion fails, tries to simplify the goal by applying an applicable member of the
following collection of tactics (only one could possibly apply):

simple ∀ tac, ∧ tac,
⇒ T strip asm tac, t tac

Failing either being successful, it tries concl in asms tac to prove the goal, and failing that,
returns the error message below.

Note how new assumptions generated by the tactic are processed using strip asm tac, which
uses the current proof context’s theorem stripping conversion. strip tac may produce several new
subgoals, or may prove the goal.

REPEAT strip tac in the proof context “basic hol” (amongst others) will prove all tautologies
automatically. It will, however, not succeed in proving some substitution instances of tautologies
involving positive and negative instances of a quantified subterm.

Uses This is the usual way of simplifying a goal involving predicate calculus connectives, and
other functions “understood” by the current prof context.

See Also STRIP T and STRIP THM THEN which are used to implement this function.
taut tac for an alternative simplifier. swap ∨ tac to rearrange the conclusion for tailored strip-
ping. Also strip concl conv , strip asm conv .

Errors

28003 There is no stripping technique for ?0 in the current proof context

SML

val STRIP CONCL T : (THM −> TACTIC ) −> TACTIC ;
val STRIP T : (THM −> TACTIC ) −> TACTIC ;

Description STRIP CONCL T ttac is a general purpose way of stripping goals and passing
any new assumptions generated by the stripping to a tactic generating function, ttac. STRIP -
CONCL T attempts to apply the conversion held for it in the current proof context to rewrite

the goal. The conversion is extracted from the current proof context by current ad sc conv . If
that fails it attempts to apply one of the following list of tactics (in order):

simple ∀ tac, ∧ tac, ⇒ T ttac, t tac

If none of the above apply it tries concl in asms tac, and failing that, return the error message
below.

The conversion in the current proof context held by current ad sc conv (q.v.) is derived by
applying eqn cxt conv to an equational context in the proof context, extracted by get sc eqn cxt .

STRIP T is an alias for STRIP CONCL T .

Uses Tactic programming.

See Also strip asm tac, strip tac, strip concl conv .

Errors

28003 There is no stripping technique for ?0 in the current proof context
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SML

val STRIP THM THEN : THM TACTICAL;

Description STRIP THM THEN provides a general purpose way of stripping theorems into
primitive constituents before using them in a tactic proof. STRIP THM THEN attempts to
apply the conversion held for the function in the current proof context, which is extracted by
current ad st conv . to rewrite the theorem. If that fails it attempts to apply a theorem tactical
from the following list (in order):

∧ THEN , ∨ THEN , SIMPLE ∃ THEN

The conversion in the current proof context got by current ad st conv (q.v.) is derived by
applying eqn cxt conv to an equational context in the proof context extracted by get st eqn cxt .

The function is partially evaluated with only the theorem tactic and theorem arguments.

Uses Tactic programming.

See Also strip asm tac, strip tac.

Errors

28003 There is no stripping technique for ?0 in the current proof context

SML

val swap asm concl tac : TERM −> TACTIC ;
val swap nth asm concl tac : int −> TACTIC ;

Description Strip the negation of current goal into the assumption list and make an as-
sumption, suitably negated, into the current goal. If the simplifications it does are ignored,
swap asm concl tac asmis equivalent to

Example

contr tac THEN asm ante tac asm

and swap nth asm concl tac nis equivalent to

Example

contr tac THEN DROP NTH ASM T n ante tac

Tactic

{ Γ , pt1q } t2
{strip p¬ t2q, Γ} ¬ t1

swap asm concl tac
pt1q

Tactic

{ pt1q, ..., ptmq,..., ptnq} t
{strip p¬ tq, pt1q,..., ptnq} ¬ tm

swap nth asm concl tac
m

If the assumption is a negated term then the double negation will be eliminated.

See Also Other swap and SWAP functions.

Errors

9303 the index ?0 is out of range
28052 Term ?0 is not in the assumptions
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SML

val SWAP ASM CONCL T : TERM −> (THM −> TACTIC ) −> TACTIC ;
val SWAP NTH ASM CONCL T : int −> (THM −> TACTIC ) −> TACTIC ;

Description Process the negation of current goal with the supplied theorem tactic and make
an assumption, suitably negated, into the current goal. If the simplifications it does are ignored,
SWAP ASM CONCL T asm ttacis equivalent to

Example

CONTR T (fn x => asm ante tac asm THEN ttac x )

and SWAP NTH ASM CONCL T n ttacis equivalent to

Example

CONTR T (fn x => (DROP NTH ASM T n ante tac) THEN ttac x )

Tactic

{ Γ , pt1q } t2
ttac(asm rule p¬t2q )({Γ} ¬ t1 )

SWAP ASM CONCL T
pt1q
ttac

Tactic

{ pt1q, ..., ptmq, ..., ptnq} t
ttac(asm rule p¬tq )

({pt1q, ..., ptnq} ¬ tm)

SWAP NTH ASM CONCL T
m
ttac

If the assumption is a negated term then the double negation will be eliminated.

See Also Other swap and SWAP functions.

Errors

9303 the index ?0 is out of range
28027 Conclusion of goal does not have type p:BOOLq
28052 Term ?0 is not in the assumptions

SML

val swap ∨ tac : TACTIC ;

Description Interchange the disjuncts of a disjunctive goal.

Tactic

{ Γ } a ∨ b
{ Γ } b ∨ a

swap ∨ tac

Uses For use in conjunction with strip tac (q.v.) when the reduction of {Γ}a∨b to {¬a,Γ}b
is inappropriate.

See Also ∨ left tac, ∨ right tac, swap ∨ tac, strip tac

Errors

28041 Goal is not of the form: { Γ } a ∨ b
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SML

val tac proof : (GOAL ∗ TACTIC ) −> THM ;

Description tac proof (gl , tac) applies the tactic tac to the goal gl , and, if the tactic succeeds
in proving the goal returns the resulting theorem.

tac proof performs α-conversion, introduces additional assumptions, and reorders assumptions
as necessary to ensure that the theorem returned has the same form as the specified goal (note
that this is not possible if the goal has α-equivalent assumptions). In circumstances where these
adjustments are known not to be necessary, simple tac proof may be used to avoid the overhead.

Uses The subgoal package is the normal interactive mechanism for developing proofs using
tactics. tac proof is typically used in tactic programming and other proof procedures, in cases
where it is necessary to ensure that the correct goal is proved.

Errors

9501 the tactic returned unsolved subgoals: ?0
9502 evaluation of the tactic failed : ?0
9503 the proof returned by the tactic failed : ?0
9504 the proof returned by the tactic proved ?0 which could not be

converted into the desired goal .
9505 the goal contains alpha−equivalent assumptions (?0 and ?1 )
9506 the assumption ?0 is not of type p:BOOLq
9507 the conclusion ?0 is not of type p:BOOLq

See Also simple tac proof , prove thm.

SML

val taut conv : CONV ;

Description A tautology prover. A tautology is taken to be any universally quantified substi-
tution instance of a term which is formed from boolean variables, the constants T and F and the
following connectives:

∧, ∨, ⇒, ⇔, ¬, if ... then ... else

and which is true for any assignment of truth values to the variables. If its argument is a
tautologically true term, then the function will return a theorem that the term is equivalent
to T .
Conversion

` t ⇔ T
taut conv
ptq

See Also taut tac, taut rule, simple taut tac.

Errors

27037 ?0 is not tautologically true
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SML

val taut rule : TERM −> THM ;

Description A tautology prover. A tautology is taken to be any universally quantified substi-
tution instance of a term which is formed from boolean variables, the constants T and F and the
following connectives:

∧, ∨, ⇒, ⇔, ¬, if ... then ... else

and which is true for any assignment of truth values to the variables. If its argument is such a
tautology then the function will return that term as a theorem.

Rule

` t
taut rule
ptq

See Also taut tac, taut conv , simple taut tac.

Errors

27037 ?0 is not tautologically true

SML

val taut tac : TACTIC ;

Description A tautology prover. If the conclusion of the goal is a tautology then taut tac
will prove the goal. A tautology is taken to be any (perhaps universally quantified) substitution
instance of a term which is formed from boolean variables, the constants T and F and the following
connectives:

∧, ∨, ⇒, ⇔, ¬, if ... then ... else

and which is true for any assignment of truth values to the variables.

Tactic

{ Γ } t
taut tac

See Also strip tac, taut rule, taut conv , simple taut tac.

Errors

29020 Conclusion of the goal is not a universally quantified tautology

SML

val THEN LIST T : (TACTIC ∗ TACTIC list) −> TACTIC ;
val THEN LIST : (TACTIC ∗ TACTIC list) −> TACTIC ;

Description THEN LIST T is a tactical used as an infix operator. tac THEN LIST T tlist
is a tactic that applies tac, and then applies the first member of tlist to the first resulting subgoal,
the second to the second, etc. If there are not the correct number of tactics in the list then an
error will be raised. THEN LIST is an alias for THEN LIST T .
Errors

9101 number of tactics must equal the number of subgoals

As failures of the initial tactic or the tactics in the list.
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SML

val THEN T1 : (TACTIC ∗ TACTIC ) −> TACTIC ;
val THEN1 : (TACTIC ∗ TACTIC ) −> TACTIC ;

Description THEN T1 is a tactical used as an infix operator. tac1 THEN T1 tac2 is the
tactic that applies tac1 and then applies tac2 to the first of the resulting subgoals and id tac to
any other subgoals. If tac1 returns no subgoals, then nor will tac1 THEN T1 tac2 . THEN1 is
an alias for THEN T1 .

It is intended for use in conjunction with induction tactics or tactics like lemma tac for which
the first subgoal (i.e., the base case of the induction or the lemma) often has a simple proof.

See Also THEN

Errors As the errors of tac1 and tac2 .

SML

val THEN TRY LIST T : (TACTIC ∗ TACTIC list) −> TACTIC ;
val THEN TRY LIST : (TACTIC ∗ TACTIC list) −> TACTIC ;

Description THEN TRY LIST T is a tactical used as an infix operator. tac THEN TRY -
LIST T tlist is a tactic that applies tac, and then attempts to apply the first member of tlist to

the first resulting subgoal, the second to the second, etc. If there are not the correct number of
tactics in the list then an error will be raised. If any member of tlist fails on a particular subgoal,
then that subgoal is returned unchanged. THEN LIST is an alias for THEN LIST T .

Errors

9101 number of tactics must equal the number of subgoals

As failures of the initial tactic.

SML

val THEN TRY TTCL : (THM TACTICAL ∗ THM TACTICAL) −>
THM TACTICAL;

Description THEN TRY TTCL is a theorem tactical combinator. It is an infix operator
which applies the first theorem tactical, and then, if it succeeds, the second theorem tactical,
using only the first result if the second fails.

Uses For use in programming theorem tacticals.

SML

val THEN TRY T : (TACTIC ∗ TACTIC ) −> TACTIC ;
val THEN TRY : (TACTIC ∗ TACTIC ) −> TACTIC ;

Description THEN TRY T is a tactical used as an infix operator. tac1 THEN TRY T tac2
is the tactic that applies tac1 and then attempts to apply tac2 to each resulting subgoal (perhaps
none). If tac2 fails on any particular subgoal then that subgoal will be unchanged from the result
of tac1 . If tac1 fails then the overall tactic fails. THEN TRY is an alias for THEN TRY T .

Errors As the errors of tac1 .

SML

val THEN TTCL : (THM TACTICAL ∗ THM TACTICAL) −> THM TACTICAL;

Description THEN TTCL is a theorem tactical combinator. It is an infix operator which
composes two theorem tacticals using ordinary function composition:

(tcl1 THEN TTCL tcl2 ) thmtac thm = (tcl1 o tcl2 ) thmtac thm

Uses For use in programming theorem tacticals.
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SML

val THEN T : (TACTIC ∗ TACTIC ) −> TACTIC ;
val THEN : (TACTIC ∗ TACTIC ) −> TACTIC ;

Description THEN T is a tactical used as an infix operator. tac1 THEN T tac2 is the tactic
that applies tac1 and then applies tac2 to each resulting subgoal (perhaps none). THEN is an
alias for THEN T .

Errors As the errors of tac1 and tac2 .

SML

val TOP ASM T : (THM −> TACTIC ) −> TACTIC ;

Description If the top entry in the assumption list is asm say, TOP ASM T thmtac acts as
thmtac(asm`asm).

Tactic

{ asm, Γ } t
thmtac (asm ` asm) ({ asm, Γ } t)

TOP ASM T
pasmq
thmtac

Uses To use an assumption as a theorem

Errors

9302 the assumption list is empty

SML

val TRY TTCL : THM TACTICAL −> THM TACTICAL;

Description TRY TTCL ttcl is a theorem tactical which applies ttcl if it can, and otherwise
acts as ID THEN .

Uses For use in programming theorem tacticals.

SML

val TRY T : TACTIC −> TACTIC ;
val TRY : TACTIC −> TACTIC ;

Description TRY T tac is a tactic which applies tac to the goal and if that fails leaves the
goal unchanged. It is the same as tac ORELSE id tac. TRY is an alias for TRY T .

SML

val t tac : TACTIC ;

Description Prove a goal with conclusion ‘T ’.

Tactic

{ Γ } T
t tac

See Also strip tac, taut tac.

Uses Tactic programming.

Errors

28011 Goal does not have the form {Γ}T
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SML

val var elim asm tac : TERM −> TACTIC ;
val var elim nth asm tac : int −> TACTIC ;
val VAR ELIM ASM T : TERM −> (THM −> TACTIC ) −> TACTIC ;
val VAR ELIM NTH ASM T : int −> (THM −> TACTIC ) −> TACTIC ;

Description These tactics and tacticals do variable elimination with a chosen assumption of
the goal. They take an assumption of the form: pvar = valueq or pvalue = varq, where var is
a variable and, if the subterm value does not contain var free, they substitute value for the free
variable var throughout the goal (discarding the original assumption).

If an assumption is an equation of variables, then the tactic will strip digits and the current variant
suffix from the right of the two variable names, and will choose to eliminate the variable with
the shortest remaining name string, taking eliminating the left hand side variable if the strings
are of equal length (this is a heuristic). If the variables are the same then the assumption is just
discarded with no further effect.

var elim asm tac will determine whether its term argument is an assumption of the above form.
If so, it will substitute for the free variable var with value throughout the goal, stripping any
changed assumptions back into the goal (returning the rest by check asm tac), and then discard
the original assumption. VAR ELIM ASM T allows the users choice of function to be applied
to the modified assumptions.

var elim nth asm tac works as var elim asm tac, except it takes an integer indicating the “nth”
assumption is to be used. VAR ELIM NTH ASM T allows the users choice of function to be
applied to the modified assumptions.

See Also all var elim asm tac1 and its kin to apply this sort of functionality to all the as-
sumptions simultaneously. prop eq prove tac for more sophisticated approach to these kinds of
problems.

Errors

9301 the term ?0 is not in the assumption list
9303 the index ?0 is out of range
29027 ?0 is not of the form pvar = ...q or p... = varq where

the variable pvarq is not free in p...q

SML

val ⇔ T2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −> TACTIC ;

Description Reduce a bi-implication by passing the operands to tactic generating functions.

Tactic

{ Γ } t1 ⇔ t2
ttac1{ t1 , Γ } ` t2 ; ttac2{ t2 , Γ } ` t1

⇔ T2
ttac1 ttac2

See Also ⇔ T , STRIP CONCL T

Errors

28061 Goal is not of the form: { Γ } t1 ⇔ t2
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SML

val ⇔ tac : TACTIC ;

Description Reduce a bi-implication to two subgoals.

Tactic

{ Γ } t1 ⇔ t2
{strip t1 , Γ } ` t2 ; {strip t2 , Γ } ` t1

⇔ tac

See Also strip tac, ⇔ T

Errors

28061 Goal is not of the form: { Γ } t1 ⇔ t2

SML

val ⇔ THEN2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −>
(THM −> TACTIC );

Description A theorem tactical to apply given theorem tactics to the the result of eliminating
⇔ from a theorem of the form Γ`t1⇔t2 .

⇔ THEN2 ttac1 ttac2 (Γ ` t1 ⇔ t2 ) = ttac1 (Γ ` t1 ⇒ t2 ) THEN ttac2 (Γ ` t2 ⇒ t1 )

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also ⇔ THEN , STRIP THM THEN

Errors

28062 ?0 is not of the form: ‘Γ ` t1 ⇔ t2‘

SML

val ⇔ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to apply a given theorem tactic to the result of eliminating ⇔
from a theorem of the form Γ ` t1 ⇔ t2 .

⇔ THEN thmtac (Γ ` t1 ⇔ t2 ) = thmtac (Γ ` t1 ⇒ t2 ) THEN thmtac (Γ ` t2 ⇒ t1 )

The function is partially evaluated with only the theorem tactic and theorem arguments.

See Also ⇔ THEN2 , STRIP THM THEN

Errors

28062 ?0 is not of the form: ‘Γ ` t1 ⇔ t2‘

SML

val ⇔ t tac : TACTIC ;

Description Simplifies a goal of the form: ...⇔T or T⇔....

Tactic

{ Γ } t ⇔ T
{ Γ } t

⇔ t tac

and
Tactic

{ Γ } T ⇔ t
{ Γ } t

⇔ t tac

Errors

28012 Goal not of form: { Γ } t ⇔ T or { Γ } T ⇔ t

See Also strip tac

Uses Tactic programming.
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SML

val ⇔ T : (THM −> TACTIC ) −> TACTIC ;

Description Reduce a bi-implication by passing each operand to a tactic generating function.

Tactic

{ Γ } t1 ⇔ t2
ttac{ t1 , Γ } ` t2 ; ttac{ t2 , Γ } ` t1

⇔ T
ttac

See Also ⇔ T2 , STRIP CONCL T

Errors

28061 Goal is not of the form: { Γ } t1 ⇔ t2

SML

val ∧ tac : TACTIC ;

Description Reduce the proof of a conjunction to the proof of its conjuncts.

Tactic

{ Γ } t1 ∧ t2
{ Γ } t1 ; { Γ } t2

∧ tac

See Also strip tac

Errors

28031 Goal is not of the form: { Γ } t1 ∧ t2

SML

val ∧ THEN2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to apply given theorem tactics to the conjuncts of a theorem
of the form Γ`t1∧t2 .

∧ THEN2 thmtac1 thmtac2 (Γ ` t1 ∧ t2 ) = thmtac1 (Γ ` t1 ) THEN thmtac2 (Γ ` t2 )

See Also ∧ THEN , STRIP THM THEN

Errors

28032 ?0 is not of the form: ‘Γ ` t1 ∧ t2‘

SML

val ∧ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to apply a given theorem tactic to the conjuncts of a theorem
of the form Γ`t1∧t2 .

∧ THEN thmtac (Γ ` t1 ∧ t2 ) = thmtac (Γ ` t1 ) THEN thmtac (Γ ` t2 )

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also ∧ THEN2 , STRIP THM THEN

Errors

28032 ?0 is not of the form: ‘Γ ` t1 ∧ t2‘
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SML

val ∨ left tac : TACTIC ;

Description Take the left disjunct of the current goal as the subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } a ∨ b
{ Γ } a

∨ left tac

See Also ∨ left tac, swap ∨ tac, strip tac

Errors

28041 Goal is not of the form: { Γ } a ∨ b

SML

val ∨ right tac : TACTIC ;

Description Take the right disjunct of the current subgoal as the new subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } a ∨ b
{ Γ } b

∨ right tac

See Also ∨ right tac, swap ∨ tac, strip tac

Errors

28041 Goal is not of the form: { Γ } a ∨ b

SML

val ∨ THEN2 : (THM −> TACTIC ) −> (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to perform a case split on a given disjunctive theorem applying
tactic generating functions to the extra assumption in each branch.

∨ THEN2 ttac1 ttac2 (∆ ` t1 ∨ t2 ) ({Γ} t) =
ttac1 (t1 ` t1 ) ({Γ} t); ttac2 (t2 ` t2 )({Γ} t)

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also STRIP THM THEN , ∨ THEN

Errors

28042 ?0 is not of the form: ‘Γ ` t1 ∨ t2‘

SML

val ∨ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to perform a case split on a given disjunctive theorem applying
a tactic generating function to the extra assumption in each branch.

∨ THEN ttac (∆ ` t1 ∨ t2 ) ({Γ} t) = ttac (t1 ` t1 ) ({Γ} t); ttac (t2 ` t2 )({Γ} t)

The function may be partially evaluated with only its theorem tactic and theorem arguments.

See Also STRIP THM THEN , ∨ THEN2

Errors

28042 ?0 is not of the form: ‘Γ ` t1 ∨ t2‘
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SML

val ¬ elim tac : TERM −> TACTIC ;

Description Proof by showing assumptions give rise to two contradictory subgoals.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } t2
{ Γ } t1 ; { Γ } ¬ t1

¬ elim tac
pt1q

The function may be partially evaluated with only its term argument.

Uses In tactic programming. If an assumption has its negation also in the assumption list this
will make for a rapid proof. asm ante tac t1 THEN strip tac is a more memorable idiom for
handling such a case in interactive use but is a little slower.

See Also strip tac

Errors

28022 ?0 is not boolean

SML

val ¬ in conv : CONV ;

Description This is a conversion which moves a top level negation inside other predicate cal-
culus connectives using whichever one of the following rules applies:

¬¬t = t
¬(t1 ∧ t2 ) = ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) = ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) = t1 ∧ ¬t2
¬(t1 ⇔ t2 ) = (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬(if a then t1 else t2 )

= (if a then ¬t1 else ¬t2 )
¬∀vs•t = ∃vs•¬t
¬∃vs•t = ∀vs•¬t
¬∃1 vs•t = ∀vs•¬(t ∧ ∀vs ′•t [vs ′] ⇒ vs ′ = vs)
¬T = F
¬F = T

Uses Tactic and conversion programming.

See Also simple ¬ in conv , ¬ in tac

Errors

28131 No applicable rules for the term ?0
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SML

val ¬ in tac : TACTIC ;

Description This is a tactic which moves a top level negation in the conclusion of the goal
inside other predicate calculus connectives using the following rules:

¬¬t → t
¬(t1 ∧ t2 ) → ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) → ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) → t1 ∧ ¬t2
¬(t1 ⇔ t2 ) → (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬∀vs•t → ∃vs•¬t
¬∃vs•t → ∀vs•¬t
¬∃1 vs•t → ∀vs•¬(t ∧ ∀vs ′•t [vs ′] ⇒ vs ′ = vs)
¬T → F
¬F → T

Uses

See Also simple ¬ in tac, ¬ in conv

Errors

28025 No applicable rule for this goal

SML

val ¬ IN THEN : THM TACTICAL;

Description This is a theorem tactical which applies a given theorem tactic to the result of
transforming a theorem by moving a top level negation inside other predicate calculus connectives
using the following rules:

¬¬t → t
¬(t1 ∧ t2 ) → ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) → ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) → t1 ∧ ¬t2
¬(t1 ⇔ t2 ) → (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬∀vs•t → ∃vs•¬t
¬∃vs•t → ∀vs•¬t
¬∃1 vs•t → ∀vs•¬(t ∧ ∀vs ′•t [vs ′] ⇒ vs ′ = vs)
¬T → F
¬F → T

This function partially evaluates given only the theorem and theorem-tactical.

See Also SIMPLE ¬ IN THEN
Errors

29010 No applicable rule for ?0
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SML

val ¬ rewrite canon : THM −> THM list
val ∀ rewrite canon : THM −> THM list

Description These are some of the standard canonicalisation functions used for breaking the-
orems up into lists of equations for use in rewriting. They four perform the following transforma-
tions:

¬ rewrite canon (Γ ` ¬(t1 ∨ t2 )) = (Γ ` ¬t1 ∧ ¬t2 )
¬ rewrite canon (Γ ` ¬∃vs•t) = (Γ ` ∀vs•¬t)
¬ rewrite canon (Γ ` ¬¬t) = (Γ ` t)
¬ rewrite canon (Γ ` ¬t) = (Γ ` t ⇔ F )
∀ rewrite canon (Γ ` ∀vs•t) = Γ ` t

See Also simple ¬ rewrite canon, simple ∀ rewrite canon.

Errors

26201 Failed as requested

The area given by the failure will be fail canon.

SML

val ¬ T2 : TERM −> (THM −> TACTIC ) −> (THM −> TACTIC ) −> TACTIC ;

Description A form of proof by contradiction using two theorem tactics to simplify the sub-
goals.

Note that strip tac may be used to push a negation inside other logical connectives, which is often
the best way of handling a negated goal.

Tactic

{ Γ } ¬t2
ttac1 (t2 ` t2 ) { Γ } t1 ;

ttac2 (t2 ` t2 ) { Γ } ¬ t1

¬ T2
ttac1 ttac2
pt1q

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also strip tac, contr tac, ¬ tac, STRIP CONCL T , ¬ in conv

Errors

28022 ?0 is not boolean
28023 Goal is not of the form p¬ tq
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SML

val ¬ tac : TERM −> TACTIC ;

Description A form of proof by contradiction as a tactic: ¬t2 holds if t2`t1 and t2`¬t1 for
some term t1 .

Note that strip tac may be used to push a negation inside other logical connectives, which is often
the best way of handling a negated goal.

Tactic

{ Γ } ¬t2
{strip t2 , Γ } t1 ; {strip t2 , Γ } ¬ t1

¬ tac
pt1q

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also strip tac, contr tac, ¬ T

Errors

28022 ?0 is not boolean
28023 Goal is not of the form p¬ tq

SML

val ¬ T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description A form of proof by contradiction using a theorem tactic to simplify the subgoals.

Note that strip tac may be used to push a negation inside other logical connectives, which is often
the best way of handling a negated goal.

Tactic

{ Γ } ¬t2
ttac (t2 ` t2 ) { Γ } t1 ;

ttac (t2 ` t2 ) { Γ } ¬ t1

¬ T
ttac
pt1q

Uses To prove a negated term by showing that assuming the term gives rise to a contradiction.

See Also strip tac, contr tac, ¬ tac, STRIP CONCL T , ¬ in conv

Errors

28022 ?0 is not boolean
28023 Goal is not of the form p¬ tq
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SML

val ¬ ¬ thm : THM
val ¬ ∨ thm : THM
val ¬ ∧ thm : THM
val ¬ ⇒ thm : THM
val ¬ ⇔ thm : THM
val ¬ if thm : THM
val ¬ f thm : THM

val ⇒ thm : THM
val ⇔ thm : THM
val if thm : THM

Description These theorems are tautologies saved in the theory “misc” because they are fre-
quently used in tactic and conversion programming.

The first seven theorems are De Morgan’s laws for the various propositional connectives formulated
so that they can be used to normalise a propositional term by moving all negations inside other
connectives. ¬ t thm is also provided but is documented elsewhere.

The last three theorems give definitions for implication, bi-implication and conditional in terms
of disjunction, conjunction and negation.

¬ ¬ thm ` ∀a•¬ ¬a ⇔ a
¬ ∨ thm ` ∀a b•¬ (a ∨ b) ⇔ (¬a ∧ ¬b)
¬ ∧ thm ` ( ¬(a ∧ b) ⇔ (¬a ∨ ¬b)
¬ ⇒ thm ` ∀a b•¬(a ⇒ b) ⇔ (a ∧ ¬b)
¬ ⇔ thm ` ∀ a b • ¬ (a ⇔ b) ⇔ a ∧ ¬ b ∨ b ∧ ¬ a
¬ if thm ` ∀ a b • ¬ (if a then T else T ) ⇔ (if a then ¬ T else ¬ T )

¬ f thm ` ¬F ⇔ T
⇒ thm ` ∀a b•(a ⇒ b) ⇔ (¬a ∨ b)
⇔ thm ` ∀a b•(a ⇔ b) ⇔ (a ⇒ b) ∧ (b ⇒ a)
if thm ` ∀a b c•(if a then b else c) ⇔ (a ∧ b) ∨ (¬a ∧ c)

See Also ¬ t thm.

SML

val ⇒ tac : TACTIC ;

Description Strip the antecedent of an implicative goal into the assumption list.

Tactic

{ Γ } t1 ⇒ t2
{strip t1 , Γ } t2

⇒ tac

Errors

28051 Goal is not of form: { Γ } t1 ⇒ t2
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SML

val ⇒ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical to apply a given theorem tactic to the result of eliminating ⇒
from a theorem of the form Γ`t1⇒t2 .

⇒ THEN thmtac (Γ ` t1 ⇒ t2 ) = thmtac (Γ ` ¬ t1 ∨ t2 )

The function is partially evaluated with only the theorem tactic and theorem arguments.

Errors

28054 ?0 is not of the form: ‘Γ ` t1 ⇒ t2‘

SML

val ⇒ thm tac : THM −> TACTIC ;

Description A tactic which uses a theorem whose conclusion is an implication, t1⇒t2 , to
reduce a goal with conclusion t2 to t1 .

Tactic

{ Γ } t2
{ Γ } t1

⇒ thm tac
Γ1 ` t1 ⇒ t2

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Uses Mainly for use in tactic programming where the extra generality of bc thm tac and bc tac
is not required.

See Also bc thm tac, bc tac.

Errors

29013 Conclusion of the goal is not ?0

SML

val ⇒ T : (THM −> TACTIC ) −> TACTIC ;

Description Reduce an implicative goal by passing the antecedent to a tactic generating func-
tion.
Tactic

{ Γ } t1 ⇒ t2
ttac{ t1 , Γ } t2

⇒ T
ttac

Errors

28051 Goal is not of form: { Γ } t1 ⇒ t2

SML

val ∀ tac : TACTIC ;

Description Reduce a universally quantified goal.

Tactic

{ Γ } ∀ vs[x1 ,...] • t [x1 ,...]
{ Γ } t [x1 ′,...]

∀ tac

where x1 ′ is a variant name of x1 , etc, different from any variable in Γ or t .

See Also simple ∀ tac

Errors

29001 Goal is not of the form: { Γ } ∀ vs • t [vs]
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SML

val ∃ tac : TERM −> TACTIC ;

Description Provide a witness for an existential subgoal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } ∃ vs[x1 ,...] • t2 [x1 ,...]
{ Γ } t2 [t1 ′,...]

∃ tac
ptq

where vs[t 1 , ...] is t , type instantiated to have the same type as vs[x1 , ...], and broken up using
Fst and Snd as necessary.

See Also simple ∃ tac

Errors

29002 Goal is not of the form: { Γ } ∃ vs • t2 [vs]
29008 Cannot match witness ?0 to varstruct ?1

SML

val ∃ THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical which applies a given theorem tactic to the result of eliminating
the outermost quantifier from a theorem of the form Γ`∃vs•t .
∃ THEN thmtac (Γ ` ∃vs[x1 ,...]•t) = thmtac (Γ ` t [x1 ′/x1 ,...])

where px1’q is a variant of px1q , etc, which does not appear in Γ or in the assumption or
conclusion of the goal.

See Also SIMPLE ∃ THEN
Errors

29003 ?0 is not of the form: ‘Γ ` ∃ vs • t‘

SML

val ∃1 tac : TERM −> TACTIC ;

Description Provide a witness for a goal with conclusion of the form ∃1 x•t .
N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Tactic

{ Γ } ∃1 vs[x1 ,...] • P [x1 ,...]
{ Γ } P [t1 ′,...];
{ Γ } ∀vs[x1 ′,...]•
P [x1 ′,...] ⇒ vs[x1 ′,...] = t ′

∃1 tac1
ptq

where x i ′ is a variant of x i which does not occur free in t , t ′ is equal to t type instantiated to
the type of vs[x1 , ...], and vs[t1 ′, ...] equals t ′ (perhaps using Fst and Snd).

Errors

29004 Goal is not of the form: { Γ } ∃1 vs • t
29008 Cannot match witness ?0 to varstruct ?1
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SML

val ∃1 THEN : (THM −> TACTIC ) −> (THM −> TACTIC );

Description A theorem tactical which applies a given theorem tactic to the result of eliminating
the outermost quantifier from a theorem of the form Γ`∃ 1vs•t .
∃1 THEN thmtac (Γ ` ∃1 vs[x1 ,...]•t) =

thmtac (Γ ` t [x1 ′/x1 ,...] ∧
∀vs[x1 ′′,...]•P [x1 ′′,...] ⇒ vs[x1 ′′,...] = vs[x1 ′,...])

where px1’q and px1”q are distinct variants of px1q, etc, which do not appear free in Γ or in the
assumptions or conclusion of the goal.

Errors

29005 ?0 is not of the form: ‘Γ ` ∃1 vs • t‘

SML

val ε tac : TERM −> TACTIC ;
val ε T : TERM −> (THM −> TACTIC ) −> TACTIC ;

Description Given a choice term, εx•t say, ε tac sets ∃x•t as a lemma, and derives the new
assumption t [εx•t/x ] from it.

ε T is the same as ε tac except that it passes the new assumption to a tactic generating function.

Tactic

{ Γ } t1
{ Γ } ∃x•t ; {strip t [εx•t/x ], Γ } t1

ε tac
pεx•tq

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable. This occurs when the use of the choice function is in some sense
irrelevant to the truth of the goal, e.g., (εx•T ) = (εx•T ).

See Also all ε tac, all ε T (which are easier to use in most cases).

Errors

29050 ?0 is not of the form pεx•p xq
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7.4 Propositional Equational Reasoning

SML

signature PropositionalEquality = sig

Description This is the signature of a structure containing proof procedures for propositional
calculus with equality.

SML

(∗ Proof Context : prop eq ∗)
Description This is a complete proof context whose purpose is to supply a decision procedure
for problems involving sets of equalities and the propositional calculus.

Contents The rewriting, theorem stripping and conclusion stripping components are as for the
proof context predicates (q.v.). The automatic proof tactic is prop eq prove tac (q.v.) The
automatic proof conversion just tries to prove its argument, t say, using the automatic proof tactic
and returns t⇔T if it succeeds.

SML

(∗ Proof Context : ′prop eq ∗)
Description This is a component proof context whose purpose is to supply a decision procedure
for problems involving sets of equalities and the propositional calculus.

Contents The automatic proof components are as for proof context prop eq . Other compo-
nents are blank.

SML

(∗ Proof Context : prop eq pair ∗)
Description This is a complete proof context whose main purpose is to supply a decision
procedure for problems involving sets of equalities, the propositional calculus and pairing.

Contents The rewriting, theorem stripping and conclusion stripping components are as for the
proof context predicates (q.v.) each augmented with conversion pair eq conv (q.v.) which effect
the following transformations:

Fst(a,b) = x → a = x
Snd(a,b) = y → b = y
x = Fst(a,b) → x = a
y = Snd(a,b) → y = b
(a,b) = (c,d) → a = c ∧ b = d
(a,b) = z → a = Fst z ∧ b = Snd z
z = (a,b) → Fst z = a ∧ Snd z = b
z = w → Fst z = Fst w ∧ Snd z = Snd w

The automatic proof tactic is prop eq prove tac (q.v.). The automatic proof conversion just
tries to prove its argument, t say, using the automatic proof tactic and returns t⇔T if it succeeds.

SML

(∗ Proof Context : ′prop eq pair ∗)
Description This is a component proof context whose purpose is to supply a decision procedure
for problems involving sets of equalities, the propositional calculus and pairing.

Contents The rewriting, theorem stripping and conclusion stripping components contain only
the pair eq conv conversion. The automatic proof components are as for prop eq pair . Other
components are blank.
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SML

val ASM PROP EQ T : (THM list −> TACTIC ) −> THM list −> TACTIC
val PROP EQ T : (THM list −> TACTIC ) −> THM list −> TACTIC

Description These are theorem tacticals which process the argument theorems and (for
ASM PROP EQ T ) the assumptions before calling the argument theorem tactic. A call of
“ASM PROP EQ T thm tac thms” takes thms plus theorems representing any equations from
the assumptions, these are cannonicalised by the rewriting canon of the current proof context,
then processed by prop eq rule (q.v.) to form the arguments passed to function thm tac. The
order of the assumptions may be changed. Tactical PROP EQ T does not use the assumptions.

Uses With the rewriting tactics.

SML

val pair eq conv : CONV

Description This conversion transforms equations involving pairs and the constants Fst and
Snd into new equations whose comparands have simpler types by using the first match found in
the following rules:

Fst(a,b) = x → a = x
Snd(a,b) = y → b = y
x = Fst(a,b) → x = a
y = Snd(a,b) → y = b
(a,b) = (c,d) → a = c ∧ b = d
(a,b) = z → a = Fst z ∧ b = Snd z
z = (a,b) → Fst z = a ∧ Snd z = b
z = w → Fst z = Fst w ∧ Snd z = Snd w

Uses The conversion is intended for use in tactic and conversion programming. It is usefully
applied before using prop eq prove tac or ASM PROP EQ T (q.v.). The normal interactive
interface is via rewriting or stripping in the proof context prop eq pair (q.v.).

Errors

84001 ?0 is not an equation involving pairs

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.4. Propositional Equational Reasoning 295

SML

val prop eq prove tac : THM list −> TACTIC ;

Description This tactic is suitable to be used as an automatic proof procedure in a proof
context, it aims to solve problems which may be solved by reasoning in the propositional calculus
with equality.

The tactic has the following steps:

1. It strips all of the assumptions, using the stripping functions of the current proof con-
text, back into the assumptions. More precisely, ‘DROP ASMS T (MAP EVERY
strip asm tac)’ is used.

2. It applies contr tac to increase the stock of assumptions.

3. It splits all of the assumptions into two groups, those which are equations and those which
are not.

4. Using the equation assumptions and the given theorems, a new set of theorems is produced
using prop eq rule (q.v.) which equate all members of an equivalence classes to a common
member of the class.

5. It rewrites all of the other assumptions with these new theorems and with the rewriting
theorems of the current proof context.

6. It strips the rewritten assumptions and the equational assumptions from step 3 back into
the goal.
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SML

val prop eq rule : THM list −> THM list ∗ THM list ;

Description Given a list of theorems with conclusions of the form p a i = bi q for various a i

and bi this function produces a set of theorems that equate all members of each equivalence class
determined by the equations to a common value. The equivalence classes are the sets of all a i

and bi that are equated either directly or transitively, they comprise terms that are α-convertible
rather than requiring strict equality. For each of the equivalence classes a set of theorems equating
each term in the class to the “simplest” (see below) term in the class is generated. These new
theorems have the simplest term as their right hand comparand, duplicated theorems and identity
theorems are excluded. The first list in the result tuple contains the new theorems from all of
the equivalence classes. The second list in the result tuple comprises all the argument theorems
which were not equasions. The new theorems are intended to be used as arguments for a rewriting
operation.

The choice of the “simplest” term is intended to give the most useful rewriting theorems and those
which are least likely to loop. HOL constants are considered the most simple, variables next,
then functional applications, with lamdba abstractions considered the most complex. A simple
recursive counting function is used to traverse each term to evaluate its complexity. Function
term order (q.v.) is used when the counting function cannot decide.

Example

Applying this rule to a list of theorems with the following conclusions:

` a1=b1 ` a1=c1 ` d1=c1 ` z1=x1
` b1=y1 ` z1=w1 ` w1=y1 ` c1=y1
` a2=b2 ` a2=c2 ` d2=c2 ` z2=x2
` b2=y2 ` z2=w2 ` w2=y2 ` c2=y2
` x ∧ y

will produce a list of theorems with the following conclusions as the first element of the result
tuple:

` x1=a1 ` z1=a1 ` w1=a1 ` d1=a1
` y1=a1 ` b1=a1 ` c1=a1
` x2=a2 ` z2=a2 ` w2=a2 ` d2=a2
` y2=a2 ` b2=a2 ` c2=a2

plus the non equational theorems the second element of the result tuple.
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7.5 Algebraic Normalisation

SML

signature Normalisation = sig

Description This is the signature of a structure containing conversions for monomial and poly-
nomial term normalisation and related metalanguage functions.

SML

val anf conv : CONV ;
val ANF C : CONV −> CONV ;

Description anf conv is a conversion which proves theorems of the form ` t1 = t2 where t1
is a term formed from atoms of type N and t2 is in what we may call additive normal form, i.e.
it has the form: t1 + t2 + ..., where the t i have the form s1 ∗ s2 ∗ ...where the s i are atoms.
Here, by atom we mean a term which is not of the form t1 + t2 + ...or s1 ∗ s2 ∗ ....

The summands t i and, within them, the factors s j are given in increasing order with respect to
the ordering on terms given by the function term order , q.v. Arithmetic computation is carried
out on atoms to ensure that at most one of the summands is a numeric literal and that, within
each summand, at most one factor is a numeric literal. Any literal appears at the beginning of
its factor or summand and addition of 0 or multiplication by 1 is simplified out.

ANF C conv is a conversion which acts like anf conv but which applies conv to each atom as it
is encountered (and normalises the result recursively). The argument conversion may signal that
it does not wish to change a subterm, t say, either by failing or by returning t = t , the former
approach is more efficient.

The conversions fail with error number 81032 if there are no changes to be made to the term.

Errors

81032 ?0 is not of type p:Nq or is already in additive normal form

SML

val ASYM C : CONV −> CONV
val GEN ASYM C : TERM ORDER −> CONV −> CONV

Description These conversionals allow one to control the behaviour of a conversion by making
it asymmetric with respect to an ordering relation on terms (in the sense that the resulting
conversion will only prove theorems of the form t1 = t2 in which t2 strictly precedes t1 in the
ordering.

ASYM C c is a conversion which behaves like c on terms t1 for which c t1 is a theorem with
conclusion t1 = t2 where t2 (strictly) precedes t1 in the standard ordering on terms given by
term order q.v. and fails on other terms.

GEN ASYM C is like ASYM C but allows the ordering function used to be supplied as a
parameter. The parameter is interpreted as an ordering relation on terms in the same sense as
the ordering relations used by sort , q.v.

Errors

81010 The conversion did not decrease the order of the term
81011 On argument ?0 the conversion returned ?1 which is not an equation
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SML

val cnf conv : CONV ;

Description This is a conversion which proves theorems of the form ` t1 ⇔ t2 where t2 is in
conjunctive normal form, i.e. either T or F or a conjunction of one or more disjunctions in which
each disjunct is a propositional atom. Here, by atom we mean either a term whose principal
connective is not a propositional calculus connective or the negation of such a term.

The conversion simplifies disjunctions and conjunctions as they are generated according to the
following schema.

a ∧ T → a
T ∧ a → a
F ∧ a → F
a ∧ F → F
a ∧ a → a
a ∧ ¬a→ F

a ∨ T → T
T ∨ a → T
F ∨ a → a
a ∨ F → a
a ∨ a → a
a ∨ ¬a→ T

¬T → F
¬F → T

Note, however, that more global simplifications are not done, e.g. there is no attempt to eliminate
a conjunct all of whose constituent atoms are contained in another conjunct. Thus, the conversion
will not automatically prove tautologies.

The conversion fails with error number 81030 if there are no changes to be made to the term.

See Also strip tac and taut rule which supply a more useful and efficient means for working
with the propositional calculus in most cases.

Errors

81030 ?0 is not of type p:BOOLq or is already in conjunctive normal form
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SML

val dnf conv : CONV ;

Description This is a conversion which proves theorems of the form ` t1 ⇔ t2 where t2 is in
disjunctive normal form, i.e. either T or F or a disjunction of one or more conjunctions in which
each conjunct is a propositional atom. Here, by atom we mean either a term whose principal
connective is not a propositional calculus connective or the negation of such a term.

The conversion simplifies disjunctions and conjunctions as they are generated according to the
following schema.

a ∧ T → a
T ∧ a → a
F ∧ a → F
a ∧ F → F
a ∧ a → a
a ∧ ¬a→ F

a ∨ T → T
T ∨ a → T
F ∨ a → a
a ∨ F → a
a ∨ a → a
a ∨ ¬a→ T

¬T → F
¬F → T

Note, however, that more global simplifications are not done, e.g. there is no attempt to eliminate
a disjunct all of whose constituent atoms are contained in another disjunct. Thus, the conversion
will not automatically prove tautologies.

The conversion fails with error number 81031 if there are no changes to be made to the term.

See Also strip tac and taut rule which supply a more useful and efficient means for working
with the propositional calculus in most cases.

Errors

81031 ?0 is not of type p:BOOLq or is already in disjunctive normal form
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SML

val gen term order : (TERM −> (TERM ∗ INTEGER)) −> TERM −> TERM −> int ;

Description gen term order gives a means of creating orderings on terms. It is retained for
backwards compatibility, make term order now being the recommended way of constructing term
orderings.

In the call gen term order special , the idea is that whenever two terms, tm1 and tm2 say, are
compared, special is applied to them to produce two pairs, (tm1 ′, k1 ) and (tm2 ′, k2 ) say. These
pairs are then compared lexicographically (using the ordering recursively for the first components,
in a similar way to term order , q.v.). It is the caller’s responsibility to provide an argument special
which will ensure that this procedure terminates. A sufficient condition is only to use functions
special with the property that for some disjoint sets of terms X 1 , X 2 , . . . , we have that
special tm = (tm, 0 ) if tm 6∈ X i for any i and that special tm = (x i , f i(tm)) if tm ∈ X i ,
where x i is a fixed element of X i and f i is a fixed injection of X i into the natural numbers.

See Also make term order1 which is now the recommended way of constructing new term
orderings.

SML

val make term order :
(TERM ORDER −> TERM ORDER) list −> TERM ORDER;

Description make term order provides a systematic method for constructing term orderings.
Its argument is a list of term order combinators: i.e., endofunctions on the type of term orderings.

The orderings make term order returns are derived from a base ordering on terms which works
as follows:

1. Constants are ordered lexicographically by name (using ascii order), then type (using
type order).

2. Variables are ordered lexicographically by name (using ascii order), then type (using
type order).

3. Simple λ-abstractions are ordered lexicographically by recursion, bound variable first, then
matrix.

4. Applications ordered lexicographically by recursion, function first, then operand.

If the above function ewre called base, then the ordering make term order [f , g , ..., h] acts as:
f (g(...(h(base))...)) where each recursive call in base is a call on make term order [f , g , ..., h].

For example, the following defines an ordering on terms whcih makes the immediate successor of
any term of type BOOL its immediate successor:

fun f t = (dest ¬ t , 1 ) handle Fail => (t , 0 );

val ¬ order = make term order [fn r => induced order(f , pair order r int order)];
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SML

val poly conv : TERM ORDER −>
THM −> THM −> THM −> THM −> THM −>
CONV −> CONV −> CONV −> CONV ;

Description This conversion normalises terms constructed from atoms using two operators,
both associative and commutative, the second of which, say op∗ distributes over the other, say
op+. For clarity, we write the two operators with infix syntax although they need not actually
be infix constants. Here, by “atom” we mean any term which is not of the form t1 op+ t2
or t1 op∗ t2 . The theorems computed by the conversion have the form t = t1 op+ t2 op+ ...,
where the t iare in non-decreasing order with respect to the ordering on terms given by the first
parameter and have the form s1 op∗ s2 op∗ ..., where the s i are atoms and are in non-decreasing
order.

The associativity and commutativity of the operators and the distributivity are given as the five
theorem parameters (which are also used to infer what the two operators are; n.b. the operators
can be arbitrary terms, they need not be constants). The remaining parameters are conversions
which are applied to each atom as it is encountered and to each subterm of the form t i op+ ... or
t i op∗ ... as it id created. In more detail the parameters are, in order, as follows:

1. A term ordering, such as term order , q.v.

2. A theorem of the form ` ∀x y•x op+ y = y op+ x .

3. A theorem of the form ` ∀x y z•(x op+ y) op+ z = x op+ y op+ z .

4. A theorem of the form ` ∀x y•x op∗ y = y op∗ x .

5. A theorem of the form ` ∀x y z•(x op∗ y) op∗ z = x op∗ y op∗ z .

6. A theorem of the form ` ∀x y z•x op∗ (y op+ z ) = (x op∗ y) op+ (x op∗ z ).

7. A conversion to be applied to any subterm of the form t i op+ ... whenever such a subterm
is created. The result of the conversion will not be further normalised.

8. A conversion to be applied to any subterm of the form t i op∗ ... whenever such a subterm
is created. The result of the conversion will not be further normalised.

9. A conversion to be applied to any atom as it is encountered. If the conversion produces a
non-atomic term, this is normalised recursively as it is produced.

The conversions supplied as parameters may signal that they do not wish to change a subterm,
t say, either by failing or by returning t = t , the former approach is more efficient. The whole
conversion fails with error number 81025 if there are no changes to be made to the term.

Errors

81023 ?0 does not have the form ` t1 op1 (t2 op2 t3 ) = (t1 op1 t2 ) op2 (t1 op1 t3 )
81024 ?0 and ?1 do not have the forms ` t1 op1 t2 = t2 op1 t1

and ` t1 op1 (t2 op2 t3 ) = (t1 op1 t2 ) op2 (t1 op1 t3 )
81025 ?0 is already sorted
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SML

val sort conv : TERM ORDER −>
THM −> THM −> CONV −> CONV −> CONV ;

Description This conversion normalises a term constructed from atoms using an associative and
commutative binary operator, op say. For clarity, we write two operator with infix syntax although
it need not actually be an infix constant. Here, by “atom” we mean any term which is not of
the form t1 op t2 . The theorems computed by the conversion have the form t = t1 op t2 op ...,
where the t i are in non-decreasing order with respect to the ordering on terms given by the first
parameter.

The associativity and commutativity of the operator are given as the two theorem parameters
(which are also used to infer what op is; n.b. op can be an arbitrary term, it need not be a
constant). The remaining parameters are conversions which are applied to each atom as it is
encountered and to each subterm of the form t = t i op ... as it is created. In more detail the
parameters are, in order, as follows:

1. A term ordering, such as term order , q.v.

2. A theorem of the form ` ∀x y•t x y = t y x .

3. A theorem of the form ` ∀x y z•(x op y) op z = x op y op z .

4. A conversion to be applied to each subterm of the form: t i op ... whenever such a subterm
is created. The result of the conversion will not be further normalised.

5. A conversion to be applied to each atom as it is encountered. If the conversion produces a
non-atomic term, this is normalised recursively.

The conversions supplied as parameters may signal that they do not wish to change a subterm,
t say, either by failing or by returning t = t , the former approach is more efficient. The whole
conversion fails with error number 81025 if there are no changes to be made to the term.

Errors

81021 ?0 does not have the form ` t1 op t2 = t2 op t1
81022 ?0 does not have the form ` (t1 op t2 ) op t3 = t1 op (t2 op t3 )
81025 ?0 is already sorted
81029 Internal error : unexpected error in term normalisation package

SML

val term order : TERM −> TERM −> int ;

Description term order gives an ordering relation on HOL terms. The ordering relation follows
the same conventions as those used by the sorting function sort , namely, term order t1 t2 is
negative if t1 precedes t2 , 0 if t1 and t2 are equivalent and positive if t2 precedes t1 . The
ordering used is, with some exceptions, that all constants precede all variables which precede all
abstractions which precede all applications. Lexicographic ordering on the immediate constituents
gives the ordering within each of these four classes (using alphabetic ordering of strings, type order
or term order recursively to order the constituents as appropriate). The exceptions are (i) that
any term of the form ¬t comes immediately after t , (ii) that the numeric literals 0 , 1 , ... are taken
in numeric rather than alphabetic order and come before all other terms, and (iii) that terms of
the form i ∗ x where i is a numeric literal are ordered so that the terms x , 0∗x , 1∗x , 2∗x , ...
are consecutive.

See Also gen term order1 which is the recommended way of constructing new term orderings.
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SML

val type order : TYPE −> TYPE −> int ;

Description type order gives a useful ordering relation HOL types. The ordering relation
follows the same conventions as those used by the sorting function sort , namely, type order t1 t2
is negative if t1 precedes t2 , 0 if t1 and t2 are equivalent and positive if t2 precedes t1 . The
ordering used is essentially that type variables are ordered by the alphabetic ordering of their
names and precede all compound types which are ordered by the lexicographic ordering on their
immediate constituents (using the alphabetic ordering for the type constructor names and the
type ordering recursively for its operands).
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7.6 First Order Resolution

SML

signature Resolution = sig

Description This is the signature of a structure providing Resolution facilities to ICL HOL.

SML

(∗ resolution diagnostics − boolean flag declared by new flag ∗)
Description This is by default false, but if set true then the resolution mechanism will report
the generation of new, unsubsumed theorems, and whether these subsume pre-existing theorems.

Uses Provide the designer of the resolution functions access to detailed diagnostics. Not in-
tended for use by others. May be withdrawn.
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SML

type BASIC RES TYPE
(∗ TERM ∗ bool ∗ (TERM ∗ (TERM −> THM −> THM ))list
∗ TYPE list ∗ THM ∗ TERM list ∗ TYPE list ∗ int
∗ FRAG PRIORITY

∗);
type RES DB TYPE (∗ = BASIC RES TYPE list ∗ BASIC RES TYPE list ∗

BASIC RES TYPE list ∗ THM list ∗);
Description These are type abbreviation for the basic resolution tool based on prim res rule.
The arguments to BASIC RES TYPE are:

1. The term is a subterm of the theorem argument(5), reached through outer universal quan-
tifications and all propositional connectives.

2. The bool is false if and only if the subterm occurs “negatively” in the conclusion of the
theorem.

3. This list states how to specialise the given term to some other value in a theorem already
specialised by the preceding entries in the list, and appropriately type instantiated.

4. The type list is the instantiable type variables of the subterm.

5. The theorem is the source of the fragment.

6. The term list is the term variables that may not be used in unifying the fragment

7. The next type list is the type variables that may not be used in unifying the fragment

8. The integer indicates the “generation”, i.e. the number of resolutions involved in creating
the fragment (initial theorems are at 0).

9. This argument indicates the priority given to taking this fragment from the toprocess list
to use next.

The arguments to RES DB TYPE :

1. Items yet to be checked against (against).

2. Items checked against, but to be rechecked against new items to check with (done).

3. Items to check with (toprocess).

4. Theorems used to derive current items (dbdata).
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SML

val BASIC RESOLUTION T : int −> THM list −> (THM −> TACTIC ) −>
(THM −> TACTIC ) −> TACTIC ;

Description BASIC RESOLUTION T limit thms thmtac1 thmtac2 (seqasms, conc) will first
apply thmtac1 to the negated goal, probably adding it into the assumption list in some manner.
The assumptions derived from this will become the set of support, the pre-existing assumptions
and the input thms will be the rest of the theorems. These theorems will be resolved against
each other until only theorems with default generation past limit can be derived, or until ...` F is
derived, or until no further resolution can be done. An assumption’s or input theorem’s generation
is 0 , and a theorem that is the result of resolution has a default generation of 1 plus the sum of
the generations of the resolved theorems. Its actual generation will be the minimum of its default
generation, and the generations of any previous theorems it subsumes. In any resolution attempt
at least one of the two theorems will be assumed fragments from the stripped goal, or be derived
from an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, all the theorems derived from
stripping and negating the goal, and all the old assumptions removed. MAP EVERY thmtac is
then applied to the new theorems, and then to the goal. As a special case, ...` F is checked for,
before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred
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SML

val BASIC RESOLUTION T1 : int −> THM list −> (THM −> TACTIC ) −>
TACTIC ;

Description BASIC RESOLUTION T1 limit thms thmtac (seqasms, conc) will take the theo-
rems gained by asm rule’ing the assumptions and thms as inputs. These theorems will be resolved
against each other until only theorems with default generation past limit can be derived, or until
...` F is derived, or until no further resolution can be done. An assumption’s or input theorem’s
generation is 0 , and a theorem that is the result of resolution has a default generation of 1 plus
the sum of the generations of the resolved theorems. Its actual generation will be the minimum
of its default generation, and the generations of any previous theorems it subsumes. In any res-
olution attempt at least one of the two theorems will be from the original goals assumptions, or
be derived from an earlier resolution in the evaluation. Duplicates and pure specialisations will
be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed.
MAP EVERY thmtac is then applied to the new theorems, and then to the goal. As a special
case, ...` F is checked for, before any further processing. If present it will be used to prove the
goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred

SML

val basic resolve rule: TERM −> THM −> THM −> THM ;

Description basic resolve rule subterm pos neg attempts to resolve two theorems that have a
common subterm, subterm, occurring “positively” in pos and “negatively” in neg .

Rule

Γ ` P [subterm]
∆ ` N [subterm]

simplify (Γ , ∆ ` P [F ] ∨ N [T ])
basic resolve rule
subterm

Where simplify carries out the simplifications in the predicate calculus where an argument is the
constant pTq or pFq, plus a few others.

Errors

3031 ?0 is not of type p:BOOLq
67009 ?0 is not a subterm of ?1

SML

val basic res extract : RES DB TYPE −> THM list ;

Description This is the extraction function for the basic resolution tool based on prim res rule.
It does no more than return the fourth item of the RES DB TYPE tuple.
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SML

val basic res next to process : BASIC RES TYPE list −>
BASIC RES TYPE list ;

Description This takes as the next fragment to process the first fragment which comes from
a theorem that subsumed some pre-existing one, and failing that the next one on the list of
fragments.

SML

val basic res post :
(THM −> THM −> int) −>
(THM list ∗ int) ∗ RES DB TYPE −>
(RES DB TYPE ∗ bool);

Description This is the post processor for the basic resolution tool based on prim res rule.
The results will be split into their respective conjuncts (if any). Then basic res post subsum
((res, gen), data) will test each member of res, checking for the conclusion T or F , and then
against each member of the theorem list of data. In checking one theorem against another it will
use subsum - discarding the new theorem if the result is 1 , and discarding (with tidying up of
data) the original if the result is 2 , or keeping both (except for discards from further tests) if the
result is 0 , or any other value bar 1 and 2 . gen is the default “generation” of the new theorems,
except that the fragments for each new theorem will have the minimum generation number of this
default generation, and the generation of any theorem in data it subsumes.

SML

val basic res pre : THM list −> THM list −> RES DB TYPE ;

Description This is the preprocessor for the basic resolution tool based on prim res rule.
The first argument is the set of support theorems, the second argument is the rest of the input
theorems. Each theorem will be fragmented, and each fragment added to the appropriate list (i.e.
to the third list of the result if in the set of support, and the first list if otherwise). The final
theorem list part of the result, dbdata, is just the appending of the first list of theorems to the
second.

SML

val basic res resolver : Unification.SUBS −> int −>
BASIC RES TYPE −> BASIC RES TYPE −> THM list ∗ int ;

Description This is the resolver for the basic resolution tool based on prim res rule. Resolu-
tion seeks to find sufficient term specialisation and type instantiation on both terms to make one
of the two term fragments the negation of the other, using term unify . The resolution will not be
attempted if the result would involve more resolutions than the “generations” limit. If this can be
done then the two original theorems are specialised and instantiated in the same manner and the
term fragment cancelled by basic resolve rule, and the result returned as a singleton list, paired
with the default generation of the result. Prior to being returned, any allowed universal quantifi-
cation will be added back in. In the basic resolution tool the generality of a list of theorems is
unnecessary.

The SUBS argument is a “scratchpad” for the type unifier. The function keeps track of the
number of resolutions used to create the result.
Errors

67001 Neither argument is in the set of support
67002 Cannot resolve the two arguments
67008 term unify succeeded on ?0 and ?1 but failed to resolve ?2 and ?3

Message is a variant on 67002, included for diagnostic purposes. It will be removed in a more
stable product.
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SML

val basic res rule : int −> THM list −> THM list −>
THM list ;

Description basic res rule limit sos rest will resolve the theorems in the set of support and
the rest against each other until only theorems with default generation past limit can be derived,
or until ...` F is derived, or until no further resolution can be done. A input theorem’s generation
is 0 , and a theorem that is the result of resolution has a default generation of 1 plus the sum of
the generations of the resolved theorems. Its actual generation will be the minimum of its default
generation, and the generations of any previous theorems it subsumes. In any resolution attempt
at least one of the two theorems will belong to the set of support, or be derived from an earlier
resolution in the evaluation. Resolution will be attempted on subterms reached through outer
universal quantification, and propositional connectives, by specialising the outer quantifications,
and by type instantiation where necessary and allowed. Duplicates and pure specialisations in
the resulting list will be discarded.

If any of the input theorems have pFq as a conclusion then that theorem is returned as a singleton
list.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred

SML

val basic res subsumption : THM −> THM −> int ;

Description This returns 1 if the conclusion of the first theorem equals the second’s, or is a less
general form than the second (i.e. could be produced only by specialising and type instantiating
the second theorem). It returns 2 if the second theorem’s conclusion is a less general form than
the first, and otherwise returns 0 .
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SML

val basic res tac1 : int −> THM list −> TACTIC ;

Description basic res tac1 limit thms (seqasms, conc) will take the theorems gained by asm-
rule’ing the assumptions and thms as inputs. These theorems will be resolved against each other

until only theorems with default generation past limit can be derived, or until ...` F is derived,
or until no further resolution can be done. An assumption’s or input theorem’s generation is 0 ,
and a theorem that is the result of resolution has a default generation of 1 plus the sum of the
generations of the resolved theorems. Its actual generation will be the minimum of its default
generation, and the generations of any previous theorems it subsumes. In any resolution attempt
at least one of the two theorems will be from the original goals assumptions, or be derived from
an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed.
MAP EVERY strip asm tac is then applied to the new theorems, and then to the goal. As a
special case, ...` F is checked for, before any further processing. If present it will be used to prove
the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred

SML

val basic res tac2 : int −> THM list −> TACTIC ;

Description basic res tac2 limit thms (seqasms, conc) will first strip the negated goal into the
assumption list. This uses strip tac, except that the negation is pushed through all the outer
universals. The assumptions derived from this will become the set of support, the pre-existing
assumptions and the input thms will be the rest of the theorems. These theorems will be resolved
against each other until only theorems with default generation past limit can be derived, or until
...` F is derived, or until no further resolution can be done. An assumption’s or input theorem’s
generation is 0 , and a theorem that is the result of resolution has a default generation of 1 plus the
sum of the generations of the resolved theorems. Its actual generation will be the minimum of its
default generation, and the generations of any previous theorems it subsumes. In any resolution
attempt at least one of the two theorems will be assumed fragments from the stripped goal, or be
derived from an earlier resolution in upon those fragments. Duplicates and pure specialisations
will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The tactic will fail unless the resulting list of theorems contains ...` F . If present it will be used
to prove the goal.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred
67014 Failed to prove goal
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SML

val basic res tac3 : int −> THM list −> TACTIC ;

Description basic res tac3 limit thms (seqasms, conc) will take the theorems gained by asm-
rule’ing the assumptions and thms as inputs. These theorems will be resolved against each other

until only theorems with default generation past limit can be derived, or until ...` F is derived,
or until no further resolution can be done. An assumption’s or input theorem’s generation is 0 ,
and a theorem that is the result of resolution has a default generation of 1 plus the sum of the
generations of the resolved theorems. Its actual generation will be the minimum of its default
generation, and the generations of any previous theorems it subsumes. In any resolution attempt
at least one of the two theorems will be from the original goals assumptions, or be derived from
an earlier resolution in the evaluation. Duplicates and pure specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The tactic will fail unless the resulting list of theorems contains ...` F . If present it will be used
to prove the goal.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred
67014 Failed to prove goal

SML

val basic res tac4 : int −> int list −> int list −>
THM list −> THM list −> TACTIC ;

Description basic res tac4 limit sos rest sos thms rest thms (seqasms, conc) will take the
theorems gained by asm rule’ing the numbered assumptions and thms as inputs. The “set of
support” theorems with be those assumptions noted in the sos and those theorems in sos thms,
and “the rest” will be those assumptions noted in the rest , as well as rest thms. These theorems
will be resolved against each other until only theorems with default generation past limit can be
derived, or until ...` F is derived, or until no further resolution can be done. An assumption’s
or input theorem’s generation is 0 , and a theorem that is the result of resolution has a default
generation of 1 plus the sum of the generations of the resolved theorems. Its actual generation
will be the minimum of its default generation, and the generations of any previous theorems
it subsumes. In any resolution attempt at least one of the two theorems will be from the set
of support, or be derived from an earlier resolution in the evaluation. Duplicates and pure
specialisations will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, and all the old assumptions removed.
MAP EVERY strip asm tac is then applied to the new theorems, and then to the goal. As a
special case, ...` F is checked for, before any further processing. If present it will be used to prove
the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred
9303 the index ?0 is out of range
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SML

val basic res tac : int −> THM list −> TACTIC ;

Description basic res tac limit thms (seqasms, conc) will first strip the negated goal into the
assumption list. This uses strip tac, except that the negation is pushed through all the outer
universals. The assumptions derived from this will become the set of support, the pre-existing
assumptions and the input thms will be the rest of the theorems. These theorems will be resolved
against each other until only theorems with default generation past limit can be derived, or until
...` F is derived, or until no further resolution can be done. An assumption’s or input theorem’s
generation is 0 , and a theorem that is the result of resolution has a default generation of 1 plus the
sum of the generations of the resolved theorems. Its actual generation will be the minimum of its
default generation, and the generations of any previous theorems it subsumes. In any resolution
attempt at least one of the two theorems will be assumed fragments from the stripped goal, or be
derived from an earlier resolution in upon those fragments. Duplicates and pure specialisations
will be discarded.

Resolution will be attempted on subterms reached through outer universal quantification, and
propositional connectives, by specialising the outer quantifications, and by type instantiation on
the input theorems thms where necessary and possible.

The resulting list of theorems will have all the thms removed, all the theorems derived from
stripping and negating the goal removed, and all the old assumptions removed. MAP EVERY
strip asm tac is then applied to the new theorems, and then to the goal. As a special case, ...` F
is checked for, before any further processing. If present it will be used to prove the goal.

Uses On its own, or in combination with some canonicalisation of the input theorems.

Errors

67003 The limit , ?0 , must be a positive integer
67004 No resolution occurred
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SML

val prim res rule :
(THM list −> THM list −> (′a list ∗ ′a list ∗ ′a list ∗ ′b)) −> (∗ preprocessor ∗)
(′a −> ′a −> ′c) −> (∗ the resolver function ∗)
((′c ∗ (′a list ∗ ′a list ∗ ′a list ∗ ′b)) −>

((′a list ∗ ′a list ∗ ′a list ∗ ′b) ∗ bool)) −> (∗ postprocessor ∗)
(′a list −> ′a list) −> (∗ next item to process ∗)
(′a list ∗ ′a list ∗ ′a list ∗ ′b −> THM list) −> (∗ extract results ∗)
THM list −> (∗ input set of support theorems ∗)
THM list −> (∗ input other theorems ∗)
THM list ; (∗ final outcome ∗)

Description prim res rule prep reso postp next extract limit sos rest works as follows:

• If any of the input theorems have pFq as a conclusion then that theorem is returned as a
singleton list.

• Evaluate prep sos rest , and set (against , tried , toprocess, dbdata) to this.

• Attempt resolutions, choosing the head of toprocess against the head of against . Commonly,
the head of toprocess should be the first fragment from the set of support, against is all the
non-set of support fragments, plus the head of toprocess, and tried is empty.

• The resolver will usually return a list of theorems, and perhaps some further data. When
a resolution attempt returns a list of theorems, res, (resolution failures should not occur,
just []), evaluate postp (res, (against , tried , toprocess, dbdata)) to extract a new (against ,
tried , toprocess, dbdata), and halt . It is up to the postprocessor to move the head of against
either to tried or just thrown away.

• If halt is true (e.g. have proved ...`F ), or the toprocess list is empty then return as a result
of the call extract (against , tried , toprocess, dbdata).

• If halt is false, then continue with the new data. If against is [] then the head of toprocess
is dropped, and the new list of things to process generated by next (tl toprocess), the new
head of this cons’d to done and against is set to done reversed, and then done set to [].

Errors

67004 No resolution occurred
67010 Postprocessor corrupted processing
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SML

val term unify : Unification.SUBS −> (TYPE list) −> (TERM list) −>
(TERM ∗ TERM list ∗ TYPE list) ∗
(TERM ∗ TERM list ∗ TYPE list) −>
((TYPE ∗ TYPE ) list ∗ (TERM ∗ TERM ) list) ∗
((TYPE ∗ TYPE ) list ∗ (TERM ∗ TERM ) list);

Description This is a method of unifying two subterms in the context of limitations on both
type instantiation and term specialisation. The SUBS argument is a “scratchpad” for the type
unification function, based on Unification.unify . The initial type list is a list of type variables to
avoid in generating new names, and the initial term list a list of term variables to likewise avoid.
The other two input arguments are each a tuple of: a term to unify, a list of variables in the term
that may be specialised, and a list of types for which instantiation is allowed. If the two terms
can be unified then the function returns two tuples, referring to each of the two input tuples.
Each tuple is a list of type instantiations and a list of term specialisations, which pair the original
before type instantiation, and the result, type instantiated.

Errors

3007 ?0 is not a term variable
3019 ?0 is not a type variable
67005 Cannot unify ?0 and ?1
67006 Cannot unify ?0 and ?1 as cannot specialise ?2
67012 Cannot unify ?0 and ?1 as would cause a loop

As as errors of Unification.unify .
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7.7 Proof Contexts

SML

signature ProofContext = sig

Description This provides the basic tools for handling equational and proof contexts. To keep
them short, the names in the structure are heavily abbreviated. The abbreviations used are:

pc(s) proof context(s)
rw rewriting
cs constant specification
∃ existential theorem prover
pr prove tac and related tools
sg goal stripping
st theorem stripping
cd clausal definition
vs variable structure
ad application data
net discrimination net
eqn cxt equational context
nd dictionary of discrimination nets (and sources)
canon(s) theorem canonicalisation
mmp matching mp rule
eqm equation matcher

SML

(∗ proof context key "initial" ∗)
Description This is the initial proof context, formed with empty lists and other default values.
It thus has no default rewriting or stripping theorems. The rewriting canonicalisation is the
identity. The automated existence prover fails on any input. The matching modus ponens rule is
Nil .

SML

type EQN CXT;

Description This is the type of equational contexts. An equational context is a list of conver-
sions, each paired with term index. It represents a statement of how to rewrite a term to result
in an equational theorem, guided by the outermost form of the term to be rewritten, which is
matched against the term index of each conversion. It is used to create a single conversion via
eqn cxt conv (q.v.).

A theorem may be converted into a member of an equational context by thm eqn cxt . A pre-
existing conversion may be converted by determining the term index that matches at least all terms
that the conversion must work on (see net enter for details), and pair it with the conversion.

type EQN CXT = (TERM ∗ CONV ) list ;

Note that equational contexts can be merged by appending. An equational context may be
transformed into a conversion discrimination net by make net or list net enter(q.v.).
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SML

val asm prove tac : THM list −> TACTIC ;

Description This tactic is an automatic proof procedure appropriate to the current proof con-
text.

At the point of applying this tactic to its theorems it will access the current setting of proof
context field pr tac, apply it to the theorem list immediately, and then to the goal when available
(i.e. the result is partially evaluated with only the list of theorems).

Tactic

{ Γ } t
current ad pr tac () thms ({ Γ }, t)

asm prove tac
thms

See Also PC T1 to defer accessing the proof context until application to the goal; prove tac
for the form that does not react to the presence of assumptions.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.

SML

val asm prove ∃ tac : TACTIC ;

Description This tactic is an automatic proof procedure for existential proofs, appropriate to
the current proof context.

At the point of applying this tactic to a goal it will access the current setting of proof context
field prove ∃, apply it to the goal using conv tac.

Tactic

{ Γ } t
conv tac (current ad cs ∃ conv ())

({ Γ }, t)

asm prove ∃ tac
thms

See Also prove ∃ tac that does not react to any assumptions that are present.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.

SML

val commit pc : string −> unit ;

Description This commits a record of the proof context database, preventing further change,
and allowing it to be used in the creation of further records. The context must be loadable at
the point of committing (i.e. was created at a point now in scope), and after committal the proof
context can only be loaded at a point when the point of committal is in scope, rather than the
point of its initial creation (i.e. doing new pc).

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val current ad mmp rule : unit −> (THM −> THM −> THM ) OPT ;

Description This function returns the application data of the current proof context for the
matching modus ponens rule as used by tools such as forward chain rule.

See Also set mmp rule for user data.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val current ad pr conv : unit −> (THM list −> CONV ) OPT ;

Description These functions returns the application data of the current proof context to the
proof contexts for prove conv .

See Also set pr conv for user data.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val current ad pr tac : unit −> (THM list −> TACTIC ) OPT ;

Description This function returns the application data of the current proof context for
prove tac.

See Also set pr tac for user data.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val current ad rw eqm rule : unit −> (THM −> TERM ∗ CONV ) OPT ;

Description This function returns the application data of the current proof context for the
equation matcher as used by the rewriting tools.

See Also set rw eqm rule for user data.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified
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SML

val delete pc fields : string list −> string −> unit ;

Description delete pc fields fields key empties (sets to the value of proof context “initial”) the
named fields, fields of the proof context with key key . If any field is divided into subfields, this
deletion includes deleting the subfields of the field gained from merging in other proof contexts,
as well as the proof context’s “own” subfield.

Valid field names are:

"rw eqn cxt","rw canons","st eqn cxt","sc eqn cxt",
"cs ∃ convs","∃ cd thms","∃ vs thms","pr tac","pr conv",
"nd entries", "mmp rule"

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
51019 There is no field called ?0

SML

val delete pc : string −> unit ;

Description This deletes a record from the proof context database. The record with key
“initial” may not be deleted.

Errors

51010 There is no proof context with key ?0
51012 Initial proof context may not be deleted

SML

val eqn cxt conv : EQN CXT −> CONV ;

Description This function creates a single conversion from an equational context. This is done
via make net and net lookup(q.v). There is a CHANGED C wrapped around each conversion
in the equational context.

Errors

51005 Equational context gave no conversions that succeeded for ?0
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SML

val EXTEND PC C1 : string −> (′a −> CONV ) −> ′a −> CONV ;
val EXTEND PCS C1 : string list −> (′a −> CONV ) −> ′a −> CONV ;

Description EXTEND PC C context conv arg will apply conversion conv arg in the proof
context obtained by merging the proof context with key context into the current proof context.
The named context is used as it is at the point of applying the rule to the argument. The pr tac,
pr conv and mpp rule fields are taken from the named proof context. This is done via pushing
and popping on the proof context stack.

EXTEND PCS C1 takes a list of proof contexts instead, merged as if by, e.g. push extend pcs.

See Also PC C
Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the conversion. The previous proof context is restored, even if the conversion
fails.

SML

val EXTEND PC C : string −> CONV −> CONV ;
val EXTEND PCS C : string list −> CONV −> CONV ;

Description EXTEND PC C context conv will apply conversion conv to a term in the proof
context obtained by merging the proof context with key context into the current proof context.
The named context is used as it is at the point of applying the conversion to a term. The pr tac,
pr conv and mpp rule fields are taken from the named proof context. This is done via pushing
and popping on the proof context stack.

EXTEND PCS C takes a list of proof contexts instead, merged as if by, e.g. push extend pcs

Note that when using this functions that the standard rewriting functions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see EXTEND PC C1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the conversion. The previous proof context is restored, even if the conversion
fails.
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SML

val extend pc rule1 : string −> (′a −> ′b −> THM ) −> ′a −> ′b −> THM ;
val extend pcs rule1 : string list −> (′a −> ′b −> THM ) −> ′a −> ′b −> THM ;

Description extend pc rule1 context rule arg1 arg2 will apply rule rule arg1 to arg2 in the
proof context obtained by merging the proof context with key context into the current proof
context. The named context is used as it is at the point of applying the rule to the argument.
The pr tac, pr conv and mpp rule fields are taken from the named proof context. This is done
via pushing and popping on the proof context stack.

extend pcs rule1 takes a list of proof contexts instead, merged as if by, e.g. push extend pcs.

See Also pc rule

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

SML

val extend pc rule : string −> (′a −> THM ) −> (′a −> THM );
val extend pcs rule : string list −> (′a −> THM ) −> (′a −> THM );

Description extend pc rule context rule will apply rule rule to its argument in the proof con-
text obtained by merging the proof context with key context into the current proof context. The
named context is used as it is at the point of applying the rule to the argument. The pr tac,
pr conv and mpp rule fields are taken from the named proof context. This is done via pushing
and popping on the proof context stack.

extend pcs rule takes a list of proof contexts instead, merged as if by, e.g. extend merge pcs

Note that when using this functions that the standard rewriting functions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see extend pc rule1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.7. Proof Contexts 321

SML

val EXTEND PC T1 : string −> (′a −> TACTIC ) −> ′a −> TACTIC ;
val EXTEND PCS T1 : string list −> (′a −> TACTIC ) −> ′a −> TACTIC ;

Description EXTEND PC T1 context tac arg will apply tactic tac arg to a goal, and evaluate
the proof, in the proof context obtained by merging the proof context with key context into the
current proof context. The named context is used as it is at the point of applying the rule to
the argument. The pr tac, pr conv and mpp rule fields are taken from the named proof context.
This is done via pushing and popping on the proof context stack.

EXTEND PCS T1 takes a list of proof contexts instead, merged as if by, e.g. push extend pcs.

See Also PC T
Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application
or proof fails.

SML

val EXTEND PC T : string −> TACTIC −> TACTIC ;
val EXTEND PCS T : string list −> TACTIC −> TACTIC ;

Description EXTEND PC T context tac will apply tactic tac to a goal, and evaluate its
proof, in the proof context obtained by merging the proof context with key context into the
current proof context. The named context is used as it is at the point of applying the tactic to a
goal. The pr tac, pr conv and mpp rule fields are taken from the named proof context. This is
done via pushing and popping on the proof context stack.

EXTEND PCS T T takes a list of proof contexts instead, merged as if by, e.g. push extend pcs

Note that when using this functions that the standard rewriting functions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see EXTEND PC T1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application
or proof fails.
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SML

val force delete theory : string −> unit ;

Description force delete theory thy attempts to delete theory thy and all its descendants. If
thy is in scope, then the function will change the current theory to the first theory that it can in
the list returned by get parents thy ; (there may be none, in which case the function fails). It will
then determine whether thy and its descendants can all be deleted: in particular it checks that
none of them are locked (see lock theory) or are a read-only ancestor.

The function indicates:

• whether the current theory has been deleted, and if so states the new current theory,

• the list of theories that have been deleted (unless this is just the requested theory, and is
also not the current theory).

Further, all proof contexts created in now deleted theories will also be deleted (but the current
proof context will remain unchanged).

Errors

51002 Cannot open any of the parent theories, ?0 , of the named theory , ?1
51003 Will not be able to delete theories ?0 , so no deletions made
51004 Unexpectedly unable to delete any of ?0
51006 Cannot open the parent theory, ?0 , of the named theory , ?1
51007 Will not be able to delete theory ?0 , so no deletions made
51008 Named theory , ?0 , has no parents

Error 51004 will be raised by error rather than fail , as it shouldn’t happen.

SML

val get current pc : unit −> (string list ∗ string);

Description Returns the key(s) of the entries from which the current proof context was copied,
and the theory in which the single proof context was created. If the theory has since been placed
out of scope, deleted or if the definition level becomes deleted, e.g. because an axiom or definition
has been deleted, then this will output

(["context name"],"theory name (out of scope, deleted , or modified)")

Note that the key may no longer access a proof context in the database identical to the current
proof context.

Merged proof contexts upon the stack (from push merge pcs and set merge pcs) will have the
list of names of the constituent proof contexts, singleton contexts will have singleton lists.

See Also get stack pcs

SML

val get pcs : unit −> (string ∗ string) list ;

Description This lists the names of the proof contexts held in the proof context database, and
the theory that was current at their time of creation. If the theory has since been deleted or if
the definition level becomes deleted, e.g. because an axiom or definition has been deleted, then
this will output ("context name","theory name (out of scope, deleted , or modified)")

See Also get stack pcs, get current pc.
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SML

val get stack pcs : unit −> (string list ∗ string) list ;

Description This lists the keys of the proof contexts held in the proof context stack, and the
theory that was current at their time of creation. If a proof context is pushed onto the stack by,
e.g. push pc, the “keys” will be the singleton list of the name of the source proof context. If a
proof context is pushed onto the stack by, e.g. push merge pcs, the “keys” will be the list of the
names of the source proof contexts. If the theory has since been deleted or if the definition level
becomes deleted, e.g. because an axiom or definition has been deleted, then this will output

(["context name"],"theory name (out of scope, deleted , or modified)")

The head of the list returned is the current proof context, as also displayed by get current pc.

SML

val merge pcs : string list −> string −> unit ;

Description merge pcs keys tokey takes a list of committed proof contexts named by keys,
and merges their fields into proof context tokey ’s fields, discarding duplicates. For each field
that has subfields the lists of subfields from each proof context are appended, discarding subfields
with duplicate keys, and if a field is not divided into subfields, then the proof contexts fields are
appended, discarding duplicates. The pr conv , pr tac and mmp rule fields take the value of the
last proof context in the list that has the field set.

Failure to extract any proof context for merging will result in the proof context tokey being
unchanged.

See Also merge pc fields, delete pc fields

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
51017 Proof context ?0 has not been committed
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SML

val merge pc fields : {context :string ,fields:string list}list −> string −> unit ;

Description merge pc fields fields tokey merges the fields noted for each committed proof
context in fields into proof context tokey ’s fields, discarding duplicates. Merging for each field
that has subfields the lists of subfields is appending the proof contexts fields, discarding subfields
with duplicate keys, and if a field is not divided into subfields, then the proof contexts fields are
appended, discarding duplicates. Each of the pr conv , pr tac and mmp rule fields take the value
from the last proof context whose list of field names includes that field and which has the field
set.

Failure to extract any proof context for merging will result in the proof context tokey being
unchanged.

Valid field names are:

"rw eqn cxt","rw canons","st eqn cxt","sc eqn cxt",
"cs ∃ convs","∃ cd thms","∃ vs thms","pr tac","pr conv",
"nd entries", "mmp rule"

See Also delete pc fields and merge pcs, which used together in a particular order can give
the same functionality as this function.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
51017 Proof context ?0 has not been committed
51019 There is no field called ?0

SML

val new pc : string −> unit ;

Description new pc new creates a new record in the proof context database, with key new .
The fields of the proof context are set to default values. A note will be made of the current theory,
and its current definition level at the time of creation, and an error will be raised if an attempt
is made to push the new proof context (see push pc) when that theory is not in scope, or when
the definition level has been recorded as deleted. The definition level will be recorded as deleted
if, e.g., some definition or axiom that was in scope in the original theory has since been deleted.

One responsibility of the creator of a proof context is to ensure that the theorems used within, or
created by, the new context are also in scope: this is not automatically checked.

Errors

51011 There is already a proof context with key ?0
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SML

val PC C1 : string −> (′a −> CONV ) −> ′a −> CONV ;
val MERGE PCS C1 : string list −> (′a −> CONV ) −> ′a −> CONV ;

Description PC C context conv arg will apply conversion conv arg in the proof context with
key context , using the named context as it is at the point of applying the conversion to a term.
This is done via pushing and popping on the proof context stack.

MERGE PCS C1 takes a list of proof contexts instead, merged as if by, e.g. push merge pcs.

See Also PC C
Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the conversion. The previous proof context is restored, even if the conversion
fails.

SML

val PC C : string −> CONV −> CONV ;
val MERGE PCS C : string list −> CONV −> CONV ;

Description PC C context conv will apply conversion conv to a term in the proof context
with key context , using the named context as it is at the point of applying the conversion to a
term. This is done via pushing and popping on the proof context stack.

MERGE PCS C takes a list of proof contexts instead, merged as if by, e.g. push merge pcs

Note that when using this functions that the standard rewriting conversions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see PC C1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the conversion. The previous proof context is restored, even if the conversion
fails.

SML

val pc rule1 : string −> (′a −> ′b −> THM ) −> ′a −> ′b −> THM ;
val merge pcs rule1 : string list −> (′a −> ′b −> THM ) −> ′a −> ′b −> THM ;

Description pc rule context rule arg1 arg2 will apply rule rule arg1 to arg2 in the proof con-
text with key context , using the named context as it is at the point of applying the rule to
argument arg2 . This is done via pushing and popping on the proof context stack.

merge pcs rule1 takes a list of proof contexts instead, merged as if by, e.g. push merge pcs.

See Also pc rule

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.
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SML

val pc rule : string −> (′a −> THM ) −> (′a −> THM );
val merge pcs rule : string list −> (′a −> THM ) −> (′a −> THM );

Description pc rule context rule will apply rule rule to its argument in the proof context with
key context , using the named context as it is at the point of applying the rule to the argument.
This is done via pushing and popping on the proof context stack.

merge pcs rule takes a list of proof contexts instead, merged as if by, e.g. push merge pcs

Note that when using this functions that the standard rewriting functions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see pc rule1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the rule. The previous proof context is restored, even if the rule fails.

SML

val PC T1 : string −> (′a −> TACTIC ) −> ′a −> TACTIC ;
val MERGE PCS T1 : string list −> (′a −> TACTIC ) −> ′a −> TACTIC ;

Description PC T1 context tac arg will apply tactic tac arg to a goal, and evaluate the proof,
in the proof context with key context , using at both times the named context as it is at the point
of applying the tactic to a goal. This is done via pushing and popping on the proof context stack.

MERGE PCS T1 takes a list of proof contexts instead, merged as if by, e.g. push merge pcs.

See Also PC T
Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application
or proof fails.

SML

val PC T : string −> TACTIC −> TACTIC ;
val MERGE PCS T : string list −> TACTIC −> TACTIC ;

Description PC T context tac will apply tactic tac to a goal, and evaluate its proof, in the
proof context with key context , using at both times the named context as it is at the point of
applying the tactic to a goal. This is done via pushing and popping on the proof context stack.

PCS MERGE T takes a list of proof contexts instead, merged as if by, e.g. push merge pcs

Note that when using this functions that the standard rewriting functions (obvious candidates
for this function) access the current proof context at the point of being given their theorem list
argument: see PC T1 for a method of avoiding this.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified

and as the errors of the tactic. The previous proof context is restored, even if the tactic application
or proof fails.
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SML

val pending push merge pcs : string list −> unit −> unit ;
val pending push extend pcs : string list −> unit −> unit ;

Description pending push merge pcs takes a snapshot of the result of merging the named
proof contexts, and returns a function that, when applied to () stacks the previous proof context,
and and sets the current proof context of the system to this snapshot.

pending push extend pcs takes a snapshot of the result of merging the named proof contexts with
the current proof context and then behaves just like pending push merge pcs.

Merged proof contexts upon the stack will have current ad names giving the list of names of the
constituent proof contexts, singleton contexts will have singleton lists. The proof contexts used
need not have been committed. The pr conv , pr tac and mmp rule fields take the value of the
last proof context in the list that has the field set.

The proof context must be in scope both at the time of the snapshot, and at the time of pushing
on the stack.

This provides a method of being independent of changes to uncommitted proof contexts, or proof
context deletions.

See Also push merge pc

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51020 Must be at least one key in list

SML

val pending push pc : string −> unit −> unit ;
val pending push extend pc : string −> unit −> unit ;

Description pending push pc takes a snapshot of the named proof context, and returns a
function that, when applied to () : unit stacks the previous “current” proof context, and sets the
current proof context of the system to this snapshot.

pending push extend pc takes a snapshot of the result of merging the named proof context with
the current proof context and then behaves just like pending push merge pc.

The proof context must be in scope both at the time of the snapshot, and at the time of pushing
on the stack.

This provides a method of being independent of changes to uncommitted proof contexts, or proof
context deletions.

See Also push pc

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
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SML

val pending reset pc database : unit −> unit −> unit ;

Description This function, applied to () takes a snapshot of the proof context database, and
returns a function that, if applied to () will restore the proof context database to the snapshot.

This function is particularly useful in initialising child databases, and in conjunction with pending-
reset pc stack and pending reset pc evaluators.

Note that a named proof context on the proof context stack is never taken as more than an echo
of the item with that name (if any) of proof context database, and this function in particular,
though not alone, is responsible for the possible differences.

SML

val pending reset pc stack : unit −> unit −> unit ;

Description This function, applied to () takes a snapshot of the proof context stack, and returns
a function that, if applied to () will restore the proof context stack to the snapshot.

Uses This function is particularly useful in initialising child databases, and in conjunction with
pending reset pc database and pending reset pc evaluators.

SML

val pending reset pc evaluators : unit −> unit −> unit ;

Description This function, applied to () takes a snapshot of the proof context evaluators (e.g.
the one set by pp′set eval ad ∃ vs thms , and returns a function that, if applied to () will restore
the proof context evaluators to the snapshot.

Uses This function is particularly useful in initialising child databases, and in conjunction with
pending reset pc database, and pending reset pc stack

SML

val pop pc : unit −> unit ;

Description This function unstacks the top of the proof context stack, and sets the current
proof context of the system to it. There will always be a current proof context, though it may be
the trivial “initial” proof context.

This function may make an out of scope proof context the current proof context.

See Also push pc, set pc, push merge pcs, set merge pcs

Errors

51001 The proof context stack is empty

SML

val pp′set eval ad rw net : (EQN CXT −> CONV NET ) −> unit ;
val current ad rw net : unit −> CONV NET ;

Description These functions provide the interface to the initial conversion net for rewriting
(see e.g. rewrite tac) held in the application data of a proof context. The first sets the evaluator,
the second extracts the field in the current proof context.

See Also set rw eqn cxt for the associated user data.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified
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SML

val pp′set eval ad rw canon : ((THM −> THM list) list −> (THM −> THM list))
−> unit ;

val current ad rw canon : unit −> THM −> THM list ;

Description These functions provide the interface to the canonicalisation function applied to
rewriting theorems (see e.g. rewrite tac) held in the application data of a proof context. The
proof context is accessed after providing the theorem. The first sets the evaluator, the second
extracts the field in the current proof context.

See Also set rw canons for the associated user data.
Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val pp′set eval ad st conv : (EQN CXT −> CONV ) −> unit ;
val current ad st conv : unit −> CONV ;

Description These functions provide the interface to the conversion for stripping theorems into
the assumption list (see e.g. strip tac) held in the application data of a proof context. The proof
context is accessed before provision of a term. The first sets the evaluator, the second extracts
the field in the current proof context.

See Also set st conv for the associated user data.
Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val pp′set eval ad sc conv : (EQN CXT −> CONV ) −> unit ;
val current ad sc conv : unit −> CONV ;

Description These functions provide the interface to the conversion for stripping goal conclu-
sions (see e.g. strip tac) held in the application data of a proof context. The proof context is
accessed before provision of a term. The first sets the evaluator, the second extracts the field in
the current proof context.

See Also set sg conv for the associated user data.
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SML

val pp′set eval ad nd net :
(string −> (TERM ∗ (TERM −> THM )) list −>

(TERM −> THM ) NET ) −> unit ;
val current ad nd net : string −> (TERM −> THM ) NET ;

Description These functions provide the interface to the additional dictionary of discrimination
nets held in the application data of a list of proof contexts.

The application data is generated by taking, for each key in at least one of the dictionaries in the
appropriate subfields of the proof context, the appended lists of all the entries for that key in any
of the subfields of the proof context. To this is applied the evaluator set by pp′set eval ad nd net
first applied to the dictionary key. The result is used as an entry, using the same dictionary key,
in the resulting dictionary of nets. The default evaluator will just use make net on each list of
sources.

current ad nd net key returns the net indexed by the key key in the current proof context. If
no entry exists it returns the empty net empty net . Note that the returned net can be viewed as
something of type EQN CXT , and made into a conversion by eqn cxt conv .

Uses For extending the proof context mechanisms. Though available to the end user, and indeed
intended for use by the sophisticated user, the proof context mechanisms (as opposed to proof
contexts) should be extended under ICL direction.

See Also set nd entry for the associated user data.

SML

val pp′set eval ad cs ∃ convs : (CONV list −> CONV )
−> unit ;

val current ad cs ∃ conv : unit −> CONV ;

Description These functions provide the interface to the existence prover for constant speci-
fications (see const spec) held in the application data of a proof context. The proof context is
accessed before provision of a term. The first sets the evaluator, the second extracts the field in
the current proof context.

See Also set cs ∃ rule for the associated user data.
Errors

51015 No automated existence prover in the current proof context succeeds
51021 The current proof context was created in theory ?0 at a

point now either not in scope, deleted or modified

SML

val pp′set eval ad ∃ cd thms : (THM list −>
(TERM list ∗ int list ∗ TYPE ∗ (TERM list)list ∗ THM ) list) −> unit ;

val current ad ∃ cd thms : unit −>
(TERM list ∗ int list ∗ TYPE ∗ (TERM list)list ∗ THM ) list ;

Description These functions provide the interface to the clausal definition theorem information
for the existence prover prove ∃ conv . See evaluate ∃ cd thms for details upon the form of the
information. The first sets the evaluator, the second extracts the field in the current proof context.

See Also set ∃ cd thms for the associated user data.
Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified
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SML

val pp′set eval ad ∃ vs thms : ((string ∗ (TERM list ∗ THM )) list −>
(string ∗ (TERM list ∗ THM )) list) −> unit ;

val current ad ∃ vs thms : unit −>
(string ∗ (TERM list ∗ THM )) list ;

Description These functions provide the interface to the application data variable structure
information for the existence prover prove ∃ conv . The first sets the evaluator, the second extracts
the field in the current proof context.

See Also set ∃ vs thms for user data.
Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

SML

val prove conv : THM list −> CONV ;

Description This conversion is an automatic proof procedure appropriate to the current proof
context.

At the point of applying this conversion to its theorems it will access the current setting of proof
context field pr conv , applying the result to the theorem list immediately, and then to the term
when available (i.e. the result is partially evaluated with only the list of theorems).

Conversion

current ad pr conv () thms ptq
prove conv
thms ptq

See Also PC C1 to defer accessing the proof context until application to the term.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.

SML

val prove rule : THM list −> TERM −> THM ;

Description This rule is an automatic proof procedure appropriate to the current proof context.

At the point of applying this rule to its theorem list it will access the current setting of proof
context field pr conv , apply it to the theorem list immediately, and then to the term when
available (i.e. the result is partially evaluated with only the list of theorems), and then, if the
resulting theorem is ‘`term ′ ⇔ T ‘ (with no assumptions) where term is α-convertible to term ′,
then apply ⇔ t elim, and otherwise fail.

Rule

` tm
prove rule
thms ptmq

See Also pc rule1 to defer accessing the proof context until application to the term.

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

51022 Result of applying conversion to ?0 , which was ?1 ,
not of form: ‘` input ⇔ T‘

and as the proof context setting.
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SML

val prove ∃ conv : CONV ;

Description This conversion is an automatic proof procedure for existential proofs, appropriate
to the current proof context.

At the point of applying this conversion to a term it will access the current setting of proof context
field cs ∃ conv , apply it to the theorem list, and then to the term.

The resulting theorem is not checked as having its L.H.S. being the input term.

Conversion

current ad cs ∃ conv () ptq
prove ∃ conv
ptq

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

and as the proof context setting.

SML

val prove ∃ rule : TERM −> THM ;

Description This rule is an automatic proof procedure for existential proofs, appropriate to
the current proof context.

At the point of applying this rule to a term term it will access the current setting of proof context
field cs ∃ conv , apply it to the term, and then, if the resulting theorem is ‘`term ′ ⇔ T ‘ (with
no assumptions) where term is α-convertible to term ′, then apply ⇔ t elim, and otherwise fail.

Rule

` tm
prove ∃ rule
ptmq

Errors

51021 The current proof context was created in theory ?0 at a
point now either not in scope, deleted or modified

51022 Result of applying conversion to ?0 , which was ?1 ,
not of form: ‘` input ⇔ T‘

and as the proof context setting.
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SML

val push extend pcs : string list −> unit ;
val set extend pcs : string list −> unit ;

Description push extend pcs stacks the previous “current” proof context, and and then merges
the proof contexts with the given keys into the current proof context. set extend pcs merges the
proof contexts with the given keys into the previous current proof context without changing the
stack.

Merged proof contexts upon the stack will have current ad names giving the list of names of the
constituent proof contexts, singleton contexts will have singleton lists. The proof contexts used
need not have been committed.

The pr conv , pr tac and mmp rule fields take the value of the last proof context in the list that
has the field set.

The current proof context is accessed by the functions prefixed current ad , and by get current-
pc.

See Also pop pc, push merge pcs, set merge pcs

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51020 Must be at least one key in list

SML

val push extend pc : string −> unit ;
val set extend pc : string −> unit ;

Description push extend pc stacks the previous “current” proof context, and and then merges
the proof context with the given key into the current proof context. set extend pcs merges the
proof context with the given key into the current proof context without changing the stack.

Merged proof contexts upon the stack will have current ad names giving the list of names of the
constituent proof contexts. The proof context used need not have been committed.

The pr conv , pr tac and mpp rule fields take the value from the named proof context.

The current proof context is accessed by the functions prefixed current ad , and by get current-
pc.

See Also pop pc, push pc, set pc

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51020 Must be at least one key in list
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SML

val push merge pcs : string list −> unit ;
val set merge pcs : string list −> unit ;

Description push merge pcs stacks the previous “current” proof context, and and sets the
current proof context of the system to the merge of the proof contexts with the given keys.
set merge pcs discards the previous “current” proof context, and and sets the current proof
context of the system to the merge of the proof contexts with the given keys. Merged proof
contexts upon the stack will have current ad names giving the list of names of the constituent
proof contexts, singleton contexts will have singleton lists. The proof contexts used need not have
been committed.

The pr conv , pr tac and mmp rule fields take the value of the last proof context in the list that
has the field set.

The current proof context is accessed by the functions prefixed current ad , and by get current-
pc.

See Also pop pc, push pc, set pc

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51020 Must be at least one key in list

SML

val push pc : string −> unit ;
val set pc : string −> unit ;

Description push pc stacks the previous “current” proof context, and and sets the current
proof context of the system to the proof context with the given key. set pc discards the previous
“current” proof context, and and sets the current proof context of the system to the proof context
with the given key.

The current proof context is accessed by the functions prefixed current ad , and by get current-
pc.

See Also pending push pc, pop pc, push merge pcs, set merge pcs

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
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SML

val set cs ∃ convs : (CONV list) −>
string −> unit ;

val get cs ∃ convs : string −>
(((CONV list) ∗ string) list);

Description These functions provide the interface to the existence provers for constant spec-
ifications (see const spec) held in the user data of a proof context. Under the initial evaluator,
the existence proving conversion supplied by current cs ∃ conv will have each of the conversions
tried, in the reverse order of their entry, being applied to the RHS of the result of the previous
successful application, or the initial term to which the conversion was applied, until the RHS is
pTq, or no conversions remain.

Example

If get cs ∃ convs of the current proof context returns

[([conv1 , conv2 ],"pc1"),([conv3 , conv4 ],"pc2")]

Then current ad cs ∃ conv will return

conv4 AND OR C conv3 AND OR C conv2 AND OR C conv1

“setting” overwrites the subfield whose key is the proof context’s name, “getting” returns the
entire field (which pairs data with proof context names).

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set mmp rule : (THM −> THM −> THM ) −> string −> unit ;
val get mmp rule : string −> (THM −> THM −> THM ) OPT ;

Description These functions provide the interface to the proof contexts for the matching modus
ponens rule as used by tools such as forward chain rule. Note that setting overwrites all previous
data in this field, including from merged in proof contexts. Merged proof contexts take their value
for this field from the last proof context in the list that has the field set.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val set nd entry : string −> (TERM ∗ (TERM −> THM ))list −> string −> unit ;
val get nd entry : string −> string −>

((TERM ∗ (TERM −> THM ))list ∗ string) list ;

Description These functions provide the interface to the additional dictionary of sources for
discrimination nets held in the user data of a proof context. The dictionary is actually a list
of subfields of the proof context, indexed by source proof context name, each subfield being a
dictionary in its own right. You “set” a single dictionary entry of the subfield indexed by the
proof context’s name (creating a new entry if necessary). You “get” the dictionaries for all the
subfields.

set nd entry dict key entry pc name overwrites (or creates, if necessary) the proof context’s
name’s subfield dictionary entry whose key is dict key in the proof context pc name with the
value entry .

get nd entry dict key pc name returns the dictionary entries whose keys are dict key from each
of the subfields in the proof context pc name, paired with the source proof context name, or
an empty list if the entry is not present in the dictionaries of any of the subfields of that proof
context.
Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set pr conv : (THM list −> CONV ) −> string −> unit ;
val get pr conv : string −> (THM list −> CONV );
val get pr conv1 : string −> (THM list −> CONV ) OPT ;

Description These functions provide the interface to the proof contexts for prove conv . Note
that setting overwrites all previous data in this field, including from merged in proof contexts.
If the field has not been set, get pr conv returns a function mapping any list of theorems to
fail conv and get pr conv1 returns Nil . Merged proof contexts take their value for this field
from the last proof context in the list that has the field set.

Note that when using these functions that the standard rewriting functions (obvious candidates
for inclusion in automatic proof) access the current proof context at the point of being given their
theorem list argument.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val set pr tac : (THM list −> TACTIC ) −> string −> unit ;
val get pr tac : string −> (THM list −> TACTIC );
val get pr tac1 : string −> (THM list −> TACTIC ) OPT ;

Description These functions provide the interface to the proof contexts for prove tac. Note
that setting overwrites all previous data in this field, including from merged in proof contexts. If
the field has not been set, get pr tac returns a function mapping any list of theorems to fail tac
and get pr tac1 returns Nil . Merged proof contexts take their value for this field from the last
proof context in the list that has this field set.

When asm prove tac is applied to its theorem list argument the system will evaluate this by
applying the value set by set pr tac for the current proof context to that argument. The provided
values for set pr tac can interpret their theorem list arguments as they wish (e.g. as a set
of rewrite theorems, or as theorems to resolve against) - no interpretation is forced upon this
argument.

Note that when using these functions that the standard rewriting functions (obvious candidates
for inclusion in automatic proof) access the current proof context at the point of being given their
theorem list argument.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set rw canons : (THM −> THM list) list −>
string −> unit ;

val get rw canons : string −> ((THM −> THM list) list ∗ string) list ;

Description These functions provide the interface to the individual canonicalisation functions
used to create the canonicalisation function applied to rewriting theorems (see e.g. rewrite tac)
held in the user data of a proof context.

“setting” overwrites the subfield whose key is the proof context’s name, “getting” returns the
entire field (which pairs data with proof context names).

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val set rw eqm rule : (THM −> TERM ∗ CONV ) −> string −> unit ;
val get rw eqm rule : string −> (THM −> TERM ∗ CONV ) OPT ;

Description These functions provide the interface to the proof contexts for the equation
matcher as used by the rewriting tools. Note that setting overwrites all previous data in this
field, including from merged in proof contexts. Merged proof contexts take their value for this
field from the last proof context in the list that has the field set.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set rw eqn cxt : EQN CXT −> string −> unit ;
val get rw eqn cxt : string −> (EQN CXT ∗ string) list ;
val add rw thms : THM list −> string −> unit ;

Description These functions provide the interface to the equational context for rewriting (see
e.g. rewrite tac) held in the user data of a proof context. “setting” overwrites the subfield whose
key is the proof context’s name, “getting” returns the entire field (which pairs data with proof
context names). “adding” processes its theorems by first canonicalising according to the current
proof context’s canonicalisation function, and then with thm eqn cxt and then adds them into
the subfield whose key is the proof context’s name.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set sc eqn cxt : EQN CXT −> string −> unit ;
val get sc eqn cxt : string −> (EQN CXT ∗ string) list ;
val add sc thms : THM list −> string −> unit ;

Description These functions provide the interface to the equational context for stripping goal
conclusions (see e.g. strip tac) held in the user data of a proof context. “setting” overwrites the
subfield whose key is the proof context’s name, “getting” returns the entire field (which pairs data
with proof context names). “adding” processes its theorems by first canonicalising according to
the current proof context’s canonicalisation function, and then with thm eqn cxt and then adds
them into the subfield whose key is the proof context’s name.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val set st eqn cxt : EQN CXT −> string −> unit ;
val get st eqn cxt : string −> (EQN CXT ∗ string)list ;
val add st thms : THM list −> string −> unit ;

Description These functions provide the interface to the equational context for stripping the-
orems into the assumption list (see e.g. strip tac) held in the user data of a proof context.
“setting” overwrites the subfield whose key is the proof context’s name, “getting” returns the
entire field (which pairs data with proof context names). “adding” processes its theorems by first
canonicalising according to the current proof context’s canonicalisation function, and then with
thm eqn cxt and then adds them into the subfield whose key is the proof context’s name.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val set ∃ cd thms : THM list −> string −> unit ;
val get ∃ cd thms : string −> THM list ;
val add ∃ cd thms : THM list −> string −> unit ;

Description These functions provide the interface to the unevaluated clausal definition theo-
rems held for the existence prover prove ∃ conv . There are no subfields to this field, so “setting”
overwrites the field with the proof context’s name, “getting” returns the field. “adding” unions
its theorem list with the proof contexts field.

See Also See evaluate ∃ cd thms for details upon the form of the theorems.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed
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SML

val set ∃ vs thms : (string ∗ (TERM list ∗ THM )) list
−> string −> unit ;

val get ∃ vs thms : string −> (string ∗ (TERM list ∗ THM )) list ;

Description These functions provide the interface to the variable structure information for the
existence prover prove ∃ conv . An individual entry in the list gives a method of handling an
extended variable structure. It consists of the name of the constructor; a list of functions that
extract each field of the constructor, and a theorem that states how the extraction functions
extract from a data construction, and that the data constructor may be applied to the extracted
values to regain the original value. For instance, for pairs the information is:

(",",
([pFstq,pSndq],
‘` ∀ x y p •

Fst (x , y) = x ∧ Snd (x , y) = y ∧
(Fst p, Snd p) = p)‘))

There are no subfields to this field, so “setting” overwrites the field with the proof context’s name,
“getting” returns the field.

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val simple ho thm eqn cxt : THM −> (TERM ∗ CONV );

Description This function is an equation matcher for use by the rewriting tools that uses
higher-order matching. It transforms an equational theorem into a representation of a higher-
order rewrite rule in a form suitable for inclusion in an an equational context (EQN CXT q.v.)

thm eqn cxt ‘Γ ` ∀ x1 ... • LHS = RHS‘ →
(LHS ′, simple eq match conv1 ‘Γ ` ∀ x1 ... • LHS = RHS‘)

Here the pattern term LHS ′ is derived from LHS by replacing linear patterns (see
simple ho match) by variables of the same type.

The universal quantifiers must be over simple variables (not patterns) and the higher-order match-
ing is done using simple ho match.

See Also cthm eqn cxt which canonicalises the theorem before transformation.

Errors

7095 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u = v ′ where pxiq are variables
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SML

val thm eqn cxt : THM −> (TERM ∗ CONV );

Description This function is a simple form of equation matcher for use by the rewriting tools.
It transforms an equational theorem into a representation of a first-order rewrite rule in a form
suitable for inclusion in an an equational context (EQN CXT q.v.)

thm eqn cxt ‘Γ ` ∀ x1 ... • LHS = RHS‘ →
(LHS , simple eq match conv1 ‘Γ ` ∀ x1 ... • LHS = RHS‘)

The universal quantifiers must be over simple variables (not patterns).

See Also cthm eqn cxt which canonicalises the theorem before transformation.

Errors

7095 ?0 is not of the form ‘Γ ` ∀ x1 ... xn • u = v ′ where pxiq are variables

SML

signature ProofContexts1 = sig

Description This signature gives access to two functions used in supplying the first group of
proof contexts. Proof contexts themselves have no entry in the signature, however the contexts
provided are:

Component Complete
′simple abstractions predicates
′paired abstractions predicates1
′propositions basic hol
′fun ext basic hol1
′pair sets ext
′pair1 hol
′N hol1
′N lit
′list
′char
′sum
′one
′combin
′sets alg
′sets ext
′basic prove ∃ conv

SML

(∗ Proof Context : ′basic prove ∃ conv ∗)
Description A component proof context that adds the function basic prove ∃ conv as an au-
tomatic existence prover.

Contents Automatic proof procedures are respectively “always fail tactic”, “always fail conver-
sion”, and basic prove ∃ conv .

Usage Notes Requires theory “basic hol”, intended to be combined into the merge of any
component proof contexts that do not have their own special existence prover. It should usually
be the first in the list of proof contexts to be merged together, so that other proof contexts
may introduce pre-processors, and then the final default prover is invoked. This is because the
standard application of the list of existence prover conversions is defined to be to apply them in
a cumulative manner, in reverse order.
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SML

(∗ Proof Context : ′simple abstractions ∗)
Description A component proof context for handling only simple abstractions in stripping and
canonicalisation.

Contents Rewriting:

Stripping theorems:

simple ¬ in conv

Stripping conclusions:

simple ¬ in conv

Rewriting canonicalisation:

simple ∀ rewrite canon, simple ¬ rewrite canon

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Not to be used with proof context “′paired abstractions” as their “domains”
overlap. It requires theory basic hol .

SML

(∗ Proof Context : ′paired abstractions ∗)
Description A component proof context for handling simple and paired abstractions in strip-
ping and canonicalisation.

Contents Rewriting:

β conv

Stripping theorems:

¬ in conv , ∃1 conv ,
∀ uncurry conv , ∃ uncurry conv

Stripping conclusions:

¬ in conv , ∀ uncurry conv

Rewriting canonicalisation:

∀ rewrite canon, ¬ rewrite canon

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Not to be used with proof context “′simple abstractions”, as their “domains”
overlap. It requires theory basic hol .
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SML

(∗ Proof Context : ′propositions ∗)
Description A component proof context for reasoning about propositions.

Contents Rewriting:

eq rewrite thm, ⇔ rewrite thm, ¬ rewrite thm,
∧ rewrite thm, ∨ rewrite thm, ⇒ rewrite thm,
if rewrite thm, ∀ rewrite thm, ∃ rewrite thm,
β rewrite thm, simple β conv

Stripping theorems:

⇒ thm, ⇔ thm, simple ∃1 conv ,
‘` ∀ x • ((x = x ) ⇔ T )‘,
‘` ∀ x • (¬(x = x ) ⇔ F )‘,
‘` ∀ a t1 t2• (if a then t1 else t2 ) ⇔ (a ⇒ t1 ) ∧ (¬ a ⇒ t2 )‘

Note these are intended to be used with (simple ) ¬ in conv from “′paired abstractions” or
“′simple abstractions”, which covers the cases of an outermost ¬ for each operator.

Stripping conclusions:

⇔ thm,
‘` ∀ x • ((x = x ) ⇔ T )‘,
‘` ∀ x • (¬(x = x ) ⇔ F )‘,
‘` ∀ a t1 t2• (if a then t1 else t2 ) ⇔ (a ⇒ t1 ) ∧ (¬ a ⇒ t2 )‘
‘` ∀a b•(a ∨ ¬b) ⇔ (b ⇒ a)‘
‘` ∀ a b• ¬ a ∨ b ⇔ a ⇒ b‘
‘` ∀ a b• a ∨ b ⇔ ¬ a ⇒ b‘

Note that the above are intended to be used in combination with (simple ) ¬ in conv from
“′paired abstractions” or “′simple abstractions”, which covers the cases of an outermost ¬ for
each operator.

Rewriting canonicalisation:

∧ rewrite canon, f rewrite canon

Automatic proof procedures are respectively taut tac, taut conv and basic prove ∃ conv .

Usage Notes Usually used in conjunction with “′paired abstractions” or “′simple abstrac-
tions”, requires theory basic hol .
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SML

(∗ Proof Context : ′fun ext ∗)
Description A component proof context for adding reasoning using functional extensionality.

Contents Rewriting:

ext thm

Stripping theorems:

ext thm

Stripping conclusions:

ext thm

Rewriting canonicalisation:

Automatic proof procedures are, respectively, taut tac, taut conv and basic prove ∃ conv .

Usage Notes Normally used in conjunction with “′propositions”, requires theory basic hol .

SML

(∗ Proof Context : predicates ∗)
Description A “mild” complete proof context for reasoning about the predicate calculus, in-
cluding paired abstractions.

Contents Proof contexts “′basic prove ∃ conv”, “′paired abstractions” and “′propositions”.

Automatic proof procedures are respectively basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory basic hol .

SML

(∗ Proof Context : predicates1 ∗)
Description An “aggressive” complete proof context for reasoning about the predicate calculus,
including paired abstractions and functional extensionality.

Contents Proof contexts “′basic prove ∃ conv”, “′paired abstractions”, “′propositions” and
“′fun ext”.

Automatic proof procedures are, respectively, basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory basic hol .
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SML

(∗ Proof Context : ′pair ∗)
Description A “mild” component proof context for theory pair .

Contents Rewriting (selected from pair clauses):

‘` ∀ x y a b p fu fc
• Fst (x , y) = x
∧ Snd (x , y) = y
∧ ((a, b) = (x , y) ⇔ a = x ∧ b = y)
∧ (Fst p, Snd p) = p
∧ Curry fc x y = fc (x , y)
∧ Uncurry fu (x , y) = fu x y
∧ Uncurry fu p = fu (Fst p) (Snd p)‘

Stripping theorems:

‘` ∀ a b x y • ((a, b) = (x , y) ⇔ a = x ∧ b = y)‘

Stripping conclusions:

‘` ∀ a b x y • ((a, b) = (x , y) ⇔ a = x ∧ b = y)‘

Existential variable structures:

‘` ∀ x y p •
Fst (x , y) = x ∧
Snd (x , y) = y ∧
(Fst p, Snd p) = p‘

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory basic hol .
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SML

(∗ Proof Context : ′pair1 ∗)
Description An “aggressive” component proof context for theory pair .

Contents Rewriting:

‘` ∀ a b p
• ((a, b) = p ⇔ a = Fst p ∧ b = Snd p)
∧ (p = (a, b) ⇔ Fst p = a ∧ Snd p = b)‘

Stripping theorems (selected from pair clauses):

‘` ∀ a b p
• ((a, b) = p ⇔ a = Fst p ∧ b = Snd p)
∧ (p = (a, b) ⇔ Fst p = a ∧ Snd p = b)‘

Stripping conclusions:

‘` ∀ a b p
• ((a, b) = p ⇔ a = Fst p ∧ b = Snd p)
∧ (p = (a, b) ⇔ Fst p = a ∧ Snd p = b)‘

Existential variable structures:

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory basic hol , expected to be used in combination with “′pair”.

SML

(∗ Proof Context : ′N ∗)
Description A “mild” component proof context for theory N.

Contents Rewriting:

≥ def , greater def , plus clauses, times clauses,
≤ clauses, less clauses, minus clauses

Stripping theorems:

≥ def , greater def , plus clauses, times clauses,
≤ clauses, less clauses, minus clauses,
and all boolean equations also pushed through $¬$

Stripping conclusions:

≥ def , greater def , plus clauses, times clauses,
≤ clauses, less clauses, minus clauses,
and all boolean equations also pushed through $¬$

Existential clausal definition theorems:

prim rec thm

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory basic hol .
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SML

(∗ Proof Context : ′N lit ∗)
Description A component proof context for theory N, that will, e.g., evaluate any arith-
metic expression involving only numeric literals and certain arithmetic operators, namely
+, ∗, −, Div , Mod , ≤, <, >, ≥, and =.

Contents Rewriting:

plus conv , times conv , minus conv , div conv ,
mod conv , ≤ conv , less conv , greater conv ,
≥ conv , N eq conv

Stripping theorems:

≤ conv , less conv , greater conv ,
≥ conv , N eq conv

Stripping conclusions:

≤ conv , less conv , greater conv ,
≥ conv , N eq conv

Existential clausal definition theorems:

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory basic hol , expected to be used with proof context “′N”. It is
separated from it as spotting the application of the conversions is time consuming, and may be
known to be irrelevant.
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SML

(∗ Proof Context : ′list ∗)
Description A component proof context for the theory list .

Contents Rewriting:

list clauses

Stripping theorems:

‘ ` ∀ x1 x2 list1 list2
• ¬ Cons x1 list1 = []
∧ ¬ [] = Cons x1 list1
∧ (Cons x1 list1 = Cons x2 list2 ⇔ x1 = x2 ∧ list1 = list2 )‘

Stripping conclusions:

‘ ` ∀ x1 x2 list1 list2
• ¬ Cons x1 list1 = []
∧ ¬ [] = Cons x1 list1
∧ (Cons x1 list1 = Cons x2 list2 ⇔ x1 = x2 ∧ list1 = list2 )‘

Existential clausal definition theorems:

list prim rec thm

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory list .

SML

(∗ Proof Context : ′char ∗)
Description A component proof context for theory char , for reasoning about character and
string literals.

Contents Rewriting:

char eq conv , string eq conv

Stripping theorems:

char eq conv , string eq conv

Stripping conclusions:

char eq conv , string eq conv

Automatic proof procedures are respectively basic prove tac, basic prove conv and an existence
prover preprocessor that rewrites with ` "" = [] which assists using list’s primitive induction on
strings.

Usage Notes Requires theory basic hol .
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SML

(∗ Proof Context : basic hol ∗)
Description A “mild” complete proof context for the ancestors of theory basic hol .

Contents Proof contexts “predicates”, “′pair, “′N”, “′list”, and “′char”. Automatic proof pro-
cedures are respectively basic prove tac, basic prove conv and basic prove ∃ conv (merged in
from the proof context of the same name).

Usage Notes Requires theory basic hol .

SML

(∗ Proof Context : basic hol1 ∗)
Description An “aggressive” complete proof context for the ancestors of theory basic hol .

Contents Proof contexts “predicates1”, “′pair”, “′pair1”, “′N”, “′N lit”, “′list”, and “′char”.

Automatic proof procedures are respectively basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory basic hol .

SML

(∗ Proof Context : ′mmp1 ∗)
Description A component proof context with the matching modus ponens rule set to
⇒ match mp rule1 . All other fields are empty.

Usage Notes This makes forward chaining work as in releases prior to 2.9.1 (so that bound
variables that are not constrained by the pattern matching are specialised to themselves).

SML

(∗ Proof Context : ′mmp2 ∗)
Description A component proof context with the matching modus ponens rule set to
⇒ match mp rule2 . All other fields are empty.

Usage Notes Use this to ensure the default behaviour in forward chaining (so that bound
variables that are not constrained by the pattern matching are specialised with new names as
necessary to avoid variable capture).

SML

(∗ Proof Context : ′sho rw ∗)
Description A component proof context with the equation matching rule set to
simple higher order thm eqn cxt . All other fields are empty.

Usage Notes With this proof context, rewriting treats the rewriting theorems as higher order
rewrite rules. For example, rewriting with the theorem prenex clauses (q.v.) will convert a term
into prenex normal form.
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SML

(∗ Proof Context : ′sum ∗)
Description A “mild” component proof context for theory sum.

Contents Rewriting:

‘ ` ∀ x1 x2 y1 y2 z
• (InL x1 = InL x2 ⇔ x1 = x2 )
∧ (InR y1 = InR y2 ⇔ y1 = y2 )
∧ ¬ InL x1 = InR y1
∧ ¬ InR y1 = InL x1
∧ OutL (InL x1 ) = x1
∧ OutR (InR y1 ) = y1‘
∧ IsL(InL x1 ) ∧ IsR(InR y1 )
∧ ¬ IsL(InR y1 ) ∧ ¬ IsR(InL x1 )

Stripping theorems:

‘ ` ∀ x1 x2 y1 y2 z
• (InL x1 = InL x2 ⇔ x1 = x2 )
∧ (InR y1 = InR y2 ⇔ y1 = y2 )
∧ ¬ InL x1 = InR y1
∧ ¬ InR y1 = InL x1‘
∧ IsL(InL x1 ) ∧ IsR(InR y1 )
∧ ¬ IsL(InR y1 ) ∧ ¬ IsR(InL x1 )

Stripping conclusions:

‘ ` ∀ x1 x2 y1 y2 z
• (InL x1 = InL x2 ⇔ x1 = x2 )
∧ (InR y1 = InR y2 ⇔ y1 = y2 )
∧ ¬ InL x1 = InR y1
∧ ¬ InR y1 = InL x1‘
∧ IsL(InL x1 ) ∧ IsR(InR y1 )
∧ ¬ IsL(InR y1 ) ∧ ¬ IsR(InL x1 )

Existential clausal definition theorems:

‘` ∀ f g• ∃1 h• (∀ x• h (InL x ) = f x ) ∧ (∀ x• h (InR x ) = g x )‘

Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory sum.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



7.7. Proof Contexts 351

SML

(∗ Proof Context : ′one ∗)
Description A component proof context for theory one

Contents Rewriting (these both have the problem that their discrimination net entry will match
anything):

one def , one fns thm

Stripping theorems:

‘ ` ∀ x y : ONE • (x = y) ⇔ T‘
‘ ` ∀ x y : ′a → ONE • (x = y) ⇔ T‘
and through ¬
Stripping conclusions:

‘ ` ∀ x y : ONE • (x = y) ⇔ T‘
‘ ` ∀ x y : ′a → ONE • (x = y) ⇔ T‘
and through ¬
Automatic proof procedures are respectively basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory one. As when entered into the rewriting net the rewriting
theorems will match any term presented to the net, this proof context will slow down rewriting.

SML

(∗ Proof Context : ′combin ∗)
Description A component proof context for theory combin

Contents Rewriting:

comb i def , comb k def , o def , o i thm

Stripping theorems:

Stripping conclusions:

Automatic proof procedures are, respectively, basic prove tac, basic prove conv and no existence
prover.

Usage Notes Requires theory combin.
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SML

(∗ Proof Context : ′sets alg ∗)
Description A “mild” component proof context for theory set .

Contents Rewriting:

∈ comp conv , ∈ enum set conv , complement clauses,
∪ clauses, ∩ clauses, set dif clauses, ª clauses,
⊆ clauses, ⊂ clauses,

⋃
clauses,⋂

clauses, P clauses
‘ ` ∀ x y

• ¬ x ∈ {}
∧ x ∈ Universe
∧ (x ∈ {y} ⇔ x = y)‘

Stripping theorems:

∈ comp conv , ∈ enum set conv , ∈ in clauses
⊆ clauses, ⊂ clauses
plus these all pushed in through ¬
Stripping conclusions:

∈ comp conv , ∈ enum set conv , ∈ in clauses
⊆ clauses, ⊂ clauses
plus these all pushed in through ¬
Automatic proof procedures are respectively basic prove tac, basic prove conv and the existence
prover preprocessor:

TOP MAP C (all ∃ uncurry conv AND OR C sets simple ∃ conv)

. The preprocessor causes set membership (∈) to be treated as function application in some cases.

Usage Notes Should not be used with proof context “′sets ext”, requires theory sets.
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SML

(∗ Proof Context : ′sets ext ∗)
Description A component proof context for theory set , “aggressively” using the extensionality
of sets.

Contents Rewriting:

∈ comp conv , ∈ enum set conv , ∈ in clauses, sets ext clauses

Stripping theorems:

∈ comp conv , ∈ enum set conv , ∈ in clauses, sets ext clauses
plus these all pushed in through ¬
Stripping conclusions:

∈ comp conv , ∈ enum set conv , ∈ in clauses, sets ext clauses
plus these all pushed in through ¬
Automatic proof procedures are respectively basic prove tac, basic prove conv and the existence
prover preprocessor:

TOP MAP C (all ∃ uncurry conv AND OR C sets simple ∃ conv)

The preprocessor causes set membership (∈) to be treated as function application in some cases.

Usage Notes Should not be used with proof context “′sets alg”, requires theory sets.

SML

(∗ Proof Context : sets ext ∗)
Description A complete proof context for reasoning about sets within the predicate calculus,
“aggressively” using the extensionality of sets.

Contents Proof contexts “′sets ext” and “predicates”.

Usage Notes Requires theory sets. The proof context “′sets ext1” offers a much more useful
treatment of sets of pairs.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



354 Chapter 7. PROOF IN HOL

SML

(∗ Proof Context : ′sets ext1 ∗)
Description A component proof context for theory set , including sets of pairs, “aggressively”
using the extensionality of sets.

Contents Rewriting:

∈ comp conv , ∈ enum set conv , ∈ in clauses,
sets eq conv , ⊆ conv , ⊂ conv

Stripping theorems:

∈ comp conv , ∈ enum set conv , ∈ in clauses,
sets eq conv , ⊆ conv , ⊂ conv
plus these all pushed in through ¬
Stripping conclusions:

∈ comp conv , ∈ enum set conv , ∈ in clauses,
sets eq conv , ⊆ conv , ⊂ conv
plus these all pushed in through ¬
Automatic proof procedures are respectively basic prove tac, basic prove conv and the existence
prover preprocessor:

TOP MAP C (all ∃ uncurry conv AND OR C sets simple ∃ conv)

The preprocessor causes set membership (∈) to be treated as function application in some cases.

Usage Notes Should not be used with proof context “′sets alg”, requires theory sets.

SML

(∗ Proof Context : sets ext ∗)
Description A complete proof context for reasoning about sets within the predicate calculus,
“aggressively” using the extensionality of sets.

Contents Proof contexts “′sets ext” and “predicates”.

Usage Notes Requires theory sets.

SML

(∗ Proof Context : sets ext1 ∗)
Description A complete proof context for reasoning about sets, including sets of pairs, within
the predicate calculus, “aggressively” using the extensionality of sets.

Contents Proof contexts “′sets ext1” and “predicates”.

Usage Notes Requires theory sets. The proof context “sets ext1” offers a much more useful
treatment of sets of pairs.

SML

(∗ Proof Context : hol ∗)
Description A “mild” complete proof context for the ancestors of theory hol

Contents Proof contexts “basic hol”, “′sum”, “′combin”, and “′sets alg”.

Automatic proof procedures are respectively basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory hol .
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SML

(∗ Proof Context : hol1 ∗)
Description An “aggressive” complete proof context for the ancestors of theory hol .

Contents Proof contexts “basic hol1”, “′one”, “′sum”, “′combin”, and “′sets ext”.

Automatic proof procedures are respectively basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory hol . The proof context hol2 offers a more useful treatment of
sets of pairs.

SML

(∗ Proof Context : hol2 ∗)
Description An “aggressive” complete proof context for the ancestors of theory hol .

Contents Proof contexts “basic hol1”, “′one”, “′sum”, “′combin”, and “′sets ext1”.

Automatic proof procedures are respectively basic prove tac, basic prove conv and basic prove-
∃ conv (merged in from the proof context of the same name).

Usage Notes Requires theory hol .

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



356 Chapter 7. PROOF IN HOL

SML

val basic prove conv : THM list −> CONV ;

Description This is the conversion used for the automatic proof conversion (pr tac field) of
most supplied proof contexts, and is a reasonable, general-purpose, automatic proof conversion.
It will either prove the theorem with the given conclusion, or fail.

In summary it will:

1. Set the term as the goal of the subgoal package.

2. Attempt to rewrite the term with the current default rewrite rules and given theorems.

3. Repeatedly apply strip tac to the goal.

4. Try all var elim asm tac to do variable elimination.

5. Attempt to prove the resulting goals with resolution for up to 3 resolution steps, with goal’s
negated conclusion as a resolvant that must be used, and the assumptions as possible other
resolvants. This has no effect on any resulting goal if it is unsolved.

6. Attempt to prove the resulting goals with resolution for up to 3 resolution steps amongst
just the assumptions. This has no effect on any resulting goal if it is unsolved.

7. If the proof is successful, return ` term ⇔ T and otherwise fail.

Note that in the stripping step may result in more than one subgoal, and thus the plural “resulting
goals”.

Under the current interface to resolution this equivalent to:

fun basic prove conv thms tm =
⇔ t intro (
tac proof (([],tm),

TRY T (rewrite tac thms) THEN
REPEAT strip tac THEN TRY
(basic res tac2 3 [` ∀ x • x = x ]
ORELSE T basic res tac3 3 [` ∀ x • x = x ]))

)

In the implementation however, partial evaluation with just the theorems is allowed.

Errors

76001 Could not prove theorem with conclusion ?0
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SML

val basic prove tac : THM list −> TACTIC ;

Description This is the tactic used for the automated proof tactic (the pr tac field) of most
supplied proof contexts, and is a reasonable, general-purpose, automatic proof tactic.

In summary it will:

1. Try all var elim asm tac to do variable elimination.

2. Extract the assumption list, rewrite each extracted assumption with the current default
rewrite rules and given theorems, and strip the results back into the assumption list.

3. Attempt to rewrite the resulting goal’s conclusions with the current default rewrite rules
and given theorems.

4. Again try all var elim asm tac to do variable elimination.

5. Repeatedly apply strip tac to the conclusions of the resulting goals.

6. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps,
with goal’s negated conclusion as a resolvant that must be used, and the assumptions as
possible other resolvants. This has no effect on any resulting goal if it is unsolved.

7. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps
amongst just the assumptions. This has no effect on any resulting goal if it is unsolved.

Note that either stripping step may result in more than one subgoal, and thus the plural “resulting
goals”.

Under the current interface to resolution this is

fun basic prove tac thms =
TRY T all var elim asm tac THEN
DROP ASMS T (MAP EVERY (strip asm tac o rewrite rule thms) o rev) THEN
(TRY T (rewrite tac thms)) THEN
TRY T all var elim asm tac THEN
REPEAT strip tac THEN TRY
(basic res tac2 3 [` ∀ x • x = x ]
ORELSE T basic res tac3 3 [` ∀ x • x = x ])
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SUPPORT FOR Z

8.1 Syntactic Manipulations

In the following descriptions of derived term constructors for Z it has been convenient to describe
the effects of constructors using Z language quotations. In doing so quotations have sometimes been
used which would not in fact be acceptable to the Z parser. The most frequent example of these is
in quoting the declaration part of variable binding constructs in Z. The Z parser will not accept such
declarations in isolation from the variable binding construct of which they form a part, but the most
readable description of the effect of the constructor is obtained if we describe this as if the parser
did accept such declarations in isolation.

In practice the best way of obtaining the term corresponding to the declaration part of such a
construct is to parse a horizontal schema containing the required declaration part, and then take it
apart using the appropriate destructor.

SML

signature ZTypesAndTerms = sig

Description The Z Abstract Machine functions are packaged into this signature.

SML

datatype BDZ
= BdzOk of Z TERM
| BdzNotZ of int
| BdzFail of {

BdzFCode : int ,
BdzFCompc : int ,
BdzFArgc : int
}

;

Description The return value from function basic dest z term. The BdzFail constructor gives
information primarily intended for use by the Z pretty printer.

See Also Function basic dest z term.
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SML

datatype Z TERM =
ZDec of TERM list ∗ TERM | ZSchemaDec of TERM ∗ string

| ZDecl of TERM list
| ZEq of TERM ∗ TERM | Z∈ of TERM ∗ TERM
| ZTrue | ZFalse
| Z¬ of TERM | Z¬s of TERM
| Z∧ of TERM ∗ TERM | Z∧s of TERM ∗ TERM
| Z∨ of TERM ∗ TERM | Z∨s of TERM ∗ TERM
| Z⇒ of TERM ∗ TERM | Z⇒s of TERM ∗ TERM
| Z⇔ of TERM ∗ TERM | Z⇔s of TERM ∗ TERM
| Z∃ of TERM ∗ TERM ∗ TERM | Z∃s of TERM ∗ TERM ∗ TERM
| Z∃1 of TERM ∗ TERM ∗ TERM | Z∃1s of TERM ∗ TERM ∗ TERM
| Z∀ of TERM ∗ TERM ∗ TERM | Z∀s of TERM ∗ TERM ∗ TERM
| ZSchemaPred of TERM ∗ string
| ZLVar of string ∗ TYPE ∗ TERM list | ZGVar of string ∗ TYPE ∗ TERM list
| ZInt of string | ZString of string
| ZFloat of TERM ∗ TERM ∗ TERM | Z〈〉 of TYPE ∗ TERM list
| ZSetd of TYPE ∗ TERM list | ZSeta of TERM ∗ TERM ∗ TERM
| ZP of TERM
| ZTuple of TERM list
| ZBinding of (string ∗ TERM ) list
| Z× of TERM list
| Zθ of TERM ∗ string
| ZSels of TERM ∗ string
| ZSelt of TERM ∗ int | Zµ of TERM ∗ TERM ∗ TERM
| ZApp of TERM ∗ TERM | Zλ of TERM ∗ TERM ∗ TERM
| ZLet of (string ∗ TERM ) list ∗ TERM
| ZHSchema of TERM ∗ TERM
| ZDecors of TERM ∗ string | ZPres of TERM
| Z¹s of TERM ∗ TERM | ZHides of TERM ∗ string list
| Z∆s of TERM | ZΞs of TERM
| Zo

9s of TERM ∗ TERM
| ZRenames of TERM ∗ (string ∗ string) list
;

Description This datatype corresponds to a version of the abstract syntax of Z in which recur-
sion has been removed and the distinction between declarations, predicates and terms ignored. It
is used by the generalised mapping functions mk z TERM , is z term and dest z term (q.v.).

SML

datatype Z TYPE = ZGivenType of string
| ZVarType of string
| ZPowerType of TYPE
| ZTupleType of TYPE list
| ZSchemaType of (string ∗ TYPE ) list ;

Description This datatype is a representation of the abstract syntax of Z types. It is used by
the generalised mapping functions mk z TYPE , is z type and dest z type (q.v.). The operand
of ZGivenType is the HOL name of the type.
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SML

val basic dest z term : TERM ∗ TERM list −> BDZ ;

Description Function basic dest z term does the work of destroying a term to yield its Z struc-
ture. The arguments are in the result of applying strip app to a term.

A call of ‘basic dest z term(strip app zt)’ will attempt to destroy the Z term zt , if successful
(i.e., zt is a valid Z term) then BdzOk is returned with the appropriate Z TERM value. If zt
is not a valid Z term then one of the other BDZ constructors is returned, these include an error
code indicating what was wrong with the term. A BdzFail is returned when the term is similar to
a Z term (i.e., it has a known constructor but the wrong number of arguments). In this case the
BdzFCompc and BdzFArgc fields tell how many component lists and arguments (respectively) are
allowed in a well formed Z term. A BdzNotZ is returned when the term is not recognisable as a
Z term. In cases where insufficient component lists or arguments are given to a known constructor
either BdzFail or BdzNotZ may be returned.

All of the error codes of function dest z term may be returned by this function.

See Also Functions: dest z term and strip app; and, datatype BDZ .

SML

val dest z name1 : string −> string ∗ string OPT ;
val dest z name2 : string −> string OPT −> string list list ∗ string OPT ;

Description Supplying dest z name2 with the result of dest z name1 gives the same overall
result as dest z name q.v. These functions allow the destruction of the component names and
projection part to be deferred for efficiency, in case they are not required.

Errors

47000 ?0 is not a Z constant name

SML

val dest z name : string −> string ∗ string list list ∗ string OPT ;

Description Analyses the names of Z semantic constants, returning the basic name and lists
of embedded component names. If the name is a projection, then the projection part is also
returned.
Errors

47000 ?0 is not a Z constant name
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SML

val dest z term : TERM −> Z TERM ;

Description Converts a HOL term, which represents a valid Z term, to the appropriate
Z TERM .

See Also dest z term1 which makes a more careful check, especially of schema constructs.

Errors

47900 ?0 is not a Z term
47901 ?0 is not a Z package
47910 ?0 is not a Z simple declaration
47911 ?0 is not a Z schema declaration
47912 ?0 is not a Z declaration
47920 ?0 is not a Z existential quantification
47921 ?0 is not a Z unique existential quantification
47922 ?0 is not a Z universal quantification
47923 ?0 is not a Z schema as a predicate
47110 ?0 is not a Z sequence display
47120 ?0 is not a Z set display
47130 ?0 is not a Z set comprehension
47170 ?0 is not a Z θ term
47190 ?0 is not a Z function application
47200 ?0 is not a Z λ abstraction
47936 ?0 is not a Z definite description
47937 ?0 is not a Z let expression
47940 ?0 is not a Z schema
47941 ?0 is not a Z schema existential quantification
47942 ?0 is not a Z schema unique existential quantification
47943 ?0 is not a Z schema universal quantification

SML

val dest z type : TYPE −> Z TYPE ;

Description Converts a HOL type, which represents a valid Z type, to the appropriate
Z TYPE .
Errors

47800 ?0 is not a Z type

SML

val gvar subst : TERM −> (TERM ∗ TERM ) list ;

Description Given an arbitrary term, t , gvar subst creates a substitution mapping those free
variables of t (in the HOL sense) which have the same names as Z global variables (i.e. HOL
constants) in the current scope to the appropriate instances of those global variables (with generic
instantiation using U as necessary). The resulting substitution may then be used with subst , q.v.,
to “bind” the term into the current scope.

SML

val is z term : TERM −> bool ;

Description Tests if a given HOL term is valid Z in its top level structure.

Uses Recursively in well-formedness checks.

See Also is z term1 for a more complete check of top level structure, is z for a full traversal
of the terms structure.
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SML

val is z type : TYPE −> bool ;

Description Tests if a given HOL type represents a valid Z type.

Uses Recursively in well-formedness checks.

SML

val mk dollar quoted string : string −> string ;
val dest dollar quoted string : string −> string ;
val is dollar quoted string : string −> bool ;

Description The Z parser allows an arbitrary ML character string to be used to form an
identifier. These functions implement the encoding used to embed an arbitrary ML string in the
name of a Z variable:
Example

mk dollar quoted string"<ext−name>" = "$\"<ext−name>\""
dest dollar quoted string"$\"<ext−name>\"" = "<ext−name>"
is dollar quoted string"$\"<ext−name>\"" = true
is dollar quoted string"\"<ext−name>\"" = false

Errors

47001 ?0 is not a valid dollar−quoted string

SML

val mk u : TYPE −> TERM ;
val is u : TERM −> bool ;
val dest u : TERM −> TYPE ;

Description These functions create, test for, and destroy terms of the form U[Totality ] which
are used by the Z type inferrer to stand for elided generic actual parameters. The type parameter
to mk u and the result of dest u is the type of the U-term in question.

Errors

47950 ?0 is not of the form pU[Totality ]q
47951 ?0 is not an instance of p:′a SETq

SML

val mk z app : TERM ∗ TERM −> TERM ;
val is z app : TERM −> bool ;
val dest z app : TERM −> TERM ∗ TERM ;

Description Z function application. The first argument must be a set of pairs, the second must
have the same type as the first elements of the pairs.

Definition

mk z app(pZ f q,pZaq) = pZ(f a)q
Errors

47190 ?0 is not a Z function application
47191 ?0 has the wrong type to be a Z function
47192 ?0 has the wrong type to be applied to ?1
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SML

val mk z binding : (string ∗ TERM ) list −> TERM ;
val is z binding : TERM −> bool ;
val dest z binding : TERM −> (string ∗ TERM ) list ;

Description The binding constructor.

Definition

mk z binding [("n1",pZt1q),...,("nn",pZtnq)] = pZ(n1 =̂t1 ,...,nn=̂tn)q
Errors

47151 ?0 is not a Z binding
47152 Cannot bind more than one value to ?0

SML

val mk z decl : TERM list −> TERM ;
val is z decl : TERM −> bool ;
val dest z decl : TERM −> TERM list ;

Description Constructor, discriminator and destructor functions for the declaration part of a
schema text. Its arguments must be made using mk z dec or mk z schema dec.

Definition

mk z decl [pZt1q,...,pZtnq] = pZt1 ;...;tnq
Errors

47912 ?0 is not a Z declaration
3012 ?0 and ?1 do not have the same types

SML

val mk z decors : TERM ∗ string −> TERM ;
val is z decors : TERM −> bool ;
val dest z decors : TERM −> TERM ∗ string ;

Description Constructor, discriminator and destructor functions for systematic decoration of
schemas. The first argument must be a schema, the second a decoration.

Example

mk z decor s(pZ [a,b,c:X | a = b]q,"′") = pZ [a ′,b′,c′:X | a ′ = b′]q
Errors

47340 ?0 is not a Z decorated schema
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SML

val mk z dec : TERM list ∗ TERM −> TERM ;
val is z dec : TERM −> bool ;
val dest z dec : TERM −> TERM list ∗ TERM ;

Description Makes a simple declaration of one or more variables of the same type for use in
the declaration part of a schema text.

Definition

mk z dec([pZv1q,...,pZvnq],pZSq) = pZv1 ,...vn : Sq

Where the v i and the members of S must have the same type.

Uses May only be used to make arguments for mk z decl .

Errors

47060 ?0 is not a Z set
3012 ?0 and ?1 do not have the same types
3017 An empty list argument is not allowed
47061 ?0 is not a Z simple declaration

SML

val mk z eq : TERM ∗ TERM −> TERM ;
val is z eq : TERM −> bool ;
val dest z eq : TERM −> TERM ∗ TERM ;

Description Equality. For the moment this is the same as HOL equality, but this is likely to
change in the future. Both arguments must be of the same type.

Definition

mk z eq(pZaq,pZbq) = pZ(a = b)q
Errors

3012 ?0 and ?1 do not have the same types
47220 ?0 is not a Z equality

SML

val mk z false : TERM ;
val is z false : TERM −> bool ;

Description The Z constant false. It is the same as the HOL constant F .

SML

val mk z float : TERM ∗ TERM ∗ TERM −> TERM ;
val is z float : TERM −> bool ;
val dest z float : TERM −> TERM ∗ TERM ∗ TERM ;

Description Constructor, discriminator and destructor functions for floating point literals. The
argument is a triple of terms of type Z giving the mantissa, the number of digits after the decimal
point and the exponent in that order, i.e., the triple (x , p, e) represents the real number x×10 e−p .

Errors

47107 ?0 is not a Z floating point literal
47108 ?0 does not have type Z
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SML

val mk z given type : string −> TYPE ;
val is z given type : TYPE −> bool ;
val dest z given type : TYPE −> string

Description These are the constructor, discriminator and destructor functions for the types of
given sets. The type names used by these functions are the HOL names.

Errors

47010 ?0 is not a Z given type

SML

val mk z gvar : string ∗ TYPE ∗ TERM list −> TERM ;
val is z gvar : TERM −> bool ;
val dest z gvar : TERM −> string ∗ TYPE ∗ TERM list ;

Description Constructor, discriminator and destructor functions for global variables. If the
third argument is the empty list, this function is the same as the HOL mk const function, other-
wise a generic constant is created, the third argument being the generic actual parameters.

Errors

47100 ?0 is not a Z global variable

SML

val mk z hides : TERM ∗ string list −> TERM ;
val is z hides : TERM −> bool ;
val dest z hides : TERM −> TERM ∗ string list ;

Description The schema hiding constructor. The first argument must be a schema, the second
is a list of components to be hidden.

Definition

mk z hides(pZSq,["c1",..."cn"]) = pZS \ (c1 ,...,cn)q
Errors

47420 ?0 is not a Z schema hiding

SML

val mk z h schema : TERM ∗ TERM −> TERM ;
val is z h schema : TERM −> bool ;
val dest z h schema : TERM −> TERM ∗ TERM ;

Description The schema constructor. The first argument is a declaration constructed using
mk z decl , the second is a predicate.

Definition

mk z h schema(pZdq,pZpq) = pZ [d | p]q
Errors

47940 ?0 is not a Z schema

SML

val mk z int : string −> TERM ;
val is z int : TERM −> bool ;
val dest z int : TERM −> string ;

Description Constructor, discriminator and destructor functions for integer literals. The ar-
gument should be a numeral, the result is the corresponding positive integer.

Errors

47105 ?0 is not a Z integer
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SML

val mk z let : (string ∗ TERM ) list ∗ TERM −> TERM ;
val is z let : TERM −> bool ;
val dest z let : TERM −> (string ∗ TERM ) list ∗ TERM ;

Description The let-term constructor. The arguments are list of pairs, each comprising a local
variable name and a defining term for that local variable, and a term giving the body of the
let-expression.

Definition

mk z let([("v", pZdtq), ...], pZbq) = pZ let v =̂ dt ; ... • tq
Errors

47211 ?0 is not a Z let term

SML

val mk z lvar : string ∗ TYPE ∗ TERM list −> TERM ;
val is z lvar : TERM −> bool ;
val dest z lvar : TERM −> string ∗ TYPE ∗ TERM list ;

Description Constructor, discriminator and destructor functions for local variables. If the third
argument is the empty list, this function is the same as the HOL mk var function, otherwise a
generic variable is created, the third argument being the generic actual parameters.

Errors

47090 ?0 is not a Z local variable

SML

val mk z power type : TYPE −> TYPE ;
val is z power type : TYPE −> bool ;
val dest z power type : TYPE −> TYPE ;

Description Set type constructor.

Definition

mk z power type ty = P ty

Errors

47030 ?0 is not a Z set type

SML

val mk z pres : TERM −> TERM ;
val is z pres : TERM −> bool ;
val dest z pres : TERM −> TERM ;

Description The schema precondition constructor. The argument must be a schema.

Definition

mk z pres pZSq = pZpre Sq
Errors

47350 ?0 is not a Z schema precondition
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SML

val mk z renames : TERM ∗ (string ∗ string)list −> TERM ;
val is z renames : TERM −> bool ;
val dest z renames : TERM −> TERM ∗ (string ∗ string)list ;

Description The schema renaming construct. Its argument must be a schema.

Definition

mk z renames (pZSq,[("x 1","y1"),...]) =
pZS [x1/y1 ,...]q

Errors

47461 ?0 is not a Z schema renaming
47462 Cannot rename ?0 to more than one name
47463 Cannot rename more than one name to ?0

SML

val mk z schema dec : TERM ∗ string −> TERM ;
val is z schema dec : TERM −> bool ;
val dest z schema dec : TERM −> TERM ∗ string ;

Description Constructor, discriminator and destructor functions for the components of a
schema (the first argument), systematically decorated with the second argument.

Uses May only be used to make arguments for mk z decl .

Errors

47940 ?0 is not a Z schema
47071 ?0 is not a Z schema as a declaration

SML

val mk z schema pred : TERM ∗ string −> TERM ;
val is z schema pred : TERM −> bool ;
val dest z schema pred : TERM −> TERM ∗ string ;

Description The schema as predicate constructor. The first argument must be a schema, the
second is an optional decoration.

Errors

47940 ?0 is not a Z schema
47320 ?0 is not a Z schema as a predicate expression

SML

val mk z schema type : (string ∗ TYPE ) list −> TYPE ;
val is z schema type : TYPE −> bool ;
val dest z schema type : TYPE −> (string ∗ TYPE ) list ;

Description Binding type constructor.

Definition

mk z schema type [(c1 ,ty1 ),...,(cn,tyn)] = [c1 :ty1 ; ... ; cn:tyn]

Errors

47050 ?0 is not a Z binding type
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SML

val mk z sels : TERM ∗ string −> TERM ;
val is z sels : TERM −> bool ;
val dest z sels : TERM −> TERM ∗ string ;

Description Selection of a component from a binding. The type of the first argument must be
a binding and the second argument must be a component of that type.

Definition

mk z sel(pZSq,"c") = pZS .cq
Errors

47180 ?0 is not a Z selection

SML

val mk z selt : TERM ∗ int −> TERM ;
val is z selt : TERM −> bool ;
val dest z selt : TERM −> TERM ∗ int ;

Description Selection of a component from a tuple. The type of the first argument must be a
tuple and the second argument must be a component in that tuple.

Definition

mk z sel t(pZTupq, i) = pZTup.iq
Errors

47185 ?0 is not a Z tuple selection

SML

val mk z seta : TERM ∗ TERM ∗ TERM −> TERM ;
val is z seta : TERM −> bool ;
val dest z seta : TERM −> TERM ∗ TERM ∗ TERM ;

Description Constructor, discriminator and destructor functions for set comprehension. The
three arguments represent the declaration, predicate and body parts of the set comprehension
and so must have the appropriate types. In particular, the first argument must be made using
mk z decl .
Definition

mk z seta(pZdq,pZpq,pZvq) = pZ{d | p • v}q
Errors

47130 ?0 is not a Z set comprehension

SML

val mk z setd : TYPE ∗ TERM list −> TERM ;
val is z setd : TERM −> bool ;
val dest z setd : TERM −> TYPE ∗ TERM list ;

Description Constructor, discriminator and destructor functions for finite set displays. The
result is the set made from the terms in the second argument, each of whose types must be the
same as the first argument.

Definition

mk z setd(ty ,[pZt1q,...,pZtnq]) = pZ{t1 ,...,tn}q
Where the t i all have type ty .

Errors

47120 ?0 is not a Z set display
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SML

val mk z string : string −> TERM ;
val is z string : TERM −> bool ;
val dest z string : TERM −> string ;

Description Constructor, discriminator and destructor functions for string literals. The argu-
ment should be a string, the result is the corresponding string quotation.

Errors

47106 ?0 is not a Z string

SML

val mk z term : Z TERM −> TERM ;

Description Given any Z TERM , mk z TERM calls the appropriate abstract machine mk
function.

SML

val mk z true : TERM ;
val is z true : TERM −> bool ;

Description The Z constant true. It is the same as the HOL constant T .

SML

val mk z tuple type : TYPE list −> TYPE ;
val is z tuple type : TYPE −> bool ;
val dest z tuple type : TYPE −> TYPE list ;

Description Cartesian product type constructor.

Definition

mk z tuple type [ty1 ,...,tyn] = ty1 × ... × tyn

Errors

47040 ?0 is not a Z tuple type

SML

val mk z tuple : TERM list −> TERM ;
val is z tuple : TERM −> bool ;
val dest z tuple : TERM −> TERM list ;

Description The tuple constructor.

Definition

mk z tuple [pZt1q,...,pZtnq] = pZ(t1 ,...,tn)q
Errors

47150 ?0 is not a Z tuple

SML

val mk z type : Z TYPE −> TYPE ;

Description Given any Z TYPE , mk z type calls the appropriate abstract machine mk func-
tion.

SML

val mk z var type : string −> TYPE ;
val is z var type : TYPE −> bool ;
val dest z var type : TYPE −> string ;

Description The type of generic parameters.

Errors

47020 ?0 is not a Z type variable
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SML

val mk z ∆s : TERM −> TERM ;
val is z ∆s : TERM −> bool ;
val dest z ∆s : TERM −> TERM ;

Description The delta constructor. Its argument must be a schema.

Definition

mk z ∆s pZSq = pZ∆Sq
Errors

47460 ?0 is not a Z ∆

SML

val mk z ∈ : TERM ∗ TERM −> TERM ;
val is z ∈ : TERM −> bool ;
val dest z ∈ : TERM −> TERM ∗ TERM ;

Description Set membership. The second argument must be a set, whose members have the
same type as the first argument.

Definition

mk z ∈(pZaq,pZbq) = pZ(a ∈ b)q
Errors

47230 ?0 is not a Z set membership

SML

val mk z Ξs : TERM −> TERM ;
val is z Ξs : TERM −> bool ;
val dest z Ξs : TERM −> TERM ;

Description The xi constructor. Its argument must be a schema.

Definition

mk z Ξ s pZSq = pZΞSq
Errors

47470 ?0 is not a Z Ξ

SML

val mk z ⇔s : TERM ∗ TERM −> TERM ;
val is z ⇔s : TERM −> bool ;
val dest z ⇔s : TERM −> TERM ∗ TERM ;

Description The schema equivalence constructor. Both arguments must be schemas.

Definition

mk z ⇔s(pZRq,pZSq) = pZR ⇔ Sq
Errors

47400 ?0 is not a Z schema if and only if
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SML

val mk z ⇔ : TERM ∗ TERM −> TERM ;
val is z ⇔ : TERM −> bool ;
val dest z ⇔ : TERM −> TERM ∗ TERM ;

Description If and only if; the same as HOL ⇔. Its argument must be bool type.

Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq
47280 ?0 is not a Z if and only if

SML

val mk z 〈〉 : TYPE ∗ TERM list −> TERM ;
val is z 〈〉 : TERM −> bool ;
val dest z 〈〉 : TERM −> TYPE ∗ TERM list ;

Description Constructor, discriminator and destructor functions for finite sequences. The re-
sult is the sequence made from the terms in the second argument, each of whose types must be
the same as the first argument.

Definition

mk z 〈〉(ty ,[pZt1q,...,pZtnq]) = pZ〈t1 ,...,tn〉q
Where the t i all have type ty .

Errors

47110 ?0 is not a Z sequence display

SML

val mk z ∧s : TERM ∗ TERM −> TERM ;
val is z ∧s : TERM −> bool ;
val dest z ∧s : TERM −> TERM ∗ TERM ;

Description The schema conjunction constructor. Both arguments must be schemas.

Definition

mk z ∧s(pZRq,pZSq) = pZR ∧ Sq
Errors

47370 ?0 is not a Z schema conjunction

SML

val mk z ∧ : TERM ∗ TERM −> TERM ;
val is z ∧ : TERM −> bool ;
val dest z ∧ : TERM −> TERM ∗ TERM ;

Description Conjunction; the same as HOL ∧. Its arguments must be bool type.

Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq
47250 ?0 is not a Z conjunction
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SML

val mk z ∨s : TERM ∗ TERM −> TERM ;
val is z ∨s : TERM −> bool ;
val dest z ∨s : TERM −> TERM ∗ TERM ;

Description The schema disjunction constructor. Both arguments must be schemas.

Definition

mk z ∨s(pZRq,pZSq) = pZR ∨ Sq
Errors

47380 ?0 is not a Z schema disjunction

SML

val mk z ∨ : TERM ∗ TERM −> TERM ;
val is z ∨ : TERM −> bool ;
val dest z ∨ : TERM −> TERM ∗ TERM ;

Description Disjunction; the same as HOL ∨. Its arguments must be bool type.

Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq
47260 ?0 is not a Z disjunction

SML

val mk z ¬s : TERM −> TERM ;
val is z ¬s : TERM −> bool ;
val dest z ¬s : TERM −> TERM ;

Description The schema negation constructor. The argument must be a schema.

Definition

mk z ¬s pZSq = pZ¬Sq
Errors

47360 ?0 is not a Z schema negation

SML

val mk z ¬ : TERM −> TERM ;
val is z ¬ : TERM −> bool ;
val dest z ¬ : TERM −> TERM ;

Errors

3031 ?0 is not of type p:BOOLq
47240 ?0 is not a Z negation

Description Negation; the same as HOL ¬. Its argument must be bool type.

SML

val mk z ⇒s : TERM ∗ TERM −> TERM ;
val is z ⇒s : TERM −> bool ;
val dest z ⇒s : TERM −> TERM ∗ TERM ;

Description The schema implication constructor. Both arguments must be schemas.

Definition

mk z ⇒s(pZRq,pZSq) = pZR ⇒ Sq
Errors

47390 ?0 is not a Z schema implication
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SML

val mk z ⇒ : TERM ∗ TERM −> TERM ;
val is z ⇒ : TERM −> bool ;
val dest z ⇒ : TERM −> TERM ∗ TERM ;

Description Implication; the same as HOL ⇒. Its arguments must be bool type.

Errors

3015 ?1 is not of type p:BOOLq
3031 ?0 is not of type p:BOOLq
47270 ?0 is not a Z implication

SML

val mk z ∀s : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∀s : TERM −> bool ;
val dest z ∀s : TERM −> TERM ∗ TERM ∗ TERM ;

Description The schema universal quantifier constructor. The arguments must be a declaration
(constructed using mk z decl), a predicate and a schema.

Definition

mk z ∀s(pZdq,pZpq,pZSq) = pZ∀d | p • Sq
Errors

47450 ?0 is not a Z schema universal

SML

val mk z ∀ : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∀ : TERM −> bool ;
val dest z ∀ : TERM −> TERM ∗ TERM ∗ TERM ;

Description Constructor, discriminator and destructor functions for universal quantification.
Its arguments must be a declaration (constructed with mk z decl) and two predicates.

Definition

mk z ∀(pZdq,pZpq,pZvq) = pZ∀d |p•vq
Errors

47912 ?0 is not a Z declaration
47310 ?0 is not a Z universal quantification

SML

val mk z ∃1s : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∃1s : TERM −> bool ;
val dest z ∃1s : TERM −> TERM ∗ TERM ∗ TERM ;

Description The schema unique existential quantifier constructor. The arguments must be a
declaration (constructed using mk z decl), a predicate and a schema.

Definition

mk z ∃1 s(pZdq,pZpq,pZSq) = pZ∃1 d | p • Sq
Errors

47440 ?0 is not a Z schema unique existential
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SML

val mk z ∃1 : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∃1 : TERM −> bool ;
val dest z ∃1 : TERM −> TERM ∗ TERM ∗ TERM ;

Description Constructor, discriminator and destructor functions for unique existential quan-
tification. Its arguments must be a declaration (constructed with mk z decl) and two predicates.

Definition

mk z ∃1 (pZdq,pZpq,pZvq) = pZ∃1 d |p•vq
Errors

47912 ?0 is not a Z declaration
47300 ?0 is not a Z unique existential quantification

SML

val mk z ∃s : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∃s : TERM −> bool ;
val dest z ∃s : TERM −> TERM ∗ TERM ∗ TERM ;

Description The schema existential quantifier constructor. The arguments must be a declara-
tion (constructed using mk z decl), a predicate and a schema.

Definition

mk z ∃s(pZdq,pZpq,pZSq) = pZ∃d | p • Sq
Errors

47430 ?0 is not a Z schema existential

SML

val mk z ∃ : TERM ∗ TERM ∗ TERM −> TERM ;
val is z ∃ : TERM −> bool ;
val dest z ∃ : TERM −> TERM ∗ TERM ∗ TERM ;

Description Constructor, discriminator and destructor functions for existential quantification.
Its arguments must be a declaration (constructed with mk z decl) and two predicates.

Definition

mk z ∃(pZdq,pZpq,pZvq) = pZ∃d |p•vq
Errors

47912 ?0 is not a Z declaration
47290 ?0 is not a Z existential quantification

SML

val mk z × : TERM list −> TERM ;
val is z × : TERM −> bool ;
val dest z × : TERM −> TERM list ;

Description The cartesian product constructor.

Definition

mk z × [pZt1q,...,pZtnq] = pZ(t1 × ... × tn)q
Errors

47160 ?0 is not a Z cartesian product
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SML

val mk z o
9s : TERM ∗ TERM −> TERM ;

val is z o
9s : TERM −> bool ;

val dest z o
9s : TERM −> TERM ∗ TERM ;

Description The sequential composition constructor. Its arguments must both be schemas.

Definition

mk z o
9s(pZRq,pZSq) = pZR o

9 Sq
Errors

47480 ?0 is not a Z schema composition

SML

val mk z θ : TERM ∗ string −> TERM ;
val is z θ : TERM −> bool ;
val dest z θ : TERM −> TERM ∗ string ;

Description The theta term constructor. The first argument must be a schema, the second is
an optional decoration.

Definition

mk z θ(pZSq,"′") = pZθS ′q
Errors

47170 ?0 is not a Z θ term

SML

val mk z λ : TERM ∗ TERM ∗ TERM −> TERM ;
val is z λ : TERM −> bool ;
val dest z λ : TERM −> TERM ∗ TERM ∗ TERM ;

Description The lambda constructor. The arguments are a declaration (constructed using
mk z decl q.v.), a predicate and the body of the abstraction.

Definition

mk z λ(pZdq,pZpq,pZvq) = pZλd |p•vq
Errors

47200 ?0 is not a Z λ abstraction
47201 ?0 , ?1 and ?2 are inconsistent in Z

SML

val mk z µ : TERM ∗ TERM ∗ TERM −> TERM ;
val is z µ : TERM −> bool ;
val dest z µ : TERM −> TERM ∗ TERM ∗ TERM ;

Description The definite description constructor. The arguments are a declaration (con-
structed using mk z decl q.v.), a predicate and the body of the definite description.

Definition

mk z µ(pZdq,pZpq,pZvq) = pZµd |p•vq
Errors

47210 ?0 is not a Z µ term
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SML

val mk z P : TERM −> TERM ;
val is z P : TERM −> bool ;
val dest z P : TERM −> TERM ;

Description The powerset constructor.

Definition

mk z P t = P t

Errors

47140 ?0 is not a Z powerset

SML

val mk z ¹s : TERM ∗ TERM −> TERM ;
val is z ¹s : TERM −> bool ;
val dest z ¹s : TERM −> TERM ∗ TERM ;

Description The schema projection constructor. Both arguments must be schemas.

Definition

mk z ¹s(pZRq,pZSq) = pZR ¹ Sq
Errors

47410 ?0 is not a Z schema projection
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8.2 Reasoning about Predicates

SML

signature ZPredicateCalculus = sig

Description This provides a set of rules of inference, conversions and tactics sufficient for
reasoning about the Z predicate calculus in ProofPower. This structure declares the theory
z language ps, which is also used by structures ZSetTheory and ZSchemaCalculus.

SML

(∗ Proof Context : z predicates ∗)
Description A complete proof context for handling the requirements of the Z predicates of
the Z language (as opposed to the mathematical tool-kit). It is composed of proof contexts
“′z predicates” and “′z decl”.

Usage Notes It requires theory z language ps. It is not intended to be mixed with HOL proof
contexts.
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SML

(∗ Proof Context : ′z predicates ∗)
Description A component proof context for handling the requirements of the Z predicates of the
Z language (as opposed to the mathematical tool-kit). It remains purely within the Z language,
and thus lacks the features found in proof context “′z decl” which are necessary for a complete
treatment of Z predicates. (which may be found in proof context “z predicates”).

Predicates treated by this proof context are constructs formed from:

=, ¬, ∧, ∨, ⇒, ⇔, U, ∀ D | P • V , ∃ D | P • V , ∃1 D | P • V

This proof context further handles membership of constructs purely contructed from U, generic
formals, and Z paragraph markers. The language predicate ∈ is treated with the set constructs
that it expresses membership of. Schemas (and especially schema references) as predicates are
treated by “z schemas”, except that this proof context will replace an ill-formed “schema as
predicate” expression with an explicit membership.

Contents Rewriting:

⇔ rewrite thm, ¬ rewrite thm, eq rewrite thm, ∧ rewrite thm, ∨ rewrite thm,
∀ rewrite thm, ⇒ rewrite thm, z schema pred conv1 ,
z ∈ u conv , ‘` P U = U‘, ‘` (U × U × ...) = U‘
‘` {lab1 : U; lab2 : U; lab3 ,lab4 : U; ... } = U‘
z ∀ inv conv , z ∃ inv conv , simplifications as z para pred canon

Stripping theorems:

z ¬ in conv , z ¬ gen pred conv , z ∃ elim conv , z ∃1 conv ,
z schema pred conv1 , z schema pred conv1 pushed in ¬,
z ∈ u conv , z ∈ u conv pushed in ¬, z ∀ inv conv ,
⇒ thm, ⇔ thm, ∀ rewrite thm, eq rewrite thm,
simplifications as z para pred canon

Note that we do not break apart a Z ∀ into HOL quantifiers during theorem stripping.

Stripping conclusions:

z ∀ elim conv , z ¬ in conv , z ¬ gen pred conv , z ∈ u conv ,
z ∈ u conv pushed in ¬, z ∃ inv conv , ⇔ thm, eq rewrite thm,
‘` ∀a b•(a ∨ ¬b) ⇔ (b ⇒ a)‘, ‘` ∀ a b• ¬ a ∨ b ⇔ a ⇒ b‘
‘` ∀ a b• a ∨ b ⇔ ¬ a ⇒ b‘, z schema pred conv1 , z schema pred conv1 pushed in ¬,
simplifications as z para pred canon

Note that we do not break apart a Z ∃ into HOL quantifiers during conclusion stripping.

Rewriting canonicalisation:

∀ rewrite canon, z ¬ rewrite canon, ∧ rewrite canon,
f rewrite canon, z ∀ rewrite canon, z para pred canon, z ⇒ rewrite canon

Notice in particular the use of the HOL ∀ rewrite canon.

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and the list

z ∃ elim conv2 , ALL SIMPLE ∃ C "simplifications as z para pred canon",
basic prove ∃ conv

The existence prover can also handle 1-tuples, 2-tuples, etc, up to 16-tuples. as arguments.

Usage Notes It requires theory z language ps. It is not intended to be mixed with HOL proof
contexts. Use with proof context “′z decl” to handle declarations properly.
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(∗ Proof Context : ′z decl ∗)
Description A component proof context for handling the requirements of converting Z decla-
rations into their implicit predicates, kept separate from “′z predicates” due to it introducing a
small portion of Z library set theoretic reasoning.

The requirement is met by appropriate treatment of:

set display ⊆ set expression

during stripping.

Contents

Rewriting:

Stripping theorems:

z setd ⊆ conv ,
and this pushed in through ¬.

Stripping conclusions:

z setd ⊆ conv ,
and this pushed in through ¬.

Notice how this proof context does not use z setd ⊆ conv for rewriting, but leaves such an effect
to the proof context concerned with extensional reasoning about the Z library.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence provers.

Usage Notes It requires theory z language ps. It is not intended to be mixed with HOL proof
contexts. Used with proof context “′z predicates”.

SML

(∗ Proof Context : ′z fc ∗)
Description A component proof context giving a faster but less general automatic proof capa-
bility than the one supplied in most other proof contexts for Z. The automatic proof procedures
in the proof context are z fc prove tac, z fc prove conv . All other fields are blank.

Usage Notes It requires theory z language ps.

Note that the way proof contexts are merged by push merge pcs is such that to get the faster
automatic proof procedures, one should put ′z fc at the end of the list of proof contexts to
be merged. For example, to work in the Z predicate calculus with the faster automatic proof
procedures, one might use

push merge pcs["z predicates", "′z fc"];
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SML

(∗ check is z : boolean flag ∗)

val set check is z : bool −> bool ;

Description This flag, if true (the default), will cause all Z inference rules and tactics that claim
to remain in the Z language to check any terms they change (i.e. assumptions and conclusions) for
remaining within the Z language. If any fail then the informational message 41004 is used to output
text to the user. If the flag is false, no such checks are made. The checks are computationally
expensive, and the results may be excessively verbose if terms are not all Z.

The function sets the flag to a specified value and retursn the original value.

Errors

41004 The following subterms in the result are not in the Z language: ?0

SML

val all z ∀ intro : THM −> THM ;

Description This will Z universally quantify all free variables in the conclusion of a theorem,
that do not occur in the assumptions. The declaration part will state the variables are of type
pZUq, and the predicate part will just be true. If no variables can be introduced then the original
theorem will be returned.

SML

val check is z thm : string −> THM −> THM ;
val check is z goal : string −> GOAL −> GOAL;
val check is z term : string −> TERM −> TERM ;
val CHECK IS Z T : string −> TACTIC −> TACTIC ;
val check is z conv result : string −> THM −> THM ;

Description For check is z thm, if flag check is z is true then the conclusion and assumptions
of the provided theorem are checked for being within the Z language (except for outermost HOL
universal quantification), and informational message 41005 used if not. The string argument is
used as the name of the calling function in the error message. If the flag is false then there is no
effect. In either case the theorem is passed through unchanged.

check is z goal and check is z term are analogous. CHECK IS Z T checks each of the sub-
goals a tactic requests.

check is z conv result checks that the RHS of the resulting equational theorem, and any assump-
tions are within the Z language. This allows the RHS side of the equation to have outer HOL
universal quantification, and the LHS not to be Z (e.g. in an Z introduction conversion) without
complaint.

Errors

41005 In the result of ?0 the following subterms are not in the Z language: ?1
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val dest z term1 : TERM −> Z TERM ;

Description This function acts as dest z term on terms (i.e. expressions and predicates) in
the Z language, but makes additional checks. This is in contrast to dest z term whose intended
purpose is categorisation and destruction of Z terms with minimal overhead.

The function does not recursively check the constituents of the outermost Z syntactic construction.
For example, it does not check that the constituents of a Z decl are individually in the syntactic
category dec.

Errors

41002 Not within the Z language due to subterm ?0

SML

val is z term1 : TERM −> bool ;

Description Tests if a given HOL term is valid Z in its top level structure.

Uses Recursively in well-formedness checks.

See Also is z term for a less complete check of top level structure, is z for a full traversal of
the terms structure.

SML

val is z : TERM −> bool ;
val is all z type : TYPE −> bool ;

Description If the term (i.e. expression or predicate) or type given is in the range of the
Z mapping for a term or type respectively then these functions will return true. They will
otherwise return false, unless the only form of incorrectness is that the constituents of a Z syntactic
construction are not as required. For example, it does not check that the constituents of a Z decl
are individually in the syntactic category dec.

The test traverses the provided object by using full dest z term (and dest z type for constituent-
types) - the test is passed if the entire term can be broken into non-type and non-term parts (i.e.
primitives such as strings or integers). Otherwise it will fail with the given error message.

Note that a term is a subterm of itself for these purposes.

See Also is z term and is z term1 .
Errors

41002 Not within the Z language due to subterm ?0
41003 Not within the Z language due to containing type ?0

SML

val not z subterms : TERM −> TERM list ;

Description This function will return a list (perhaps empty) of all the subterms that prevent
a term (i.e. expression or predicate) being within the Z language (by the checks of is z , q.v.),
starting with the rightmost subterm that is not Z. The subterms given will be maximal in the
sense that subterms of those given will not be included in the list.
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val set u simp eqn cxt : EQN CXT −> string −> unit ;
val get u simp eqn cxt : string −> (EQN CXT ∗ string)list ;

Description set u simp eqn cxt ec pc name; sets the “icl′u simp” entry of the dictionary of
nets field of the proof context called “pc name” to the equational context ec. This means that
when this named proof context has been made the current proof context (probably merged with
others) it will be “aware” of the equational contexts potential U simplifications.

For example, to make the current proof context aware of the U simplifications of the (in scope)
theory “thy” one would do:

new pc "thy u simp pc";
set u simp eqn cxt (theory u simp eqn cxt "thy") "thy u simp pc";
push merge pcs ("thy u simp pc" :: other desired proof contexts);

One could later update information about the theory (e.g. because new definitions have been
added) by:

set u simp eqn cxt (theory u simp eqn cxt "thy") "thy u simp pc";
set merge pcs ("thy u simp pc" :: other desired proof contexts);

set u simp eqn cxt ex pc name; extracts the U simplification subfields of the named proof con-
text. These subfields are each an equational context paired with its original source proof context
name.

See Also u simp eqn cxt , theory u simp eqn cxt

Errors

51010 There is no proof context with key ?0
51014 Proof context ?0 was created in theory ?1 at a

point now either not in scope, deleted or modified
51016 Proof context ?0 has been committed

SML

val theory u simp eqn cxt : string −> EQN CXT ;

Description theory u simp eqn cxt theory name takes the named theory and checks it for
theorems, definitions and axioms that could be used for creating proof context entries used by
z ∈ u conv .

A theorem is checked by canonicalising it, and accepting those resulting theorems that are equa-
tions between an expression that is not U, and U. Those that can be so used are processed by
thm eqn cxt and then added to the equational context being generated.

Uses This function is primarily intended for the automatic extraction and processing of the
given set and free type definitions of a theory, when building a proof context for a particular
theory.

Note that equational contexts can be joined using list append, @.

See Also u simp eqn cxt , set u simp eqn cxt

Errors As the failures of get defn.
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val u simp eqn cxt : THM list −> EQN CXT ;

Description u simp eqn cxt thms takes each member of thms, and checks and then processes
it for use in creating proof context entries used by z ∈ u conv .

The check is that each theorem is canonicalised with the current proof context’s canonicalisation
function. For each resulting theorem, if it is a universally quantified equation of sets then it is
processed by thm eqn cxt and added into the created equational context. If it is not equation of
sets the theorem is ignored.

Uses This function is primarily intended to aid the construction of proof contexts containing U
simplification material.

Note that equational contexts can be joined using list append, @.

See Also theory u simp eqn cxt , set u simp eqn cxt
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val z basic prove conv : THM list −> CONV ;

Description This is the conversion used for the automatic proof conversion (pr tac field) of
most supplied proof contexts, and is a reasonable, general-purpose, automatic proof conversion.
It will either prove the theorem with the given conclusion, or fail.

In summary it will:

1. Set the term as the goal of the subgoal package (or, more exactly, tac proof ).

2. Attempt to rewrite the term with the current default rewrite rules and given theorems.

3. Repeatedly apply strip tac to the goal.

4. Attempt variable elimination, using all var elim asm tac.

5. In all resulting goals replace all Z quantifiers by their HOL equivalents in both assumptions
and goal.

6. Apply all asm fc tac once to each resulting goal.

7. Attempt to prove the resulting goals with resolution for up to 3 resolution steps, with goal’s
negated conclusion as a resolvant that must be used, and the assumptions as possible other
resolvants.

8. Attempt to prove the resulting goals with resolution for up to 3 resolution steps amongst
just the assumptions.

9. If the proof is successful, return ` term ⇔ T and otherwise fail.

Note that in the stripping step may result in more than one subgoal, and thus the phrase “resulting
goals” is used above.

Under the current interface to resolution this is equivalent to:

fun z basic prove conv thms tm =
⇔ t intro (
tac proof (([],tm),

TRY T (rewrite tac thms) THEN
REPEAT strip tac THEN
TRY T all var elim asm tac THEN
(z quantifiers elim tac THEN
basic res tac2 3 [` ∀ x • x = x ]
ORELSE T basic res tac3 3 [` ∀ x • x = x ]))

);

In the implementation however, partial evaluation with just the theorems is allowed.

Errors

76001 Could not prove theorem with conclusion ?0
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val z basic prove tac : THM list −> TACTIC ;

Description This is the tactic used for the automated proof tactic (the pr tac field) of most
supplied Z proof contexts, and is a reasonable, general-purpose, automatic proof tactic for Z.

In summary it will:

1. Attempt variable elimination, using all var elim asm tac.

2. Extract the assumption list, rewrite each extracted assumption with the current default
rewrite rules and given theorems, and strip the results back into the assumption list.

3. Attempt to rewrite the conclusion of the resulting goal with the current default rewrite rules
and given theorems.

4. Repeatedly apply strip tac to the conclusions of the resulting goals.

5. Again attempt variable elimination, using all var elim asm tac.

6. In all resulting goals replace all Z quantifiers by their HOL equivalents in both assumptions
and goal. This has no effect on any resulting goal if it is unsolved.

7. Apply all asm fc tac once to each resulting goal.

8. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps,
with goal’s negated conclusion as a resolvant that must be used, and the assumptions as
possible other resolvants. This has no effect on any resulting goal if it is unsolved.

9. Attempt to prove each of the resulting goals with resolution for up to 3 resolution steps
amongst just the assumptions. This has no effect on any resulting goal if it is unsolved.

Note that either stripping step may result in more than one subgoal, and thus the plural “resulting
goals”.

Under the current interface to resolution this is

fun z basic prove tac thms =
TRY T all var elim asm tac THEN
DROP ASMS T (MAP EVERY (strip asm tac o rewrite rule thms) o rev) THEN
(TRY T (rewrite tac thms)) THEN
REPEAT strip tac THEN
TRY T all var elim asm tac THEN TRY
(z quantifiers elim tac
THEN basic res tac2 3 [` ∀ x • x = x ]
ORELSE T basic res tac3 3 [` ∀ x • x = x ]);
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val Z DECL C : CONV −> CONV ;

Description Z DECL C applies the supplied conversion to each member of a declaration and
returns the conjunction of the results. It fails if its conversion fails on any member of the decla-
ration.

fun z decl pred conv = Z DECL C z dec pred conv ;

will convert a valid Z declaration into its implicit Z predicate.

Errors

47912 ?0 is not a Z declaration
41012 Supplied conversion failed on one or more members of ?0

SML

val Z DECL INTRO C : CONV −> CONV ;

Description Z DECL INTRO C applies the supplied conversion to each conjunct of a predi-
cate, flattening the conjunctive structure. If this is successful, it attempts to produce a declaration
from the results.

Z DECL INTRO C z pred dec conv will convert certain Z predicates into Z declarations im-
plicitly containing the predicates, and otherwise will fail.

Errors

41013 ?0 not of the form: pZtrueq or pZc1 ∧ ...q where all the ci

may have the supplied conversion applied
41014 ?0 when converted to ?1 cannot be viewed as a declaration

The conversion fails if the supplied conversion fails on any conjunct, returning the error message
of that conversion application.
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val z decl pred conv : CONV ;

Description A conversion which rewrites an explicit Z declaration (i.e. a decl) to its implicit
predicate. An Z declaration may be found, e.g., as a component of a Z horizontal schema.
A declaration consists of a list of components (each a dec), that are individually converted into
predicates, and the results conjoined. The predicate implicit in a declaration, D , is also sometimes
referred to as the “predicate from D”.

The function is defined much as if by the following:

Definition

val z decl pred conv = Z DECL C z dec pred conv ;

Thus the handling of the individual declarations is as shown in the following examples:

Conversion

` pMLdecl of pZ [x : X ; y , z : Y ; S ]qq ⇔
x ∈ X ∧ {y , z} ⊆ Y ∧ S

z decl pred conv
(decl of pZ [x : X ; y , z : Y ; S ]q)

and
Conversion

` pMLdecl of pZ []qq ⇔ true
z decl pred conv (decl of pZ []q)

Note that a declaration on its own is not a Z expression, though it may be correctly embedded
within certain forms of Z expressions.

See Also z dec pred conv

Errors

47912 ?0 is not a Z declaration
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val z dec pred conv : CONV ;

Description A conversion which rewrites a dec part of a declaration to its implicit predicate.
A decsexp type of declaration remains unchanged (since decsexp and predsexp are, in fact, the
same thing).

Conversion

` pMLmk z dec([pZxq],pZX q)q ⇔ x ∈ X
z dec pred conv
(mk z dec([pZxq],pZX q))

and
Conversion

` pMLmk z dec([pZxq,...],pZX q)q ⇔
{x1 ,...} ⊆ X

z dec pred conv
(mk z dec([pZxq,...],pZX q))

and
Conversion

` S ⇔ S
z dec pred conv
pZSq

where S is a schema (here promoted to a predicate). In this last case if the schema as predicate
expression is not well-formed Z (perhaps because of substitution of variables) the result will be
further converted to correct Z of the form:

binding ∈ schema

Note that a declaration on its own is not a Z expression, though it may be correctly embedded
within certain forms of Z expressions.

See Also z pred dec conv

Errors

41010 ?0 is not a declaration

SML

val z fc prove conv : THM list −> CONV

Description This is the automatic proof conversion supplied in the proof context ′z fc. It is
based on the automatic proof tactic z fc prove tac, q.v., and is defined, in effect as:

fun z fc prove conv (thms: THM list) : CONV = (fn tm =>
⇔ t intro (tac proof (([],tm), z fc prove tac thms))

);
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val z fc prove tac : THM list −> TACTIC

Description The resolution-based proof procedure z basic prove tac supplied as the automatic
proof tactic in many of the the proof contexts for Z may be found to be somewhat slow on complex
problems. z fc prove tac supplies a less general but quicker alternative based on forward chaining
(in the sense of fc tac. It is supplied as the automatic proof tactic field in the proof context ′z fc.
Its effect may be described as follows:

1. Attempt variable elimination, using all var elim asm tac.

2. Extract the assumption list, rewrite each assumption as it is extracted with the current
default rewrite rules and given theorems, and strip the results back into the assumption list.

3. Attempt to rewrite the conclusions of the resulting goals with the current default rewrite
rules and the argument theorems.

4. Apply contr tac.

5. Again attempt variable elimination, using all var elim asm tac.

6. In all resulting goals replace all Z quantifiers by their HOL equivalents.

7. Apply all asm fc tac.

8. Generate (universally quantified) implications from the assumptions using the canonicali-
sation function fc canon1 . The go through three forward chaining passes (in the sense of
fc tac) using these implications as a starting point. At the end of each pass any generated
results are both stripped into the assumptions and processed with fc canon1 to be passed
on as additional implications for the subsequent pass.

For example, the tactic will prove the following goal:

([], pZ
(∀ x1 : Z • x1 ∈ A ⇒ x1 ∈ B) ∧
(∀ x1 : U; x2 : U • (x1 , x2 ) ∈ B C x ⇔ (x1 , x2 ) ∈ B C x ′) ∧
x1 ∈ A ∧
x1 ∈ Z ∧
(x1 , x2 ) ∈ x ⇒ (x1 , x2 ) ∈ x ′

q);
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val z gen pred elim : TERM list −> THM −> THM ;
val z gen pred elim1 : TERM −> THM −> THM ;

Description Eliminate (some of) the generic formals of a generic predicate for actual values.
If possible, the theorem will be type instantiated to allow generic formals to match the types of
the supplied TERM list , otherwise the rule fails.

Rule

Γ ` [X1 ,...] (t [X1 ,...])
Γ ` t [t1 ,...]

z gen pred elim
[t1 ,...]

z gen pred elim1 is just like z gen pred elim except that its argument is a term rather than a
list of terms. z gen pred elim1pZ(t1 , ...)q is equivalent to z gen pred elim[pZt1q, ...]; if the term
argument, t , is not a Z tuple, z gen pred elim1pZtq is equivalent to z gen pred elim[pZtq]. The
advantage of z gen pred elim1 is that in a call such as z gen pred elim1pZ(U, U, U)q, the Z
type inferrer can assign a more general type to the occurrences of U than it does in the call
z gen pred elim[pZUq, pZUq, pZUq].

Errors

41033 ?0 is not of the form: pZΓ ` [X1 ,...]tq where the types
of the theorem can be instantiated to allow the types of the generic formals
to match the types of the term list

41034 ?0 is not of the form: pZΓ ` [X1 ,...]tq where there are sufficient Xi
to match the supplied term list

SML

val z gen pred intro : TERM list −> THM −> THM ;

Description Introduce a list of generic formals. The TERM list argument is of variables. Their
types will be ignored, they are replaced by the variables pZvar ⊕

⊕ P varq.

Rule

Γ ` t [X1 ,...]
Γ ` [X1 ,...] (t [X1 ,...])

z gen pred intro
[X1 ,...]

Errors

3007 ?0 is not a term variable
6005 ?0 occurs free in assumption list

SML

val z gen pred tac : TACTIC ;

Description A tactic to eliminate generic predicates.

Tactic

{Γ} [X1 ,...] t
{Γ} t

z gen pred tac

Errors

41035 conclusion of goal is not of the form pZ [X1 ,...] tq
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val z gen pred u elim : THM −> THM ;

Description Substitute U for each of the generic formals of a generic predicate.

Rule

Γ ` [X1 ,X2 ,...] (t [X1 ,X2 ,...])
Γ ` t [U,U...]

z gen pred u elim

Each occurrence of U is instantiated to the same type as the corresponding generic formal param-
eter.
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val z get spec : TERM −> THM ;

Description This function returns the specification of a constant, based on its definiting the-
orem and, if one can be found, a consistency theorem. The defining theorem may have been
created by Z paragraph processing, new axiom, or a HOL definitional mechanism. This function
should be the Z user’s interface to definitional theorems, as get spec(q.v.) is for the HOL user.

z get spec pconstq will find the (first) definition or axiom in scope stored under key “name of
const”, in the theory in which the in-scope constant named const was defined. A definition will be
taken in preference to an axiom in the same theory. z get spec pconst t1 t2 ...q (i.e. a constant
applied to an arbitrary number of arguments in HOL) will act as z get spec pconstq. This choice
is made in the assumption that a naming convention has been followed that such a definition (or
axiom) should be the definition of the constant named const . This convention has been followed
throughout the implementation of ProofPower. In addition, there can only be one definition of a
particular constant in scope (though the conventional key might be used elsewhere, or not at all).
If there is no such constant in scope, or no definition with the given key, then the function fails.

If the definitional theorem is of the form:

` ConstSpec p c

(i.e. its introduction requires a consistency assumption) the function will seek for a theorem or
axiom stored with key const ^ “ consistent”, starting at the theory in which the definition was
found, and working “out” to the current theory. If conventions have been followed this theorem
should be of the form:

Γ ` Consistent p

(Ideally there should be no assumptions in the theorem, but the function caters for their presence.)
If a theorem of this form is found then the theorem:

β rule ‘Γ ` p c‘

is formed. If not, then the theorem:

β rule ‘Consistent p ` p c‘

is formed. In all of the above cases, (i.e. with or without ConstSpec), the theorem formed is
checked to see whether it is the definiton formed from processing a Z paragraph. If so, then the
conclusion of the theorem is converted into a predicate (by z para pred conv), and then returned
as the result of z get spec. If not, then the theorem is returned without further processing as
result of z get spec.

Errors

46005 There is no constant with name ?0 in scope
46006 There is no definition or axiom with key ?0 in

the declaration theory of the constant
46009 ?0 is not a constant , or a constant applied to some arguments
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val z intro gen pred tac : (TERM ∗ TERM ) list −> TACTIC ;

Description A tactic to introduce a generic predicate as the goal. The term list argument pairs
is of a term and a variable (that is appropriate to be a generic formal), with the same set type
i.e. the second is of the form pZvar : P ′varq.

Tactic

{Γ} t [t1 ,...]
{Γ} [X1 ,...] (t [X1 ,...])

z intro gen pred tac
[(t1 ,X1 ),...]

where either t i is the same as X i , or X i does not appear free in the conclusion, t [t1 , ...], of
the original goal.

N.B. this tactic strengthens the goal, i.e. it may result in unprovable subgoals even when the
original goal was provable.

Errors

28082 ?0 does not appear free in the goal
28083 ?0 appears free in the goal and is not the same as ?1
41032 ?0 is not of the form: pZvar : P ′varq
41036 ?0 does not have the same type as ?1

SML

val z intro ∀ tac : TERM −> TACTIC ;

Description Introduce a Z universal with reference to a binding.

Tactic

{ Γ } t
{ Γ } ∀ x1 :U; ... | true• t [x 1/t1 ,...]

z intro ∀ tac
pZ(x 1 =̂ t1 , ...)q

Errors

41029 ?0 cannot be interpreted to be of the form: pZ(x1 =̂ t1 , ...)q
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SML

val z para pred canon : CANON ;
val z para pred conv : CONV ;

Description This canonicalisation function and conversion change Z paragraphs to Z predicates.
This change is also the one z get spec does, where appropriate.

Some paragraphs entered by the Z parser have “markers” applied to the rest of the theorem
body to indicate their origin (i.e. the kind of paragraph). In addition the form of the term is
likely to have a an explicit declaration as the left conjunct, rather than a “predicate implicit in a
declaration”. z para pred canon is a canonicalisation function that removes these markers and
converts, if present, a left conjunct declaration as z decl pred conv would; z para pred conv is
a conversion that has the equivalent effect.

The following are instances in which markers are used:

Constraint Definitions
Free Type Definitions
Given Set Definitions
Axiomatic Definitions
Schema Boxes
Abbreviation Definitions

Example

If the following is entered :

[X ,Y ]
Ex : P(X × Y )

Ex = {}

z para pred canon given the defining theorem, returns a singleton list containing:

` p∀ X Y • pZEx [X , Y ] ∈ P (X × Y ) ∧ Ex [X , Y ] = {}qq

Both functions remain within the Z language, though this is not checked, with the caveat on HOL
universals representing generic formals.

Errors

41080 No Z markers found applied to conclusion body of ?0
41082 No Z markers found applied to body of ?0
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SML

val z pred decl conv : CONV ;

Description A conversion which, given a predicate comprising a conjunction of the forms recog-
nised by z pred dec conv , rewrites the predicate as a declaration,

The function is defined much as if by the following:

Definition

val z pred decl conv = Z DECL INTRO C z dec pred conv ;

Thus the handling of the conjuncts is as shown in the following examples:

Conversion

` x ∈ X ∧ {y , z} ⊆ Y ∧ S ⇔
pMLdecl of pZ [x : X ; y , z : Y ; S ]qq

z pred decl conv
pZx ∈ X ∧ {y , z} ⊆ Y ∧ Sq

and
Conversion

` true ⇔ pMLdecl of pZ []qq
z pred decl conv
pZtrueq

See Also z decl pred conv

Errors

41011 ?0 cannot be rewritten to a declaration

SML

val z pred dec conv : CONV ;

Description A conversion which, given a certain form of predicate, rewrites the predicate as
the dec component of a declaration. This acts as an inverse to the conversion z dec pred conv ,
the four forms recognised being as shown below:

Conversion

` x ∈ X ⇔ pMLmk z dec([pZxq],pZX q)q
z pred dec conv pZx ∈ X q

where the x must be variable, and

Conversion

` {x 1 ,...} ⊆ X ⇔
pMLmk z dec([pZxq,...],pZX q)q

z pred dec conv pZ{x1 ,...} ⊆ X q

where the x i must be variables, and

Conversion

` S ⇔ S
z pred dec conv pZSq

and
Conversion

` (θS ∈ S ) ⇔ S
z pred dec conv pZθS ∈ Sq

See Also z dec pred conv

Errors

41011 ?0 cannot be rewritten to a declaration
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SML

val z push consistency goal : TERM −> unit ;

Description z push consistency goal pZconstq will first determine the specification theorem of
const , by executing z get spec. The const may either be a constant, or a constant applied to a list
of arguments. If this theorem has an assumption, it will then push that specification assumption
onto the stack of subgoals (using push subgoal , q.v.), as a goal with no assumptions. By how
z get spec is designed, this (single) assumption will be of the form:

pConsistent (λ vs[x1 ,...,xn]•p[x1 ,...,xn])q

or the consistency has already been proven, and saved, under some assumptions. Only in the
former case will the function continue: it will apply a tactic (that may be undone by undo) which
rewrites the goal to:

([], pZ∃ D [x1 ,...,xn]•p[x1 ,...,xn]q)

where D is a declaration of the variables, x1 ,...xn representing the existence witnesses of the n
constants declared in one paragraph. Otherwise, if the definition involves generic formals:

([], pZ∃ D [x1 ,...,xn]•p[x1 ,...,xn]q)

If not, the function fails.

See Also save consistency thm to save the result in a conventional manner.

Errors

46005 There is no constant with name ?0 in scope
46006 There is no definition or axiom with key ?0 in

the declaration theory of the constant
46007 Specification of ?0 is not of the form: ‘Consistent (λ vs[x1 ,...,xn]•p[x1 ,...,xn]) ` ...‘
46009 ?0 is not a constant , or a constant applied to some arguments

SML

val z quantifiers elim tac : TACTIC ;

Description This tactic eliminates all Z ∀, ∃ and ∃1 quantifiers in both conclusion and as-
sumptions, in favour of HOL ∀ and ∃, using z ∀ elim conv2 , z ∃ elim conv2 , z ∃1 conv1 . All
declarations introduced will be converted to their implicit Z predicates, and the following simpli-
fications also done throughout:

pZ{x ,y ,...} ⊆ sq −−−> px ∈ s ∧ y ∈ s ∧ ...q
(∗ only when the set display contains just variables ∗)

pZx ∧ trueq −−−> pxq
pZtrue ∧ xq −−−> pxq
pZx ⇒ trueq −−−> ptrueq

All assumptions will be stripped back into the assumption list, regardless of whether they were
modified, using the current proof context.

This is done to prepare for some further processing, such as resolution. The result is unlikely to
be in the Z language It has no effect (rather than failing) if there are no conversions to be done.

Uses Intended for implementing automated proof procedures.
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SML

val z schema pred conv1 : CONV ;

Description Convert an ill-formed schema as a predicate expression into a statement of a
binding being a member of the schema. The input expression is ill-formed if it is of the form

Z ′SchemaPred bind schema

where bind is not equal to pZθ schemaq.

Conversion

` Z ′SchemaPred bind schema ⇔
bind ∈ schema

z schema pred conv1
pZ ′SchemaPred bind schemaq

Uses In correcting the results of functions that leave Z because of substituting into the binding
portion of a schema as predicate. In particular, in the proof context “′z predicates”.

Errors

41018 ?0 is not an ill−formed schema as predicate expression

SML

val z setd ⊆ conv : CONV

Description Expand out expressions that state that a set display is a subset of some other set.
This is particularly aimed at processing declarations of the form x 1 ,...,xn : X .

Conversion

pZ{x1 ,...} ⊆ X ⇔
(x1 ∈ X ∧ ...)

z setd ⊆ conv
pZ{x1 ,...} ⊆ X q

and
Conversion

pZ{} ⊆ X ⇔ true
z setd ⊆ conv
pZ{} ⊆ X q

The conversion will all simplify certain subterms involving true or terms of the form x = x .

See Also z setd ∈ P conv
Errors

41017 ?0 is not of the form: pZ{x1 ,...} ⊆ X q
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SML

val z spec asm tac : TERM −> TERM −> TACTIC ;
val z spec nth asm tac : int −> TERM −> TACTIC ;

Description These are two methods of specialising a Z universally quantified assumption. Both
leave the old assumption in place, and place the instantiated assumption onto the assumption
list using strip asm tac. If the desired behaviour differs from any of those supplied then use
GET ASM T and its cousins, with z ∀ elim, to create the desired functionality.

Tactic

{ Γ , pZ∀ D [x1 ,...] | P1• P2q } t
{strip ppZD ′[t1 ,...]q ∧ pZP ′

1q ⇒ pZP ′
2qq,

Γ , pZ∀ D | P1• P2q} t1

z spec asm tac
pZ∀ D [x1 ,...] | P1• P2q
pZ(x 1 =̂ t1 , ...)q

where D ′, P ′
1 and P ′

2 are specialised, and if necessary have bound variable renaming done,
appropriately. Remains within the Z language (though failure to do this will be reported to be
from z ∀ elim).

z spec nth asm tac uses an assumption number rather than an explicit statement of the assump-
tion to be specialised.

Definition

fun z spec asm tac (asm:TERM ) (bind :TERM ):TACTIC =
GET ASM T asm (strip asm tac o z ∀ elim bind);

fun z spec nth asm tac (n:int) (bind :TERM ):TACTIC =
GET NTH ASM T n (strip asm tac o z ∀ elim bind);

Errors As the constituents of the implementing functions (e.g. GET ASM T and z ∀ elim).

SML

val z term of type : TYPE −> TERM ;
val z type of : TERM −> TERM ;

Description z term of type ty is a term denoting the set of all elements of the type ty . The
term is constructed using mk z P, mk z ×, mk z h schema, given sets, and the relation symbol
↔ in order to display the structure of the type in a Z-like way. mk u is used when all else

fails.

For example:

z term of type(type of pZ〈1 , 2 , 3 〉q) = pZZ ↔ Zq
z term of type(type of pZ(1 , 2 , 3 )q) = pZZ × Z × Zq
z term of type(type of pZ{1 , 2 , 3}q) = pZP Zq
z term of type(type of pZ(a=̂1 , b=̂2 , c=̂3 )q) = pZa, b, c : Zq
z term of type(type of p[1 ; 2 ; 3 ]q) = pZUq

Note that the quotation in the last example contains an HOL list display, the type of which,
namely p:N LISTq, lies outside the representation of the Z type system in HOL.

z type of returns the set of all elements of the (HOL) type of a particular term.

Definition

val z type of = z term of type o type of ;
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SML

val z ∈ setd conv : CONV ;

Description A conversion of membership of a Z set display into equality with a member of the
set.
Conversion

` t ∈ { t1 , t2 , ...} =
((t = t1 ) ∨ (t = t2 ) ...)

z ∈ setd conv
pZt ∈ { t1 , t2 , ...}q

See Also z ∈ setd conv1
Errors

41015 ?0 is not of the form: pZx ∈ {t1 ,...}q
41016 ?0 is an ill−formed fragment of the membership of a set display
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SML

val z ∈ u conv : CONV ;

Description Simplifies to true a predicate of the forms: pZx ∈ S [U]q, pZx ⊆ S [U]q or a schema as
a predicate: pZ [a,b: S [U]; c : S ′[U]; ...]q, where S [U], S ′[U], ... are structures that can be simplified
to U. This uses the application of the built-in simplifications listed below, and conversions held
in the “icl′u simp” entry of the dictionary of nets field of the current proof context (the built-in’s
taking precedence).

Conversion

` x ∈ S [U] ⇔ true
z ∈ u conv
pZx ∈ S [U]q

Conversion

` x ⊆ S [U] ⇔ true
z ∈ u conv
pZx ⊆ S [U]q

Conversion

` [a,b: S [U]; c : S ′[U]; ...] ⇔ true
z ∈ u conv
pZ [a,b: S [U]; c : S ′[U]; ...]q

The conversion starts with the structure S [U] above. It will attempt to recursively prove equal to
U: the argument to P, the consitituent sets of a cartesian tuple, the types of a declaration part of
a set abstraction with a true predicate, and the types of a declaration part of a horizontal schema
with a true predicate. If it can do so it will then use:

` P U = U
` (U × U × ...) = U
` {lab1 : U; lab2 : U; lab3 ,lab4 : U; ... } = U
` [lab1 : U; lab2 : U; lab3 ,lab4 : U; ... ] = U

to prove the set equal to U. If it cannot complete the above proof it will use the first applicable
conversion of the “icl′u simp” entry of the dictionary of nets field of the current proof context,
and then return to attempting to use the built-in algorithm.

If the set has been reduced to U the conversion will prove the input term true. If the expression
cannot be proven the conversion fails.

Uses For stripping in proof contexts, and in eliminating redundant declarations that have been
converted to the predicates implicit in them.

See Also u simp eqn cxt , theory u simp eqn cxt , and set u simp eqn cxt for creating ap-
propriate proof contexts.

Errors

41061 cannot prove ?0 equal to pZtrueq
41062 ?0 is not of the form: pZx ⊆ sq, pZx ∈ sq or a schema as a predicate
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SML

val z ¬ gen pred conv : CONV ;

Description Convert a negated generic predicate (which is not legal Z) into an existentially
quantified negation (and therefore into Z).

Conversion

` (p¬ pZ [X1 ,...] predqq) ⇔
∃ X1 :U;... • ¬ pred

z ¬ gen pred conv
p¬ pZ [X1 ,...] predqq

Uses In stripping for repaired the effects of, e.g., contr tac.

Errors

41031 ?0 is not of the form: p¬ pZ [X1 ,...] predqq

SML

val z ¬ in conv : CONV ;

Description This is a conversion which moves an outermost negation inside other Z predicate
calculus connectives using whichever of the following rules applies:

¬¬t = t
¬(t1 ∧ t2 ) = ¬t1 ∨ ¬t2
¬(t1 ∨ t2 ) = ¬t1 ∧ ¬t2
¬(t1 ⇒ t2 ) = t1 ∧ ¬t2
¬(t1 ⇔ t1 ) = false
¬(t1 ⇔ t2 ) = (t1 ∧ ¬t2 ) ∨ (t2 ∧ ¬t1 )
¬(t1 = t1 ) = false
¬(∀ D | P• V ) = ∃ D | P• ¬ V
¬(∃D | P• V ) = ∀ D | P• ¬ V
¬(∃1 D |P• V ) = ∀D |P•¬(V ∧ ∀D ′|P ′•V ′ ⇒ D = D ′)
¬true = false
¬false = true

Uses Tactic and conversion programming.

Errors

47240 ?0 is not a Z negation
28131 No applicable rules for the term ?0

SML

val z ¬ rewrite canon : THM −> THM list

Description This is a canonicalisation function used for breaking theorems up into lists of
equations for use in rewriting. It performs the following transformations:

z ¬ rewrite canon (Γ ` ¬(t1 ∨ t2 )) = (Γ ` ¬t1 ∧ ¬t2 )
z ¬ rewrite canon (Γ ` ¬∃D | P• V ) = (Γ ` ∀D | P• ¬V )
z ¬ rewrite canon (Γ ` ¬¬t) = (Γ ` t)
z ¬ rewrite canon (Γ ` ¬t) = (Γ ` t ⇔ false)

Remains within the Z language, though this is not checked.

See Also simple ¬ rewrite canon, simple ∀ rewrite canon.

Errors

26201 Failed as requested

The area given by the failure will be fail canon.
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SML

val z ¬ ∀ conv : CONV ;
val z ¬ ∃ conv : CONV ;

Description z ¬ ∀ conv converts a negated Z universal quantification to a Z existential quan-
tification.
Conversion

` ¬(∀ D | P1• P2 ) ⇔
(∃ D | P1• ¬ P2 )

z ¬ ∀ conv
pZ¬(∀ D | P1• P2 )q

The dual is z ¬ ∃ conv :
Conversion

` ¬(∃ D | P1• P2 ) ⇔
(∀ D | P1• ¬ P2 )

z ¬ ∃ conv
pZ¬(∃ D | P1• P2 )q

These two functions remain within the Z language, though this is not checked.

Errors

41050 ?0 not of the form: pZ¬(∀ D | P1• P2 )q
41051 ?0 not of the form: pZ¬(∃ D | P1• P2 )q

SML

val z ⇒ rewrite canon : CANON ;

Description This canonicalisation expects to be passed the canonicalisations of, e.g., a Z uni-
versal or the result of a z ∀ elim. These are theorems of the form:

` "predicate from D" ∧ P ⇒ V

In these cases it is intended to prove and discard "predicate from D" whose conjuncts can be
proven true by z ∈ u conv (q.v.), and a P that is identically true.

In fact, each conjunct of the antecedent of the supplied theorem will have z ∈ u conv attempted
upon it, the resulting antecedent will be rewritten with the theorems

` ∀ x :U • x ∧ true ⇔ x
` ∀ x :U • true ∧ x ⇔ x

and if the antecedent is thus proven true it will be discarded. Remains within the Z language,
though this is not checked.

Errors

41083 ?0 is not of the form: Γ ` P ⇒ Q
41084 caused no change with ?0
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SML

val z ∀ elim conv1 : CONV ;

Description Turn a Z universally quantified predicate into a HOL universally quantified term,
eliminating the declaration part of the original quantification using z ∈ u conv . The function
fails if the declaration cannot be eliminated.
Conversion

` (∀ D [x1 ,...] | P1• P2 ) ⇔
p∀ x1 ...• pZP1 ⇒ P2qq

z ∀ elim conv1
pZ∀ D [x1 ,...] | P1• P2q

The order of the resulting universally quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

Simplifications based on P i being true or false will also be applied.

If there are no quantified variables and the declaration is D [], the HOL universal quantification
is not generated.

Remains within the Z language (with the caveat of using outer HOL universal quantification).

Uses For stripping in proof contexts.

See Also z ∀ elim conv2 and z ∀ elim conv
Errors

41022 ?0 is not of the form: pZ∀ D | P1• P2q
41071 ?0 is of the form: pZ∀ D | P1• P2q but could not eliminate D
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SML

val z ∀ elim conv2 : CONV ;
val z ∀ intro conv1 : CONV ;

Description z ∀ elim conv2 turns a Z universally quantified predicate into a HOL universally
quantified term. The result fails to be in the Z language because it contains a declaration used in
a position requiring a predicate, which Z does not allow.

Conversion

` (∀ D [x1 ,...] | P1• P2 ) ⇔
p∀ x1 ...• pZD [x1 ,...]q ∧ pZP1q ⇒ pZP2qq

z ∀ elim conv2
pZ∀ D [x1 ,...] | P1• P2q

The order of the resulting universally quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

z ∀ intro conv1 undoes this process, returning a theorem whose RHS should be in the Z language.

Conversion

` p∀ x1 ...• pZD [x 1 ,...] ∧ P1 ⇒ P2qq ⇔
∀ D [x1 ,...] | P1• P2

z ∀ intro conv1
p∀ x 1 ...• pZD [x1 ,...] ∧ P1 ⇒ P2qq

If there are no quantified variables and the declaration is D [], the HOL universal quantification
is not generated by z ∀ elim conv2 nor expected by z ∀ intro conv1 .

Uses Used in the Z form of strip tac, and handling negations with quantifiers. It will handle
paired quantifiers, and quantifiers in any order, so long as the quantifiers and declaration can be
matched in names and types.

See Also z ∀ elim conv1 , z ∀ elim conv , z ∀ intro conv

Errors

41022 ?0 is not of the form: pZ∀ D | P1• P2q
41023 ?0 is not of the form: p∀ x1 ...• Decl ∧ P1 ⇒ P2q
41024 ?0 is not of the form: p∀ x1 ...• Decl ∧ P1 ⇒ P2q

where the px iq do not match the declaration

SML

val z ∀ elim conv : CONV ;

Description Turn a Z universally quantified predicate into a HOL universally quantified term,
converting the declaration part of the original quantification into its implicit predicate.

Conversion

` (∀ D [x1 ,...] | P1• P2 ) ⇔
p∀ x1 ...•

pZ"predicate from D [x1 ,...]"
∧ P1 ⇒ P2qq

z ∀ elim conv
pZ∀ D [x1 ,...] | P1• P2q

The order of the resulting universally quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

If there are no quantified variables and the declaration is D [], the HOL universal quantification
is not generated.

Remains within the Z language (with the caveat of using outer HOL universal quantification).

Errors

41022 ?0 is not of the form: pZ∀ D | P1• P2q
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val z ∀ elim : TERM −> THM −> THM ;

Description Specialise the variables introduced by a Z universally quantifier to given values of
the right type, the values being taken from a binding.

Rule

Γ ` ∀ D [x 1 ,...] | P1 [x1 ,...]• P2 [x1 ,...]
Γ ` "predicate from D ′[t1 ,...]"

∧ P ′
1 [t1 ,...] ⇒ P ′

2 [t1 ,...]

z ∀ elim
pZ(x 1 =̂ t1 , ... )q

where D is a declaration that binds the x i , that is converted to its implicit predicate by
z decl pred conv . The theorem may be type instantiated or require bound variable renaming
to allow the specialisation to be valid, thus the priming in the result.

If both the supplied binding and the declaration are recognisably “empty” then the universal
quantification will be eliminated.

If instead the theorem’s conclusion has a single universally quantified variable and the theorem
can be type instantiated to match the supplied argument, then that supplied argument will be
used directly.

Rule

Γ ` ∀ x :X | P1 [x ]• P2 [x ]
Γ ` t ∈ X ′ ∧ P ′

1 [t ] ⇒ P ′
2 [t ]

z ∀ elim
pZtq

If neither of the above apply then the supplied binding may instead be anything else that has an
appropriate binding type. In such cases projection functions will be used:

Rule

Γ ` ∀ D [x 1 ,...] | P1 [x1 ,...]• P2 [x1 ,...]
Γ ` "predicate from D [t .x1 ,...]" ∧

P ′
1 [t .x1 ,...] ⇒ P ′

2 [t .x1 ,...]

z ∀ elim
pZtq

See Also z ∀ elim conv2
Errors

47310 ?0 is not a Z universal quantification
41021 ?0 cannot be interpreted as a binding that matches ?1
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SML

val z ∀ intro1 : THM −> THM ;

Description A rule to introduce a Z universal quantification. The variables to be quantified
over must not occur free in the assumptions, and are determined from the form of the input
theorem.
Rule

Γ ` "predicate from D" ∧ P1 ⇒ P2

Γ ` ∀ D | P1• P2

z ∀ intro1

where “predicate from D” is converted to a declaration in which this predicate is implicit by
Z DECL INTRO C z pred dec conv .

An arbitrary conjunctive structure is allowed in “D as a predicate”, including repeated bindings
of single variables: only the ordering, as opposed to the nesting is significant in the conjunctive
structure. The predicate true is converted to the empty declaration.

See Also z ∀ intro for implicit x i ∈ U conjuncts, all z ∀ intro, z ∀ intro conv1 .

Errors

6005 ?0 occurs free in assumption list
41026 ?0 not of the form ‘Γ ` "predicate from D" ∧ P1 ⇒ P2‘
41027 ?0 cannot be made into a declaration

SML

val z ∀ intro conv : CONV ;

Description z ∀ intro conv converts an arbitrary simple HOL universally quantified term into
the corresponding Z, returning a theorem whose RHS should be in the Z language (though this
is not checked for).

Conversion

` p∀ x1 ...• Pq ⇔
(∀ x 1 :U; ... | true• P)

z ∀ intro conv
p∀ x 1 ...• Pq

This conversion cannot introduce a Z universal quantification with an empty declaration.

See Also z ∀ intro conv1
Errors

41047 ?0 is not of the form: p∀ x1 ... • Pq
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SML

val z ∀ intro : TERM list −> THM −> THM ;

Description A rule to introduce a Z universal quantification. The variables to be quantified
over must not occur free in the assumptions, and are determined from the variables from the
supplied list.

Rule

Γ ` P1 ⇒ P2

Γ ` ∀x 1 :U;... | P1• P2

z ∀ intro
[pZx1q,...]

or else:
Rule

Γ ` P
Γ ` ∀x 1 :U;... | true• P2

z ∀ intro
[pZx1q,...]

An arbitrary conjunctive structure is allowed, including repeated bindings of single variables: only
the ordering, as opposed to the nesting is significant in the conjunctive structure.

See Also z ∀ intro1 for use without additional x i ∈ U, all z ∀ intro, z ∀ intro conv1 .

Errors

3007 ?0 is not a term variable
6005 ?0 occurs free in assumption list

SML

val z ∀ inv conv : CONV ;

Description Simplifies a Z universal quantification whose predicate or constraint is invariant
w.r.t. the free variables bound by the declaration.

Conversion

` ∀ D | P1• P2 ⇔
(∀ D | P1• false) ∨ P2

z ∀ inv conv
pZ∀ D | P1• P2q

if P2 has no free variables bound by D , and

Conversion

` ∀ D | P1• P2 ⇔
P1 ⇒ (∀ D | true• P2 )

z ∀ inv conv
pZ∀ D | P1• P2q

if P1 has no free variables bound by D , and

Conversion

` ∀ D | P1• P2 ⇔
P1 ⇒ (∀ D | true• false) ∨ P2

z ∀ inv conv
pZ∀ D | P1• P2q

if both have no free variables bound by D . The appropriate simplification will be avoided where
the predicate P1 , is pZtrueq or the value, P2 is pZ falseq.

See Also z ∃ inv conv
Errors

47310 ?0 is not a Z universal quantification
41025 ?0 is not of the form: pZ∀ D | P1• P2q where at least

one of P1 or P2 are unbound by D
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SML

val z ∀ rewrite canon : CANON ;

Description Take a possibly Z universally quantified theorem and make it into, as far as pos-
sible, a HOL universally quantified theorem usable for rewriting.

Canon

Γ ` pZ(∀ D [x1 ,...] | P1• P2 )q
[Γ ` p∀ x1 ...•

pZ"predicate from D [x1 ,...]"
∧ P1 ⇒ P2qq]

z ∀ rewrite canon

See z decl pred conv for a description of the conversion of a declaration to its implicit predicate.

Remains within the Z language (under the relaxation that allows outermost HOL universals),
though this is not checked.

See Also z defn canon

Errors

41081 ?0 is not of the form: pZ(∀ D | P1• P2 )q

SML

val z ∀ tac : TACTIC ;

Description Eliminate a Z universal in a goal.

Tactic

{ Γ } ∀ D | P • V
{ Γ } "predicate from D ′" ∧ P ′ ⇒ V ′ z ∀ tac

D is converted to its implicit predicate by z decl pred conv . D , P and V are primed in the result
because the tactic may require some renaming to avoid, e.g. variable capture of the names of free
variables in the assumption list.

Errors

41030 Conclusion of the goal is not of the form: pZ∀ D | P • V q
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SML

val z ∃ elim conv1 : CONV ;

Description Turn a Z existentially quantified predicate into a HOL existentially quantified
term, eliminating the declaration part of the original quantification using z ∈ u conv . The
function fails if the declaration cannot be eliminated.
Conversion

` (∃ D [x1 ,...] | P1• P2 ) ⇔
p∃ x 1 ...• pZP1 ∧ P2qq

z ∃ elim conv1
pZ∃ D [x1 ,...] | P1• P2q

The order of the resulting existentially quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

Simplifications based on P i being true or false will also be applied.

If there are no quantified variables and the declaration is D [], the HOL existential quantification
is not generated.

Uses For stripping in proof contexts.

See Also z ∃ elim conv2 , z ∃ elim conv

Errors

41042 ?0 is not of the form: pZ∃ D | P1• P2q
41043 ?0 is of the form: pZ∃ D | P1• P2q, but D non−trivial
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SML

val z ∃ elim conv2 : CONV ;
val z ∃ intro conv1 : CONV ;

Description z ∃ elim conv2 turns a Z existentially quantified predicate into a HOL existen-
tially quantified term. The result fails to be in the Z language because it contains a declaration
used in a position that requires a predicate, which Z does not allow, as well as the outer HOL
existential quantification.

Conversion

` (∃ D [x1 ,...] | P1• P2 ) ⇔
p∃ x1 ...• pZD [x1 ,...]q ∧ pZP1q ∧ pZP2qq

z ∃ elim conv2
pZ∃ D [x1 ,...] | P1• P2q

The order of the resulting existentially quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

z ∃ intro conv1 undoes this process, returning a theorem whose RHS should be in the Z language
(though this is not checked for).

Conversion

` p∃ x1 ...• pZD [x 1 ,...] ∧ P1 ∧ P2qq ⇔
(∃ D [x1 ,...] | P1• P2 )

z ∃ intro conv1
p∃ x 1 ...• pZD [x1 ,...] ∧ P1 ∧ P2qq

If there are no quantified variables and the declaration is D [], the HOL existential quantification
is not generated by z ∃ elim conv2 nor expected by z ∃ intro conv1 .

Uses Used in the Z form of strip tac, and handling negations with quantifiers.

See Also z ∃ elim conv1 , z ∃ elim conv and z ∃ intro conv

Errors

41044 ?0 is not of the form: pZ∃ D | P1• P2q
41045 ?0 is not of the form: p∃ x1 ...• D [x1 ,...] ∧ P1 ∧ P2q
41041 ?0 is not of the form: p∀ x1 ...• D ∧ P1 ⇒ P2q

where the px iq do not match the declaration
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SML

val z ∃ elim conv : CONV ;

Description Turn a Z existentially quantified predicate into a HOL existentially quantified
term, converting the declaration part of the original quantification into its implicit predicate.

Conversion

` (∃ D [x1 ,...] | P1• P2 ) ⇔
p∃ x1 ...•

pZ"predicate from D [x1 ,...]" ∧
P1 ∧ P2qq

z ∃ elim conv1
pZ∃ D [x1 ,...] | P1• P2q

The order of the resulting existentially quantified variables will be in a sorted order, rather than
what the declaration part might suggest.

If there are no quantified variables and the declaration is D [], the HOL existential quantification
is not generated.

The result fails to be within the Z language, but only due to the outer HOL existential quantifi-
cation.

See Also z ∃ elim conv2 , z ∃ elim conv1

Errors

41042 ?0 is not of the form: pZ∃ D | P1• P2q

SML

val z ∃ intro conv : CONV ;

Description z ∃ intro conv converts an arbitrary simple HOL existentially quantified term
into the corresponding Z, returning a theorem whose RHS should be in the Z language (though
this is not checked for).

Conversion

` p∃ x1 ...• Pq ⇔
(∃ x 1 :U; ... | true• P)

z ∃ intro conv
p∃ x 1 ...• Pq

This conversion cannot introduce a Z existential quantification with an empty declaration.

See Also z ∃ intro conv1
Errors

41046 ?0 is not of the form: p∃ x1 ... • Pq
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SML

val z ∃ inv conv : CONV ;

Description Simplifies a Z existential quantification whose predicate or constraint is invariant
w.r.t. the free variables bound by the declaration.

Conversion

` ∃ D | P1• P2 ⇔
(∃ D | P1• true) ∧ P2

z ∃ inv conv
pZ∃ D | P1• P2q

if P2 has no free variables bound by D , and

Conversion

` ∃ D | P1• P2 ⇔
P1 ∧ (∃ D | true• P2 )

z ∃ inv conv
pZ∃ D | P1• P2q

if P1 has no free variables bound by D , and

Conversion

` ∃ D | P1• P2 ⇔
P1 ∧ (∃ D | true• true) ∧ P2

z ∃ inv conv
pZ∃ D | P1• P2q

if both have no free variables bound by D .

P1 nor P2 will be “extracted” if identical to true.

See Also z ∀ inv conv
Errors

47290 ?0 is not a Z existential quantification
41040 ?0 is not of the form: pZ∃ D | P1• P2q where at least

one of P1 or P2 are unbound by D
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SML

val z ∃ tac : TERM −> TACTIC ;

Description Given a binding of identifiers to witnesses, accept this as a “group witness” for a
Z existentially quantified goal.

Tactic

{ Γ } ∃ D [x 1 ,...] | P1 [x1 ,...]• P2 [x1 ,...]
{ Γ } "predicate from D [t ′1 ,...]" ∧

P ′
1 [t ′1 ,...] ∧ P ′

2 [t ′1 ,...]

z ∃ tac
pZ(x 1 =̂ t1 ,...) q

where the t ′i are appropriately type instantiated forms of the t i . Renaming of bound variables
may be necessary, thus P ′

1 rather than P1 , etc. See z decl pred conv for the conversion of a
declaration to its implicit predicate.

An empty declaration may be given an empty binding.

If the goal’s conclusion has a single Z existentially bound variable, and the supplied argument can
be type instantiated to match that, then it will be used as a witness.

Tactic

{ Γ } ∃ x :X | P1 [x 1 ]• P2 [x 1 ]
{ Γ } t ′ ∈ X ∧ P ′

1 [t ′] ∧ P ′
2 [t ′]

z ∃ tac
pZtq

where t ′ is an appropriately type instantiated form of the t .

Finally, if none of the above apply, the supplied binding may instead be anything else that can
be type instantiated to the appropriate binding type. In such cases projection functions will be
used:
Tactic

{ Γ } ∃ D [x 1 ,...] | P1 [x1 ,...]• P2 [x1 ,...]
{ Γ } "predicate from D [t .x ′1 ,...]" ∧

P ′
1 [t ′.x1 ,...] ∧ P ′

2 [t ′.x1 ,...]

z ∃ tac
pZtq

where t ′ is an appropriately type instantiated form of the t .

Errors

47290 ?0 is not a Z existential quantification
41021 ?0 cannot be interpreted as a binding that matches ?1
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SML

val z ∃1 conv : CONV ;

Description Converts a Z unique existential quantification to a Z existential quantification.

Conversion

` (∃1 D | P1• P2 )
⇔

(∃ D | P1• P2 ∧
(∀ D ′ | P ′

1 ∧ P ′
2•

"characteristic tuples
component−wise equal"))

z ∃1 conv
pZ∃1 D | P1• P2q

where the P ′
i are variants of the P i , to correspond to the difference between D and D ′.

Additional decoration may be introduced as necessary to avoid free variable names capture, while
maintaining the same decoration on each component (variable, schema, etc) of the declaration.

Example

z ∃1 conv pZ ∃1 [x ,y : X ; z :Y ] | x = x ′ y• z = f xq;
−−>

` (∃1 [x , y : X ; z : Y | true] | x = x ′ y• z = f x )
⇔ (∃ [x , y : X ; z : Y | true]
| (x = x ′ y) ∧ (z = f x )

• ∀ [x , y : X ; z : Y | true]′′

| (x ′′ = x ′ y ′′) ∧ (z ′′ = f x ′′)
• (x ′′ = x ) ∧ (y ′′ = y) ∧ (z ′′ = z ))

See Also z ∃1 intro conv

Errors

41122 ?0 is not of the form: pZ∃1D | P1• P2q

SML

val z ∃1 intro conv : CONV ;

Description z ∃1 intro conv converts an arbitrary simple HOL unique existentially quantified
term into the corresponding Z, returning a theorem whose RHS should be in the Z language.

It can only reason about a single bound variable.

Conversion

` p∃1 x • P [x ]q ⇔
(∃1 x :U | true• P [x ] )

z ∃1 intro conv
p∃1 x • P [x ]q

This conversion cannot introduce a Z unique existential quantification with an empty declaration.

See Also z ∀ intro conv1
Errors

41048 ?0 is not of the form: p∃1 x 1 • Pq
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SML

val z ∃1 tac : TERM −> TACTIC ;

Description Provide a witness for a unique existential.

Tactic

{ Γ } ∃1 D [x1 ,...] | P [x1 ,...] • V [x1 ,...]
{ Γ } "D [t1 ,...] as a predicate" ∧

(∀ D ′ | P [x ′1 ,...] ∧ V [x ′1 ,...]•
"characteristic tuples of D ′

and witness
component−wise equal"))

z ∃1 tac
pZ(x 1 =̂ t1 ,...)q

Definition

val z ∃1 tac wit = conv tac z ∃1 conv THEN z ∃ tac wit ;

Errors

41123 Conclusion of goal is not of the form: pZ∃1D | P1• P2q
41021 ?0 cannot be interpreted as a binding that matches ?1

SML

val α to z conv : CONV ;

Description This function will return the equality theorem between a term and one that adjusts
all sub-terms that fail to be Z because either:

• The subterm is a decl -style binding, and the type of the binding does not match the names
of the variables bound. This is adjusted using the Z renaming construct.

• The subterm is a decl -style binding whose bound variables are not in the canonical order-
ing that would result from the Z mapping. This is adjusted by reorganising the order of
abstractions and arguments.

If a HOL α-conversion will suffice then that will be used instead.

Subterms that are not covered by these two cases will be traversed and their own subterms checked,
regardless of their language.

NOT YET IMPLEMENTED.

See Also α to z
Errors

41100 No adjustment took place
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SML

val α to z : TERM −> TERM ;

Description This function will adjust all sub-terms that fail to be Z because either:

• The subterm involves a decl -style binding, and the type of the binding does not match the
names of the variables bound. This is adjusted using the Z renaming construct.

• The subterm is a decl -style binding whose bound variables are not in the canonical order-
ing that would result from the Z mapping. This is adjusted by reorganising the order of
abstractions and arguments.

If a HOL α-conversion will suffice then that will be used instead.

Subterms that are not covered by these two cases will be traversed and their own subterms checked,
regardless of their language.

NOT YET IMPLEMENTED.

See Also α to z conv
Errors

41100 No adjustment took place
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8.3 Reasoning about Expressions

SML

signature ZExpressions = sig

Description This provides the rules of inference, conversions and theorems for Z language set
theory, tuples and cartesian products in the Z proof support system.

SML

(∗ Proof Context : ′z ∈ set lang ∗)
Description A component proof context for handling the membership of expressions created
by Z language set operations. It also provides some simplifications.

Set expressions treated by this proof context are constructs formed from:

set displays, set comprehensions, P, λ, µ, application,
sequence displays

If there was proof context material for string literals, or bag displays, it would perhaps go here.

Contents

Rewriting:

z ∈ seta conv1 , z ∈ setd conv1 , z ∈ λ conv , z ∈ 〈〉 conv ,
z β conv if its resulting theorem has no assumptions.

Stripping theorems:

z ∈ seta conv1 , z ∈ setd conv1 , z ∈ λ conv , z ∈ 〈〉 conv ,
plus these all pushed in through ¬,
and z β conv , ∈ C z β conv if the resulting theorem has no assumptions.

Stripping conclusions:

z ∈ seta conv1 , z ∈ setd conv1 , z ∈ λ conv , z ∈ 〈〉 conv ,
plus these all pushed in through ¬,
and z β conv , ∈ C z β conv if the resulting theorem has no assumptions.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to be used with proof context
“z predicates”. It is not intended to be mixed with HOL proof contexts.

See Also ′z sets ext
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SML

(∗ Proof Context : ′z sets ext lang ∗)
Description An aggressive component proof context for handling the manipulation of Z sets
by breaking them into predicate calculus, within the Z language. It is intended to always be used
in conjunction with “′z set lib”.

Set expressions treated by this proof context are constructs formed from:

set displays, set comprehensions, P, λ, µ, application,
equality of two set expressions, sequence displays

Contents

Rewriting:

z sets ext conv , z ∈ P conv , z setd ∈ P conv ,

Stripping theorems:

z sets ext conv , z ∈ P conv , z setd ∈ P conv ,
plus these all pushed in through ¬
Stripping conclusions:

z sets ext conv , z ∈ P conv , z setd ∈ P conv ,
plus these all pushed in through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover (2-tuples are handled in proof context “z predicates”).

Usage Notes It requires theory z sets. It is intended to always be used in conjunction with
“′z set lang”.

It is not intended to be mixed with HOL proof contexts.

See Also ′z ∈ set
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SML

(∗ Proof Context : ′z tuples lang ∗)
Description A component proof context for handling the manipulation of Z tuples and cartesian
products within the Z language.

Expressions and predicates treated by this proof context are constructs formed from:

(membership of ) ×, equations of tuple displays,
selection from tuple displays

Contents

Rewriting:

z ∈ × conv ,
z tuple lang eq conv , z sel t lang conv

Stripping theorems:

z ∈ × conv , z tuple lang eq conv , ∈ C z sel t lang conv ,
z sel t lang conv (for boolean compoents of tuples)
plus these all pushed in through ¬
Stripping conclusions:

z ∈ × conv , z tuple lang eq conv , ∈ C z sel t lang conv ,
z sel t lang conv (for boolean compoents of tuples)
plus these all pushed in through ¬
Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, basic prove conv , and no exis-
tence prover (2-tuples are handled in proof context “z predicates”).

Usage Notes It requires theory z sets. It is intended to be used with proof context
“z predicates”. It should not be used with “′z tuples lang”. It is not intended to be mixed
with HOL proof contexts.
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SML

(∗ Proof Context : ′z bindings ∗)
Description A component proof context for handling the manipulation of Z bindings.

Expressions and predicates treated by this proof context are constructs formed from:

equations of binding displays,
selection from binding displays

Contents

Rewriting:

z binding eq conv2 , z sel s conv

Stripping theorems:

z binding eq conv2 , ∈ C z sel s conv ,
z sel s conv (where component of binding is boolean).
plus this pushed in through ¬
Stripping conclusions:

z binding eq conv2 , ∈ C z sel s conv ,
z sel s conv (where component of binding is boolean).
plus this pushed in through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z language ps. It is intended to be used with proof context
“z predicates”. It is not intended to be mixed with HOL proof contexts.

SML

val z sets ext thm : THM ;
val z ∈ P thm1 : THM ;
val z app thm : THM ;
val z app ∈ thm : THM ;
val z ∈ app thm : THM ;

Description The ML bindings of the theorems (other than consistency ones) in theory z -
language ps.

SML

val z app conv : CONV ;

Description A function to convert a Z application into the corresponding µ expression (i.e.
definite description).

Conversion

` f a = (µ f a :U | (a,f a) ∈ f • f a)
z app conv
pZ f aq

Remains within the Z language though this is not checked.

See Also z app thm, z app eq tac

Errors

47190 ?0 is not a Z function application
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SML

val z app eq tac : TACTIC ;

Description Reduces a subgoal that states a Z application is equal to something to sufficient
conditions for this to be provable. The conditions are not “necessary” only because they ignore
the fact that in ProofPower-Z every predicate or expression is equal to itself, and other vacuous
variants of this.
Tactic

{Γ} f a = v
{Γ} (∀ f a : U | (a, f a) ∈ f • f a = v)

∧ (a,v) ∈ f

z app eq tac

If this does not match the pattern of the goal then

Tactic

{Γ} v = f a
{Γ} (∀ f a : U | (a, f a) ∈ f • f a = v)

∧ (a,v) ∈ f

z app eq tac

will be tried instead. In addition an implicit “⇔ true” will be used if the conclusion of the goal
is an application.

See Also z app thm, z app conv

Errors

42002 Conclusion of goal is not of the form: pZ f a = vq, pZv = f aq or pZ f xq

SML

val z app λ rule : TERM −> THM ;

Description Given a Z β redex this function will return a theorem stating sufficient conditions
for this redex to be proven equal to some arbitrary value.

Rule

` pZ∀ x :U • (∀ f a :U | (∃ D ′ | P ′•
charD ′ = t ∧ V ′ = f a) • f a = x )

∧
(∃ D ′ | P ′• (charD ′ = t) ∧ V ′ = x )

⇒
(λ D | P• V ) t = xq

z app λ rule
pZ(λ D | P• V ) tq

Some renaming of bound variables may occur, thus the priming of D , etc.

Errors

42008 ?0 is not of the form: pZ(λ D | P• V ) tq

SML

val z bindingd elim conv : CONV

Description Given a a binding display, that binds labels to the selection of that label to a
single value, return that single value.

Conversion

` (x1 =̂ b.x 1 , ...) = b
z bindingd elim conv
pZ(x 1 =̂ b.x1 , ...)q

Errors

42018 ?0 is not of the form: pZ(x1 =̂ b.x1 , ..., xN =̂ b.xN )q where N ≥ 1
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SML

val z bindingd intro conv : CONV

Description Given a value with a binding type, prove it equal to a binding display.

Conversion

` b = (x1 =̂ b.x 1 , ...)
z bindingd intro conv
pZbq

Errors

42017 ?0 does not have a binding type

SML

val z binding eq conv : CONV ;
val z binding eq conv1 : CONV ;
val z binding eq conv2 : CONV ;

Description A conversion for eliminating equations of bindings.

Conversion

` (b1 = b2 ) ⇔ (b1 .s1 = b2 .s1 ) ∧
(b1 .s2 = b2 .s2 ) ∧ ...

z binding eq conv
pZb1 = b2q

where b1 (and thus b2 ) has a binding type equal to the type of something of the form
pZ(s1 =̂ ..., s2 =̂ ..., ...)q.

z binding eq conv1 first applies conversion z binding eq conv , and then, if either or both of b1

and b2 are binding constructions it eliminates the projection functions, in a manner similar to
z sel s conv .

z binding eq conv2 requires both sides to be binding displays or have the empty schema type:

Conversion

` ((l1 =̂ x1 ,...) = (l1 =̂ y1 ,...)) ⇔
(x1 = y2 ) ∧ ...

z binding eq conv2
pZ(l1 =̂ x1 ,...) = (l1 =̂ y1 ,...)q

Conversion

` ((b1
⊕
⊕ []) = b2 ) ⇔ true

z binding eq conv2
pZ(b1

⊕
⊕ []) = b2q

See Also z sel s conv , z binding eq conv3

Errors

42013 ?0 is not of the form pZbinding = bindingq
42021 ?0 is not of the form pZb1 = b2q where bi has the form pZ(x 1 =̂ ..., ...)q or has the empty schema type
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SML

val z defn simp rule : THM −> THM ;

Description This rule is a method of processing a standard style of specification into a simple
rewriting theorem.

Rule

` x ∈ (P y) ∧ (∀z :y• z ∈ x ⇔ f [z ])
` ∀ z : U • z ∈ x ⇔ z ∈ y ∧ f [z ]

z defn simp rule

The rule will also attempt to preprocess its input with z para pred conv . This is on the basis
that theorems that are of an appropriate form for this rule are often derived from a Z definition,
and this pre-processing is all the processing required to convert the definition to acceptable input.
The rule can also handle generic parameters to the theorem.

Errors

42011 ?0 cannot be converted to the form:
‘Γ ` x ∈ (P y) ∧ (∀z :y• z ∈ x ⇔ f [z ])‘

SML

val z let conv1 : CONV ;

Description This conversion replaces a let-expression by an equivalent µ-expression.

Rule

` (let v1 =̂ t1 ; ... • b) = (µ v1 : {t1}; ...• b)
z let conv1
pZ let v1 =̂ t1 ; ... • bq

This is mainly intended for use in programming proof procedures. z let conv may be used simply
to expand let-expressions

See Also z let conv
Errors

47211 ?0 is not a Z let term

SML

val z let conv : CONV ;

Description This conversion expands the local definitions in a let-expression.

Rule

` (let v1 =̂ t1 ; ... • b) = b[t1/v1 , ...]
z let conv
pZ let v1 =̂ t1 ; ... • bq

The conversion will fail with message
42029 given a let-expression such as pZ let x =̂ 42 ; y =̂ 99 ; x =̂ 43 • x + yq that contains in-
compatible local definitions.

See Also z let conv1
Errors

47211 ?0 is not a Z let term
42029 The local definitions in the let−expression ?0 cannot be expanded

SML

val Z RAND C : CONV −> CONV ;
val Z RANDS C : CONV −> CONV ;
val Z LEFT C : CONV −> CONV ;
val Z RIGHT C : CONV −> CONV ;

Description Z RAND C (resp. Z RANDS C , Z LEFT C , Z RIGHT C ) applies a conver-
sional to the operand (resp. operands, left operand, right operand) of a Z function application.
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SML

val z sels conv : CONV ;

Description A conversion for selecting a component from a binding.

Conversion

` (n1 =̂ t1 ,...).nc = tc

z sel s conv
pZ(n1 =̂ t1 ,...).ncq

See Also z binding eq conv

Errors

42014 ?0 is not of the form: pZ(n1 =̂ t1 ,...).ncq

SML

val z selt intro conv : CONV ;

Description This conversion carries out the introduction of a tuple display of tuple selections
from the same tuple.

Conversion

` t = (t .1 ,...,t .n)
z sel t intro conv
pZtq

Errors

42004 ?0 does not have a Z tuple type

SML

val z selt lang conv : CONV ;

Description This conversion carries out the selection from a tuple display.

Conversion

` (t1 ,...,t i ,...,tn).i = t i

z sel t lang conv
pZ(t1 ,...,t i ,...,tn).iq

Errors

47185 ?0 is not a Z tuple selection
42006 ?0 is not of the form pZ(x ,...).iq

SML

val z setd ∈ P conv : CONV

Description Expand out expressions that state that a set display is a member of a power set. .

Conversion

pZ{x1 ,...} ∈ P X ⇔
(x1 ∈ X ∧ ...)

z setd ∈ P conv
pZ{x1 ,...} ∈ P X q

and
Conversion

pZ{} ∈ P X ⇔ true
z setd ∈ P conv
pZ{} ∈ P X q

The conversion will all simplify certain subterms involving true or terms of the form x = x .

See Also z setd ⊆ conv
Errors

42019 ?0 is not of the form: pZ{x1 ,...} ∈ P X q

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



426 Chapter 8. SUPPORT FOR Z

SML

val z sets ext conv : CONV ;

Description Use the extensionality of sets in combination with knowledge about tuples. Given
as input an equality of the form v = w then:

If v is of type ty SET where ty is not a tuple type:

Conversion

` (v = w) ⇔
(∀ xn : U • xn ∈ v ⇔ xn ∈ w)

z sets ext conv
pZv = wq

where xn is the first variable in the list x1 , x2 ,... that doesn’t appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient x i will be
introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of
the x i , such that no x i has a binding or tuple type and appears exactly once in the construct.

Example

z sets ext conv pZ(r × [a,b:X ] × x2 ) = dq =
` r × [a, b : X ] × x2 = d

⇔ (∀ x1 : U; x3 : U; x4 : U
• (x1 , x3 , x4 ) ∈ r × [a, b : X ] × x2 ⇔ (x1 , x3 , x4 ) ∈ d)

Notice how the introduced universal quantification “skips” x2 which is present in the input term.

See Also z sets ext thm
Errors

42010 ?0 is not of the form: pZv = wq where pZvq has a set type

SML

val z string conv : CONV ;
val z ∈ string conv : CONV ;

Description z string conv changes a Z string into a Z sequence of HOL characters. It thus
does not remain in Z.
Conversion

` "abc..." = 〈p‘a‘q,p‘b‘q,p‘c‘q,...〉
z string conv
pZ"abc..."q

Definition

val z ∈ string conv = ∈ C z string conv ;

See Also char eq conv for the equality of HOL characters, z string eq conv for the equality
of Z strings.

Errors

42015 ?0 is not of the form: pZ"abc..."q
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SML

val z tuple lang eq conv : CONV ;

Description A conversion for eliminating tuples over equality.

Conversion

` (t1 ,t2 ,...) = (u1 ,u2 ,...) ⇔
((t1 = u1 ) ∧ (t2 = u2 ) ∧ ...)

z tuple lang eq conv
pZ(t1 ,t2 ,...) = (u1 ,u2 ,...)q

Errors

42003 ?0 is not of the form: pZ(x1 ,...) = (y1 ,...)q

SML

val z tuple lang intro conv : CONV ;

Description This conversion carries out the elimination of a tuple display of tuple selections
from the same tuple.

Conversion

` (t .1 ,...,t .n) = t
z tuple lang intro conv
pZ(t .1 ,...,t .n)q

where n is the arity of t .

Errors

42005 ?0 is not of the form: pZ(t .1 ,...,t .n)q

SML

val Z ∈ ELIM C : CONV −> CONV ;

Description Z ∈ ELIM C cnv tm takes a conversion cnv that can be applied to set mem-
berships, and a set term tm. The conversion is then modified to make it applicable to the term.
The resulting conversion will check to see if its term argument, tm is a set. If so it will form the
term: pZxi ∈ pMLtmqq(where xi is the first variable in x1 , x2 ,... not present in tm), apply cnv to
the result, gaining some equation:

` xi ∈ pMLtmq ⇔ f [xi ]

and then return the theorem

` pMLtmq = {xi : U | f [xi ]}
Errors

42027 ?0 is not a Z set
42026 unable to convert ?0 to the form: pZx ∈ {x :U|s}q
And as conversion argument upon the membership term, with the error being passed through by
the conversional untouched.
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SML

val z ∈ seta conv : CONV ;
val z ∈ seta conv1 : CONV ;

Description A conversion of membership of a Z set abstraction into a Z existential quantifica-
tion. Bound variables in the existential quantification are renamed as necessary.

Conversion

` (t ∈ { D | P• T}) ⇔
(∃ D ′ | P ′• T ′ = t)

z ∈ seta conv
pZt ∈ { D | P• T}q

In the case of z ∈ seta conv1 , if T is a tuple or simple variable then the conversion will attempt
to eliminate the existential quantification via the methods of basic prove ∃ conv . In particular,
this attempt should succeed if T is the characteristic tuple of D .

No simplification is attempted by z ∈ seta conv

Renaming of bound variables may be necessary, thus the priming in the RHS.

Errors

42001 ?0 is not of the form: pZt ∈ setaq where seta is a set abstraction

SML

val z ∈ setd conv1 : CONV ;

Description A conversion proving membership of a Z set display where the member is syntac-
tically identical (up to α-conversion) to a member of the set.

Conversion

` t ∈ { ..., t , ...} ⇔ true
z ∈ setd conv1
pZt ∈ { ..., t , ...}q

See Also z ∈ setd conv
Errors

42009 ?0 is not of the form: pZt ∈ {...,t ,...}q

SML

val z ∈ × conv : CONV ;

Description A conversion for the membership of cartesian products.

Conversion

` t ∈ (T 1 × T 2 × ...) ⇔
t .1 ∈ T 1 ∧ t .2 ∈ T 2 ∧ ...

z ∈ × conv
pZt ∈ (T 1 × T 2 × ...)q

z sel t conv , q.v., will be attempted on each of the tuple selections.

See Also z × conv
Errors

42007 ?0 is not of the form: pZt ∈ (T 1 × T 2 × ...)q

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



8.3. Reasoning about Expressions 429

SML

val z ∈ P conv : CONV ;

Description Use z ∈ P thm1 in combination with knowledge about tuples. Given as input a
term of the form v ∈P w then:

If w is of type ty SET where ty is not a tuple type:

Conversion

` (v ∈ P w) ⇔
(∀ xn : U • xn ∈ v ⇒ xn ∈ w)

z ∈ P conv
pZv ∈ P wq

where xn is the first variable in the list x1 , x2 ,... that doesn’t appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient x i will be
introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of
the x i , such that no x i has a binding or tuple type and appears exactly once in the construct.

Example

z ∈ P conv pZp ∈ P (r × [a,b:X ] × x2 )q =
` p ∈ P (r × [a, b : X ] × x2 )

⇔ (∀ x1 : U; x3 : U; x4 : U; x5 : U
• (x1 , (a =̂ x3 , b =̂ x4 ), x5 ) ∈ p
⇒ (x1 , (a =̂ x3 , b =̂ x4 ), x5 ) ∈ r × [a, b : X ] × x2 )

Notice how the introduced universal quantification “skips” x2 which is present in the input term.

See Also z ∈ P thm1 , z ∈ P thm, z ⊆ conv

Errors

42016 ?0 is not of the form pZv ∈ P wq

SML

val z 〈〉 conv :CONV ;
val z ∈ 〈〉 conv :CONV ;

Description Convert a sequence display into a set display.

Conversion

` 〈x1 ,...,xn〉 =
{(1 ,x1 ),...,(n,xn)}

z 〈〉 conv
pZ〈x1 ,...,xn〉q

Definition

val z ∈ 〈〉 conv = ∈ C z 〈〉 conv ;

Errors

42025 ?0 is not of the form: pZ〈 ... 〉q
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SML

val z × conv : CONV ;

Description A conversion for eliminating cartesian products.

Conversion

` (T 1 × T 2 × ...) =
{t1 :T 1 ; t2 :T 2 ; ...•(t1 , t2 ,...)}

z × conv
pZT 1 × T 2 × ...q

The t i used are distinct from any variable names in the T i .

See Also z ∈ × conv , which is a faster function, if appropriate.

Errors

47160 ?0 is not a Z cartesian product

SML

val z β conv : CONV ;

Description A conversion for a simple Z β redex. The λ-term of the redex must have only a
single variable in its declaration part.

Conversion

t ∈ X ,
P [t ]

` (λ x :X | P [x ]• V [x ]) t = V ′[t ]

z β conv
pZ(λ x :X | P [x ]• V [x ]) tq

The assumptions will be eliminated if trivial (i.e. if the first assumption can be proven true by
z ∈ u conv , the second if the assumption is just pZtrueq). Some renaming of bound variables may
occur, thus the priming of V .

Errors

42012 ?0 is not of the form pZ(λ x :X | P• V ) tq

SML

val z λ conv : CONV ;
val z ∈ λ conv : CONV ;

Description Convert a Z λ abstraction into a set abstraction.

Conversion

` (λ D | P• V ) = { D | P• (charD ,V )}
z λ conv
pZλ D | P• V q

Where charD is the characteristic tuple of D .

Definition

val z ∈ λ conv = ∈ C z λ conv ;

See Also z app λ rule, z β tac

Errors

47200 ?0 is not a Z λ abstraction
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SML

val z µ rule : TERM −> THM ;

Description This rule is given a Z µ expression (i.e. a Z definite description), and returns a
theorem that states what is required for this µ expression to be equal to some value, x . The
requirement is that if any value satisfies the schema text of the µ expression then it must equal
x , and that x satisfies the schema text of the µ expression.

Rule

` ∀ x :U•
(∀ D ′ | P ′• V ′ = x ) ∧

(∃ D ′ | P ′• V ′ = x )
⇒

(µ D | P• V ) = x

z µ rule
pZµ D | P• V q

The result may require bound variable renaming and thus the priming of D , etc.

Errors

47210 ?0 is not a Z µ term

SML

val ∈ C : CONV −> CONV ;

Description ∈ C cnv tm takes a conversion cnv , that applies to set terms, will check to see if
its term argument, tm is a membership statement. If so, it will apply its conversion to the set. If
not it will fail. It does not check that its result remaining in Z (and indeed is applicable to HOL
membership terms as well).

See Also Z ∈ ELIM C
Errors

42028 ?0 is not of the form pZv ∈ sq or pv ∈ sq

And as conversion argument upon the set, with the error being passed through by the conversional
untouched.
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8.4 Reasoning about Schema Expressions

SML

signature ZSchemaCalculus = sig

Description This provides the rules of inference for schema calculus in the Z proof support
system. The material is implemented within the theory z language ps.

SML

(∗ Proof Context : ′z schemas ∗)
Description A component proof context for handling the manipulation of Z schemas. It “un-
derstands” the membership, or schema as predicate, properties of each of the schema calculus
operators. It will replace an appropriate pZv ∈ Sq by a “schema S as predicate”.

Predicates and expressions treated by this proof context are constructs formed from:

(selection from) horizontal schemas, schemas as predicates, (selection from) θ expressions,
¬s , ∧s , ∨s , ⇒s , ⇔s , ∀s , ∃s , ∃1 s , decor s , pres , ¹s , hides , ∆s , Ξ s , o

9s , renames ,

Contents

Rewriting:

(RAND C z θ conv THEN C z sel s conv)
− which simplifies terms of the form: pZ(θ s).nmq

z θ eq conv , z θ conv1 ,
z ∈ ¬s conv , z ∈ ∧s conv , z ∈ ∨s conv ,
z ∈ ⇒s conv , z ∈ ⇔s conv , z ∈ ∃s conv ,
z ∈ ∃1 s conv , z ∈ ∀s conv , z ∈ h schema conv ,
z ∈ decor s conv , z ∈ pres conv , z ∈ ¹s conv ,
z ∈ hides conv , z ∈ ∆s conv , z ∈ Ξ s conv ,
z ∈ o

9s conv , z ∈ renames conv , z schema pred intro conv

Stripping theorems and conclusions:

(RAND C z θ conv THEN C z sel s conv)
− which simplifies boolean terms of the form: pZ(θ s).nmq

∈ C (RAND C z θ conv THEN C z sel s conv)
− which simplifies terms of the form: pZx ∈ (θ s).nmq

z θ eq conv , z ∈ ¬s conv , z ∈ ∧s conv , z ∈ ∨s conv ,
z ∈ ⇒s conv , z ∈ ⇔s conv , z ∈ ∃s conv ,
z ∈ ∃1 s conv , z ∈ ∀s conv , z ∈ h schema conv ,
z ∈ decor s conv , z ∈ pres conv , z ∈ ¹s conv ,
z ∈ hides conv , z ∈ ∆s conv , z ∈ Ξ s conv ,
z ∈ o

9s conv , z ∈ renames conv , z schema pred intro conv
plus these all pushed in through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z language ps. It is intended to be used with proof context
“z bindings”. It is not intended to be mixed with HOL proof contexts.
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SML

val z decors conv : CONV ;
val z ∈ decors conv : CONV ;

Description A conversion which expands a statement of membership to a decorated schema.

Conversion

` v ∈ (S )′ ⇔
(x1 =̂ v .x ′1 , ...) ∈ S

z ∈ decor s conv
pZv ∈ (S )′q

where the type of S is

P [x1 :U;... ]

S may be a schema-reference, or (in extended Z) anything of the stated type. Schemas as predi-
cates will be treated as membership statements by this conversion. If v is a binding display then
v .x i will be simplified.

Definition

val z decor s conv = Z ∈ ELIM C z ∈ decor s conv

Errors

43015 ?0 not of the form: pZv ∈ dsq where ds is a decorated
schema expression

SML

val z dec renames conv : CONV ;

Description This conversion turns an ill-formed schema-as-declaration into a well-formed one
using renaming. The ill-formed schemas-as-declarations in question are those of the form

pZ ′SchemaDec bind schemaq;

where bind is not equal to pZθ schemaq.

Conversion

` Z ′SchemaDec bind schema ⇔
schema[y1/x1 , ..., yk/xk ]

z dec renames conv
pZ ′SchemaDec bind schemaq

Uses In correcting the results of functions which produce results outside Z because of substitu-
tion within variable binding constructs.

Errors

43060 ?0 is not an ill−formed schema−as−declaration
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SML

val z hides conv : CONV ;
val z ∈ hides conv : CONV ;

Description A conversion concerning the schema hiding.

Conversion

` S \s (x1 , ...) =
[y1 : U; ... | ∃ x 1 : U; ... • S ]

z hides conv
pZS \s (x1 , ...)q

where S is a schema that has signature variables x 1 , x2 , ... and y1 , y2 , ... .

Definition

val z ∈ hides conv = ∈ C z hides conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43018 ?0 is not of the form: pZS \s (x1 , ...)q where S is a schema

SML

val z h schema conv : CONV ;

Description A conversion from a horizontal schema to a set comprehension.

Conversion

` [D |P ] = {D |P•θD}
z h schema conv
pZ [D |P ]q

See Also z ∈ h schema conv1 and z ∈ h schema conv , which are more appropriate if the
schema expression occurs as a subterm of a membership expression.

Errors

43004 ?0 is not a horizontal schema

SML

val z h schema pred conv : CONV ;

Description A conversion for eliminating a horizontal schema as a predicate.

Conversion

` [D |P ] ⇔ "D as Predicate" ∧ P
z h schema pred conv
pZ [D |P ]q

Projections from bindings, which are likely to be introduced, are automatically expanded out.
The user may do so with, e.g.,

MAP C z sel s conv

The horizontal schema may be decorated.

See Also z schema pred conv for a more general conversion.

Errors

43012 ?0 is not a horizontal schema as a predicate
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SML

val z norm h schema conv : CONV ;

Description A conversion for normalising horizontal schemas.

Conversion

` [D |P ] = [DU |D1 ∧ P ]
z norm h schema conv
p[D |P ]q

D1 is the implicit predicate formed from D by z decl pred conv , and then simplified. The sim-
plification is that conjuncts of the predicate that are provable by z ∈ u conv , q.v., are proven
and then eliminated from D1 . DU is the signature formed from the variables bound by D , all of
type U.

Example

z norm h schema conv pZ [w :W ; x ,y :X ; z :U | p w x y z ]q
=

pZ [w :U; x :U; y :U; z :U | (w ∈ W ∧ x ∈ X ∧ y ∈ X ) ∧ p w x y z ]q

Notice how, since z ∈ U can be proven by z ∈ u conv , it is not included in D1 .

Errors

43004 ?0 is not a horizontal schema

SML

val z pres conv : CONV ;
val z ∈ pres conv : CONV ;

Description Schema precondition elimination.

Conversion

` pre S = [DI | (∃ DF • S1 )]
z pres conv
pZpre Sq

DI is the declaration formed from the unprimed and input (‘?’) variables of S , given type U.
DF is the declaration formed from the primed and output (‘!’) variables of S , given type U. It
is possible for one or both of DI and DF to be the empty declaration. S1 is the schema S as a
predicate.

Definition

val z ∈ pres conv = ∈ C z pres conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43007 ?0 is not a schema precondition
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SML

val z renames conv : CONV ;
val z ∈ renames conv : CONV ;

Description A conversion concerning schema renaming.

Conversion

` v ∈ S [x1/y1 ,...] ⇔
(y1 =̂ v .x1 ,...,z 1 =̂ v .z 1 ,...) ∈ S

z ∈ renames conv
pZv ∈ S [x 1/y1 ,...]q

where S has signature variables y1 , ... and z 1 , ... Schemas as predicates will be treated as
membership statements by this conversion. If v is a binding display then v .x i will be simplified.
The conversion will fail with error 43035 if applied to a renaming that renames one component
to an already existent, unrenamed, component.

Definition

val z renames conv = Z ∈ ELIM C z ∈ renames conv ;

Errors

43031 ?0 is not of the form: pZS [x 1/y1 ,...]q where S is a schema
43035 ?0 is of the form pZS [...,x i/y i ,...]q where x i is already an unrenamed component of S

SML

val z schema pred conv : CONV ;
val z θ ∈ schema intro conv : CONV ;

Description z schema pred conv is a conversion from a schema as a predicate to the predicate
asserting that its θ-term is a member of the schema.

Conversion

` S ⇔ θS ∈ S
z θ ∈ schema intro conv
pSq

S is any schema as a predicate, including both schema references and horizontal schemas.

z schema pred conv is an alias for z θ ∈ schema intro conv .

See Also z h schema pred conv for alternative, z θ conv , and z θ ∈ schema conv .

Errors

43014 ?0 is not a schema as a predicate

SML

val z schema pred intro conv : CONV ;

Description This conversion attempts to convert a predicate that is a membership of a schema
into a schema as a predicate.

Conversion

` ((x1 =̂ x1 , ...) ∈ S ) ⇔ S
z schema pred intro conv
pZ(x 1 =̂ x1 , ...) ∈ Sq

The input term must have a binding display that binds to each label a variable with the label’s
name (maintaining decoration).

Errors

43032 ?0 cannot be converted to a schema as a predicate
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SML

val z strip tac : TACTIC ;

Description z strip tac is a general purpose tactic for simplifying away the outermost con-
nective of a Z goal. It first attempts to apply z ∀ tac. If that fails it then tries to apply the
current proof context’s conclusion stripping conversion, to rewrite the outermost connective in the
goal. Failing that it tries to simplify the goal by applying an applicable member of the following
collection of tactics (only one could possibly apply):

simple ∀ tac, ∧ tac,
⇒ T strip asm tac, t tac

Failing either being successful, it tries concl in asms tac to prove the goal, and failing that,
returns the error message below.

finally, it will attempt to make the goal a “schema as predicate”, if possible, by using
z schema pred intro conv .

Note how new assumptions generated by the tactic are processed using strip asm tac, which uses
the current proof context’s theorem stripping conversion. z strip tac may produce several new
subgoals, or may prove the goal.

The tactic is defined as:
Definition

val z strip tac = (z ∀ tac ORELSE T strip tac)
THEN TRY T conv tac z schema pred intro conv ;

Uses This is the usual way of simplifying a goal involving Z predicate calculus connectives, and
other functions “understood” by the current prof context.

See Also STRIP CONCL T and STRIP THM THEN which are used to implement this func-
tion. taut tac for an alternative simplifier. swap ∨ tac to rearrange the conclusion for tailored
stripping.

Errors

28003 There is no stripping technique for ?0 in the current proof context

SML

val z ∆s conv : CONV ;
val z ∈ ∆s conv : CONV ;

Description A conversion concerning the delta schemas.

Conversion

` ∆ S = [S ; S ′]
z ∆s conv
pZ∆ Sq

Definition

val z ∈ ∆s conv = ∈ C z ∆s conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43022 ?0 is not of the form: pZ∆ Sq where S is a schema
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SML

val z ∈ h schema conv1 : CONV ;

Description A conversion from a predicate asserting membership of a horizontal schema to an
existential quantification.

Conversion

` v ∈ [D |P ] ⇔ ∃D ′|P ′•θ[D ′] = v
z ∈ h schema conv1
pv ∈ [D |P ]q

Bound variable renaming may be necessary, and thus the priming in the RHS of the result.
Schemas as predicates will be treated as membership statements by this conversion.

See Also z ∈ h schema conv for a faster, if more verbose result from simplifying the same
category of terms, z h schema conv for a horizontal schema term without and outer ∈.

Errors

43003 ?0 is not of the form pv ∈ [D |P ]q
43033 Unable to prove ?0 equal to something of the form: pZ∃D ′|P ′•θ[D ′] = vq

use z ∈ h schema conv instead , and then work by hand

Error 43033 indicates that there is some sort of variable capture problem preventing the conversion
from functioning correctly. As indicated, z ∈ h schema conv is a conversion that does apply to
simplify the input term.

SML

val z ∈ h schema conv : CONV ;

Description A conversion from a predicate asserting membership of a horizontal schema to a
predicate.

Conversion

` v ∈ [D |P ] ⇔ D ′ ∧ P ′
z ∈ h schema conv
pv ∈ [D |P ]q

where, if D declares variables x1 , x2 ,..., then D ′ is

"predicate from D [x1 \ v .x1 , ...]"

as converted by z decl pred conv , and P ′ is

P [x 1 \ v .x1 , ...]

The execution of the conversion may also involve bound variable renaming. If v is a binding
display then v .x i will be simplified. Though this conversion gives a rather verbose result, it
evaluates faster than z ∈ h schema conv1 , and is probably of more practical value in a proof.
Schemas as predicates will be treated as membership statements by this conversion.

See Also z ∈ h schema conv1
Errors

43003 ?0 is not of the form pv ∈ [D |P ]q
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SML

val z Ξs conv : CONV ;
val z ∈ Ξs conv : CONV ;

Description A conversion concerning Ξ schemas.

Conversion

` Ξ S = [S ; S ′ | θS = θS ′]
z Ξ s conv
pZΞ Sq

Definition

val z ∈ Ξ s conv = ∈ C z Ξ s conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43023 ?0 is not of the form: pZΞ Sq where S is a schema

SML

val z ⇔s conv : CONV ;
val z ∈ ⇔s conv : CONV ;

Description A conversion concerning the membership of a schema bi-implication.

Conversion

` v ∈ (R ⇔ S ) ⇔
(bind1 ∈ R ⇔ bind2 ∈ S )

z ∈ ⇔s conv
pZv ∈ (R ⇔ S )q

where R and S are schemas that have signature variables r1 , r2 , ... and s1 , s2 , ... respectively,
and

bind1 = (r1 =̂ v .r1 , ...)
bind2 = (s1 =̂ v .s1 , ...)

Schemas as predicates will be treated as membership statements by this conversion. If v is a
binding display then v .x i will be simplified.

Definition

val z ⇔s conv = Z ∈ ELIM C z ∈ ⇔s conv ;

Errors

43016 ?0 is not of the form: pZv ∈ (R ⇔ S )q where R and S are schemas
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SML

val z ∧s conv : CONV ;
val z ∈ ∧s conv : CONV ;

Description A conversion concerning the membership of a schema conjunction.

Conversion

` v ∈ (R ∧ S ) ⇔
bind1 ∈ R ∧ bind2 ∈ S

z ∈ ∧s conv
pZv ∈ (R ∧ S )q

where R and S are schemas that have signature variables r1 , r2 , ... and s1 , s2 , ... respectively,
and

bind1 = (r1 =̂ v .r1 , ...)
bind2 = (s1 =̂ v .s1 , ...)

Schemas as predicates will be treated as membership statements by this conversion. If v is a
binding display then v .x i will be simplified.

Definition

val z ∧s conv = Z ∈ ELIM C z ∈ ∧s conv ;

Errors

43001 ?0 is not of the form: pZv ∈ (R ∧ S )q where R and S are schemas

SML

val z ∨s conv : CONV ;
val z ∈ ∨s conv : CONV ;

Description A conversion concerning the membership of a schema disjunction.

Conversion

` v ∈ (R ∨ S ) ⇔
bind1 ∈ R ∨ bind2 ∈ S

z ∈ ∨s conv
pZv ∈ (R ∨ S )q

where R and S are schemas that have signature variables r1 , r2 , ... and s1 , s2 , ... respectively,
and

bind1 = (r1 =̂ v .r1 , ...)
bind2 = (s1 =̂ v .s1 , ...)

Schemas as predicates will be treated as membership statements by this conversion. If v is a
binding display then v .x i will be simplified.

Definition

val z ∨s conv = Z ∈ ELIM C z ∈ ∨s conv ;

Errors

43005 ?0 is not of the form: pZv ∈ (R ∨ S )q where R and S are schemas
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SML

val z ¬s conv : CONV ;
val z ∈ ¬s conv : CONV ;

Description A conversion concerning the membership of a schema negation.

Conversion

` v ∈ (¬ S ) ⇔ ¬ (v ∈ S )
z ∈ ¬s conv
pZv ∈ (¬ S )q

where S is a schema. Schemas as predicates will be treated as membership statements by this
conversion.
Definition

val z ¬s conv = Z ∈ ELIM C z ∈ ¬s conv ;

Errors

43017 ?0 is not of the form: pZv ∈ (¬ S )q where S is a schema

SML

val z ⇒s conv : CONV ;
val z ∈ ⇒s conv : CONV ;

Description A conversion concerning the membership of a schema implication.

Conversion

` v ∈ (R ⇒ S ) ⇔
(bind1 ∈ R ⇒ bind2 ∈ S )

z ∈ ⇒s conv
pZv ∈ (R ⇒ S )q

where R and S are schemas that have signature variables variables r1 , r2 , ... and s1 , s2 , ...
respectively, and

bind1 = (r1 =̂ v .r1 , ...)
bind2 = (s1 =̂ v .s1 , ...)

Schemas as predicates will be treated as membership statements by this conversion. If v is a
binding display then v .x i will be simplified.

Definition

val z ⇒s conv = Z ∈ ELIM C z ∈ ⇒s conv ;

Errors

43006 ?0 is not of the form: pZv ∈ (R ⇒ S )q where R and S are schemas

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



442 Chapter 8. SUPPORT FOR Z

SML

val z ∀s conv : CONV ;
val z ∈ ∀s conv : CONV ;

Description A conversion concerning schema universals.

Conversion

` v ∈ (∃ D | P• S ) =
∀ y : U • ("predicate from D [y .y1/y1 ,...]"

∧ P [y .y1/y1 ,...]) ⇒
(x1 =̂ v .x1 ,...,y1 =̂ y .y1 ,...) ∈ S

z ∈ ∀s conv
pZv ∈ (∀ D | P• S )q

where S is a schema that has signature variables x 1 , x 2 , ... and y1 , y2 , ... D a declaration that
declares y1 , y2 , ... . The “predicate from D” will also have schemas as predicates eliminated in
favour of bindings being members of schemas. Schemas as predicates will be treated as membership
statements by this conversion. If v is a binding display then v .x i will be simplified.

Definition

val z ∀s conv = Z ∈ ELIM C z ∈ ∀s conv ;

Errors

43030 ?0 is not of the form: pZv ∈ (∀ D | P• S )q where S is a schema

SML

val z ∃1s conv : CONV ;
val z ∈ ∃1s conv : CONV ;

Description A conversion concerning schema unique existentials.

Conversion

` v ∈ (∃1 D | P• S ) =
∃1 y : U •

("predicate from D [y .y1/y1 ,...]"
∧ P [y .y1/y1 ,...]) ∧

(x1 =̂ v .x1 ,...,y1 =̂ y .y1 ,...) ∈ S

z ∈ ∃1 s conv
pZv ∈ (∃1 D | P• S )q

where S is a schema that has signature variables x 1 , x 2 , ... and y1 , y2 , ... D a declaration that
declares y1 , y2 , ... . The “predicate from D” will also have schemas as predicates eliminated in
favour of bindings being members of schemas. Schemas as predicates will be treated as membership
statements by this conversion. If v is a binding display then v .x i will be simplified.

Definition

val z ∃1 s conv = Z ∈ ELIM C z ∈ ∃1 s conv ;

Errors

43021 ?0 is not of the form: pZv ∈ (∃1 D | P• S )q where S is a schema
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SML

val z ∃s conv : CONV ;
val z ∈ ∃s conv : CONV ;

Description A conversion concerning membership of schema existentials.

Conversion

` v ∈ (∃ D | P• S ) =
∃ y : U • ("predicate from D [y .y1/y1 ,...]"

∧ P [y .y1/y1 ,...]) ∧
(x1 =̂ v .x1 ,...,y1 =̂ y .y1 ,...) ∈ S

z ∈ ∃s conv
pZv ∈ (∃ D | P• S )q

where S is a schema that has signature variables x 1 , x 2 , ... and y1 , y2 , ... D a declaration that
declares y1 , y2 , ... . The “predicate from D” will also have schemas as predicates eliminated in
favour of bindings being members of schemas. Schemas as predicates will be treated as membership
statements by this conversion. If v is a binding display then v .x i will be simplified.

Definition

val z ∃s conv = Z ∈ ELIM C z ∈ ∃s conv ;

Errors

43020 ?0 is not of the form: pZv ∈ (∃ D | P• S )q where S is a schema

SML

val z o
9s conv : CONV ;

val z ∈ o
9s conv : CONV ;

Description A conversion concerning schema sequential composition.

Conversion

` (R o
9s S ) =

[x1 :U; ...; z ′1 :U; ...; v1 :U; ...; w ′
1 :U; ... |

∃ x1 :U; ... •
(x1 =̂ x1 , ..., y ′1 =̂ x1 , ..., z ′1 =̂ z ′1 , ...) ∈ R

∧ (v1 =̂ v1 , ..., w ′
1 =̂ w ′

1 , ..., y1 =̂ x1 , ...) ∈ S ]

z o
9s conv

pZ(R o
9s S )q

where R and S are schemas with signature variables as follows:

R S
unprimed primed unprimed primed

x1 , x2 , ... (x c1 , x c2 , ...) (x ′d1
, x ′d2

, ...)
(z a1 , z a2 , ...) z ′1 , z ′2 , ... (z ′e1

, z ′e2
, ...)

(yb1 , yb2 , ...) y ′1 , y ′2 , ... y1 , y2 , ... (y ′f 1
, y ′f 2

, ...)
v1 , v2 , ... (v ′g1

, v ′g2
, ...)

w ′
1 , w ′

2 , ...

and x1 , x2 , ... are variables whose names are not used for variables, or as labels for the binding
types of R or S . The signature variables enclosed in parentheses in the table are not shown in
the theorem returned by the conversion but, if present, may result in extra schema declarations
of the form v : U and binding maplets of the form v =̂ v where v is e.g. z a1 .

Definition

val z ∈ o
9s conv = ∈ C z o

9s conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43025 ?0 is not of the form: pZR o
9s Sq where R and S are schemas
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SML

val z θ conv : CONV ;
val z θ conv1 : CONV ;

Description z θ conv conversion from a θ-term to the binding constructor for the schema.

Conversion

` θS = (n1 =̂ n1 , n2 =̂ n2 , ...)
z θ conv
pZθSq

z θ conv1 is as z θ conv , except that the conversion only succeeds if the θ term is ill-formed (i.e.
is not Z).

Errors

43010 ?0 is not a θ−term
43011 ?0 is not an ill−formed θ−term

SML

val z θ eq conv : CONV ;

Description A conversion from an equality of two θ-terms, or a θ term and a binding display,
to an elementwise equality condition.

Conversion

` (θ S decS = θ T decT )
⇔ n1decS = n1decT ∧ ...

z θ eq conv
pZθS = θTq

where decS and decT are the decoration of the respective schemas. Also:

Conversion

` (θS = (n1 =̂ x1 , ...))
⇔ (n1 = x1 ) ∧ ...

z θ eq conv
pZθS = (n1 =̂ x1 , ...)q

Uses Used in combination with z binding eq conv2 to give η-terms the same status as binding
displays.

Errors

43034 ?0 is not of the form: pZθS = θTq or pZθS = (n1 =̂ x1 , ...)q

SML

val z θ ∈ schema conv : CONV ;

Description A conversion from a predicate asserting that the θ-term of a schema is a member
of the schema to that schema as a predicate.

Conversion

` θS ∈ S ⇔ S
z θ ∈ schema conv
pZθS ∈ Sq

Note that the schemas cannot be decorated, as the type of pZθ S ′q is the same as the type of
pZθ Sq. Other than that S may be any schema as a predicate, including schema references and
horizontal schemas.

See Also z θ ∈ schema intro conv ; and z pred dec conv , which subsumes this conversion.

Errors

43002 ?0 is not of the form pθS ∈ Sq where pSq is an undecorated schema
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SML

val z ¹s conv : CONV ;
val z ∈ ¹s conv : CONV ;

Description A conversion concerning the membership of a schema projection.

Conversion

` (R ¹s S ) = (R ∧ S ) \s (x1 , x 2 , ...)
z ¹s conv
pZ(R ¹s S )q

where R and S are schemas and x 1 , x2 , ... are the signature variables of R that are not signature
variables of S .
Definition

val z ∈ ¹s conv = ∈ C z ¹s conv

Schemas as predicates will be treated as membership statements by this conversion.

Errors

43019 ?0 is not of the form: pZR ¹s Sq where R and S are schemas
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THEORIES

9.1 Theory Listings

This section contains the listings of each theory.
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9.1.1 The Theory z arithmetic tools

9.1.1.1 Parents

z numbers

9.1.1.2 Children

z numbers1 z library

9.1.1.3 Constants

Z z Z → Z
z Z Z → Z

9.1.1.4 Definitions

z Z
Z z ` ConstSpec

(λ ($”z Z′”, Z z ′)
• Z z ′ (NZ 1 ) = pZ1q

∧ (∀ i j
• Z z ′ (i + j ) = pZpZ z ′ iq + pZ z ′ jqq)
∧ (∀ i• Z z ′ (∼ i) = pZ∼ pZ z ′ iqq)
∧ $”z Z′” pZ1q = NZ 1
∧ (∀ i j
• $”z Z′” pZ i + jq = $”z Z′” i + $”z Z′” j )
∧ (∀ i• $”z Z′” pZ∼ iq = ∼ ($”z Z′” i))
∧ (∀ x• $”z Z′” (Z z ′ x ) = x )
∧ (∀ y• Z z ′ ($”z Z′” y) = y))

(z Z, Z z )

9.1.1.5 Theorems

z Z consistent
Z z consistent

` Consistent
(λ ($”z Z′”, Z z ′)
• Z z ′ (NZ 1 ) = pZ1q

∧ (∀ i j
• Z z ′ (i + j ) = pZpZ z ′ iq + pZ z ′ jqq)
∧ (∀ i• Z z ′ (∼ i) = pZ∼ pZ z ′ iqq)
∧ $”z Z′” pZ1q = NZ 1
∧ (∀ i j
• $”z Z′” pZ i + jq = $”z Z′” i + $”z Z′” j )
∧ (∀ i• $”z Z′” pZ∼ iq = ∼ ($”z Z′” i))
∧ (∀ x• $”z Z′” (Z z ′ x ) = x )
∧ (∀ y• Z z ′ ($”z Z′” y) = y))

z Z plus thm ` ∀ i j• z Z pZ i + jq = z Z i + z Z j
z Z times thm

` ∀ i j• z Z pZ i ∗ jq = z Z i ∗ z Z j
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z Z subtract thm
` ∀ i j• z Z pZ i − jq = z Z i − z Z j

z Z minus thm
` ∀ i• z Z pZ∼ iq = ∼ (z Z i)

Z z plus thm ` ∀ i j• Z z (i + j ) = pZpZ z iq + pZ z jqq
Z z times thm

` ∀ i j• Z z (i ∗ j ) = pZpZ z iq ∗ pZ z jqq
Z z subtract thm

` ∀ i j• Z z (i − j ) = pZpZ z iq − pZ z jqq
Z z minus thm

` ∀ i• Z z (∼ i) = pZ∼ pZ z iqq
z Z one one thm

` ∀ i j• z Z i = z Z j ⇔ i = j
Z z one one thm

` ∀ i j• Z z i = Z z j ⇔ i = j
z ≤ Z ≤ thm ` ∀ i j• pZ(i , j )q ∈ pZ( ≤ )q ⇔ z Z i ≤ z Z j
z less Z less thm

` ∀ i j• pZ(i , j )q ∈ pZ( < )q ⇔ z Z i < z Z j
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9.1.2 The Z Theory z bags

9.1.2.1 Parents

z sequences

9.1.2.2 Children

z library

9.1.2.3 Global Variables

bag X P (X ↔ Z)
count[X] (X ↔ Z) ↔ X ↔ Z
( in )[X] X ↔ X ↔ Z
( ] )[X] (X ↔ Z) × (X ↔ Z) ↔ X ↔ Z
items[X] (Z ↔ X ) ↔ X ↔ Z
([[ ... ]])[X] (Z ↔ X ) ↔ X ↔ Z

9.1.2.4 Fixity

fun 0 rightassoc
([[ ... ]])

fun 30 leftassoc
( ] )

gen 70 rightassoc
(bag )

rel ( in )

9.1.2.5 Axioms

count ` [X ](count [X ] ∈ bag X ³½ X → N
∧ (∀ x : X ; B : bag X
• count [X ] B = (λ x : X • 0 ) ⊕ B))

in ` [X ](( in )[X ] ∈ X ↔ bag X
∧ (∀ x : X ; B : bag X
• (x , B) ∈ ( in )[X ] ⇔ x ∈ dom B))

] ` [X ](( ] )[X ] ∈ bag X × bag X → bag X
∧ (∀ B , C : bag X ; x : X
• count (( ] )[X ] (B , C )) x

= count B x + count C x ))
items ` [X ](items[X ] ∈ seq X → bag X

∧ (∀ s : seq X ; x : X
• count (items[X ] s) x

= # {i : dom s | s i = x}))
[[ ... ]] ` [X ](([[ ... ]])[X ] ∈ seq X → bag X

∧ ([[ ... ]])[X ] 〈〉 = {}
∧ (∀ x : X ; s : seq X
• ([[ ... ]])[X ] (〈x 〉 a s)

= ([[ ... ]])[X ] s ⊕ {x 7→ ([[ ... ]])[X ] s x + 1}))
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9.1.2.6 Definitions

bag ` [X ](bag X = X 7→ N1 )
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9.1.3 The Z Theory z functions

9.1.3.1 Parents

z relations

9.1.3.2 Children

z functions1 z numbers

9.1.3.3 Global Variables

X 7→ Y P (X ↔ Y )
X 7½ Y P (X ↔ Y )
X ½ Y P (X ↔ Y )
X 7³ Y P (X ↔ Y )
X ³ Y P (X ↔ Y )
X ³½ Y P (X ↔ Y )

9.1.3.4 Fixity

gen 5 rightassoc
( ³½ ) ( 7³ ) ( 7→ ) ( ½ ) ( ³ ) ( 7½ )

9.1.3.5 Definitions

7→ ` [X ,
Y ](X 7→ Y

= {f : X ↔ Y
| ∀ x : X ; y1 , y2 : Y
• x 7→ y1 ∈ f ∧ x 7→ y2 ∈ f ⇒ y1 = y2})

7½ ` [X ,
Y ](X 7½ Y

= {f : X 7→ Y
| ∀ x1 , x2 : dom f • f x1 = f x2 ⇒ x1 = x2})

½ ` [X , Y ](X ½ Y = (X 7½ Y ) ∩ (X → Y ))
7³ ` [X , Y ](X 7³ Y = {f : X 7→ Y | ran f = Y })

³ ` [X , Y ](X ³ Y = (X 7³ Y ) ∩ (X → Y ))
³½ ` [X , Y ](X ³½ Y = (X ³ Y ) ∩ (X ½ Y ))
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9.1.3.6 Theorems

z 7→ thm ` ∀ f : U; X : U; Y : U
• f ∈ X 7→ Y
⇔ f ∈ X ↔ Y
∧ (∀ x : X ; y1 , y2 : Y
• (x , y1 ) ∈ f ∧ (x , y2 ) ∈ f ⇒ y1 = y2 )

z 7→ thm1 ` ∀ f : U; X : U; Y : U
• f ∈ X 7→ Y
⇔ f ∈ X ↔ Y
∧ (∀ x : U; y1 , y2 : U
| x ∈ X ∧ y1 ∈ Y ∧ y2 ∈ Y
• (x , y1 ) ∈ f ∧ (x , y2 ) ∈ f ⇒ y1 = y2 )

z → thm ` ∀ f : U; X : U; Y : U
• f ∈ X → Y ⇔ f ∈ X 7→ Y ∧ dom f = X

z 7½ thm ` ∀ f : U; X : U; Y : U
• f ∈ X 7½ Y
⇔ f ∈ X 7→ Y
∧ (∀ x1 , x2 : U
| x1 ∈ dom f ∧ x2 ∈ dom f
• f x1 = f x2 ⇒ x1 = x2 )

z ½ thm ` ∀ f : U; X : U; Y : U
• f ∈ X ½ Y
⇔ f ∈ X → Y
∧ (∀ x1 , x2 : U
| x1 ∈ dom f ∧ x2 ∈ dom f
• f x1 = f x2 ⇒ x1 = x2 )

z 7³ thm ` ∀ f : U; X : U; Y : U
• f ∈ X 7³ Y ⇔ f ∈ X 7→ Y ∧ ran f = Y

z ³ thm ` ∀ f : U; X : U; Y : U
• f ∈ X ³ Y ⇔ f ∈ X → Y ∧ ran f = Y

z ³½ thm ` ∀ f : U; X : U; Y : U
• f ∈ X ³½ Y
⇔ f ∈ X → Y
∧ ran f = Y
∧ (∀ x1 , x2 : U
| x1 ∈ dom f ∧ x2 ∈ dom f
• f x1 = f x2 ⇒ x1 = x2 )

z → app thm ` ∀ X : U; Y : U; f : U; x : U
• f ∈ X → Y ∧ x ∈ X ⇒ f x ∈ Y ∧ (x , f x ) ∈ f

z ∈ first thm
` ∀ x : U • x ∈ first ⇔ x .1 .1 = x .2

z ∈ second thm
` ∀ x : U • x ∈ second ⇔ x .1 .2 = x .2

z → app ∈ rel thm
` ∀ X : U; Y : U • ∀ f : X → Y ; x : X • (x , f x ) ∈ f

z → app eq ⇔ ∈ rel thm
` ∀ X : U; Y : U

• ∀ f : X → Y ; x : X ; z : U • f x = z ⇔ (x , z ) ∈ f
z → ∈ rel ⇔ app eq thm

` ∀ X : U; Y : U
• ∀ f : X → Y ; x : X ; z : U • (x , z ) ∈ f ⇔ f x = z

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



454 Chapter 9. THEORIES

z 7→ clauses ` ∀ Y : U • {} 7→ Y = {{}} ∧ Y 7→ {} = {{}}
z → clauses ` ∀ Y : U

• {} → Y = {{}}
∧ Y → {} = {x : U | x = {} ∧ Y = {}}

z 7½ clauses ` ∀ Y : U • {} 7½ Y = {{}} ∧ Y 7½ {} = {{}}
z ½ clauses ` ∀ Y : U

• {} ½ Y = {{}}
∧ Y ½ {} = {x : U | x = {} ∧ Y = {}}

z 7³ clauses ` ∀ Y : U
• {} 7³ Y = {x : U | x = {} ∧ Y = {}}
∧ Y 7³ {} = {{}}

z ³ clauses ` ∀ Y : U
• {} ³ Y = {x : U | x = {} ∧ Y = {}}
∧ Y ³ {} = {x : U | x = {} ∧ Y = {}}

z ³½ clauses ` ∀ Y : U
• {} ³½ Y = {x : U | x = {} ∧ Y = {}}
∧ Y ³½ {} = {x : U | x = {} ∧ Y = {}}

z fun app clauses
` ∀ f : U; x : U; y : U; X : U; Y : U

• (f ∈ X 7→ Y
∨ f ∈ X 7½ Y
∨ f ∈ X 7³ Y
∨ f ∈ X → Y
∨ f ∈ X ½ Y
∨ f ∈ X ³ Y
∨ f ∈ X ³½ Y )

∧ (x , y) ∈ f
⇒ f x = y

z fun ∈ clauses
` ∀ f : U; x : U; X : U; Y : U

• ((f ∈ X → Y ∨ f ∈ X ½ Y ∨ f ∈ X ³ Y ∨ f ∈ X ³½ Y )
∧ x ∈ X

⇒ f x ∈ Y )
∧ ((f ∈ X 7→ Y ∨ f ∈ X 7½ Y ∨ f ∈ X 7³ Y )

∧ x ∈ dom f
⇒ f x ∈ Y )

z fun dom clauses
` ∀ f : U; X : U; Y : U

• (f ∈ X 7→ Y ∨ f ∈ X 7½ Y ∨ f ∈ X 7³ Y ⇒ dom f ⊆ X )
∧ (f ∈ X → Y ∨ f ∈ X ½ Y ∨ f ∈ X ³ Y ∨ f ∈ X ³½ Y
⇒ dom f = X )

z fun ran clauses
` ∀ f : U; X : U; Y : U

• (f ∈ X → Y ∨ f ∈ X 7→ Y ∨ f ∈ X 7½ Y ∨ f ∈ X ½ Y
⇒ ran f ⊆ Y )

∧ (f ∈ X 7³ Y ∨ f ∈ X ³ Y ∨ f ∈ X ³½ Y ⇒ ran f = Y )
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9.1.4 The Z Theory z functions1

9.1.4.1 Parents

z functions

9.1.4.2 Children

z numbers1

9.1.4.3 Theorems

z ⊕ 7→ app thm
` ∀ f : U; x : U; y : U • (f ⊕ {x 7→ y}) x = y

z dom ⊕ 7→ thm
` ∀ f : U; x : U; y : U

• dom (f ⊕ {x 7→ y}) = dom f ∪ {x}
z ⊕ 7→ ∈ → thm

` [X ,
Y ](∀ f : X → Y ; x : X ; y : Y • f ⊕ {x 7→ y} ∈ X → Y )

z ⊕ 7→ app thm1
` [X ,

Y ](∀ f : X → Y ; x2 : X ; x1 : U; y : U
| ¬
x2 = x1
• (f ⊕ {x1 7→ y}) x2 = f x2 )

z C → thm ` [Y ,
Z ](∀ X : U; f : Y → Z
• X ⊆ Y ⇒ X C f ∈ X → ran (X C f ))

z ran C thm ` [Y ,
Z ](∀ X : U; f : Y → Z
• ran (X C f )

= ran f
\ {y : U
| ∀ x : U | (x , y) ∈ f • ¬ x ∈ X })

z ∈ → thm ` ∀ X : U; Y : U
• ∀ f : X → Y ; x : U; y : U
| (x , y) ∈ f
• x ∈ X ∧ y ∈ Y

z → ran eq ³ thm
` ∀ A : U; B : U

• (∃ f : A → B • ran f = B) ⇔ (∃ f : A ³ B • true)
z ½ ran eq ³½ thm

` ∀ A : U; B : U
• (∃ f : A ½ B • ran f = B) ⇔ (∃ f : A ³½ B • true)

z ran mono thm
` ∀ X : U; Y , Z : U; f : U

| f ∈ X → Y ∧ ran f ⊆ Z
• f ∈ X → Z

z 7→ thm2 ` ∀ A : U; B : U; f : U
• f ∈ A 7→ B ⇔ f ∈ dom f → B ∧ dom f ⊆ A
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z ³ thm1 ` ∀ A : U; B : U; f : U
• f ∈ A ³ B ⇔ f ∈ A → B ∧ B ⊆ ran f

z 7½ thm1 ` [X ,
Y ](X 7½ Y

= {f : X 7→ Y
| ∀ x1 , x2 : U; y : U
• (x1 , y) ∈ f ∧ (x2 , y) ∈ f ⇒ x1 = x2})

z → dom thm ` ∀ A : U; B : U; f : U • f ∈ A → B ⇒ f ∈ dom f → B
z ½ thm1 ` ∀ A : U; B : U; f : U

• f ∈ A ½ B
⇔ f ∈ A → B
∧ (∀ x , y : U; z : U
• (x , z ) ∈ f ∧ (y , z ) ∈ f ⇒ x = y)

z ∪ ↔ thm ` ∀ A : U; B : U; C : U; D : U; f : U; g : U
• f ∈ A ↔ B ∧ g ∈ C ↔ D ⇒ f ∪ g ∈ A ∪ C ↔ B ∪ D

z ran ∪ thm ` ∀ f : U; g : U • ran (f ∪ g) = ran f ∪ ran g
z ∪ → thm ` ∀ A : U; B : U; C : U; D : U; f : U; g : U

• f ∈ A → B ∧ g ∈ C → D ∧ A ∩ C = {}
⇒ f ∪ g ∈ A ∪ C → B ∪ D

z ∪ ½ thm ` ∀ A : U; B : U; C : U; D : U; f : U; g : U
• f ∈ A ½ B ∧ g ∈ C ½ D ∧ A ∩ C = {} ∧ B ∩ D = {}
⇒ f ∪ g ∈ A ∪ C ½ B ∪ D

z ∪ ³ thm ` ∀ A : U; B : U; C : U; D : U; f : U; g : U
• f ∈ A ³ B ∧ g ∈ C ³ D ∧ A ∩ C = {}
⇒ f ∪ g ∈ A ∪ C ³ B ∪ D

z ∪ ³½ thm ` ∀ A : U; B : U; C : U; D : U; f : U; g : U
• f ∈ A ³½ B ∧ g ∈ C ³½ D ∧ A ∩ C = {} ∧ B ∩ D = {}
⇒ f ∪ g ∈ A ∪ C ³½ B ∪ D

z ◦ → thm ` ∀ A : U; B : U; C : U; f : U; g : U
• f ∈ A → B ∧ g ∈ B → C ⇒ g ◦ f ∈ A → C

z ◦ ³ thm ` ∀ A : U; B : U; C : U; f : U; g : U
• f ∈ A ³ B ∧ g ∈ B ³ C ⇒ g ◦ f ∈ A ³ C

z ◦ ½ thm ` ∀ A : U; B : U; C : U; f : U; g : U
• f ∈ A ½ B ∧ g ∈ B ½ C ⇒ g ◦ f ∈ A ½ C

z ◦ ³½ thm ` ∀ A : U; B : U; C : U; f : U; g : U
• f ∈ A ³½ B ∧ g ∈ B ³½ C ⇒ g ◦ f ∈ A ³½ C

z rel inv ³½ thm
` ∀ A : U; B : U; f : U • f ∈ A ³½ B ⇒ f ∼ ∈ B ³½ A

z id thm1 ` ∀ X : U; x , y : U • (x , y) ∈ id X ⇔ x ∈ X ∧ x = y
z id ³½ thm ` ∀ X : U • id X ∈ X ³½ X
z simple swap ³½ thm

` ∀ x , y : U • {(x , y), (y , x )} ∈ {x , y} ³½ {x , y}
z swap ³½ thm ` ∀ X : U

• ∀ x , y : X
• ∃ g : X ³½ X • (x , y) ∈ g ∧ (y , x ) ∈ g

z ³½ trans thm
` ∀ X : U • ∀ x , y : X • ∃ g : X ³½ X • (x , y) ∈ g

z dom f ↔ f thm
` ∀ A : U; B : U; f : U

• f ∈ A ↔ B
⇒ {x : A; y : B

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



9.1. Theory Listings 457

| (x , y) ∈ f
• (x , (x , y))}

∈ dom f ↔ f
z dom f → f thm

` ∀ A : U; B : U; f : U
• f ∈ A → B
⇒ {x : A; y : B

| (x , y) ∈ f
• (x , (x , y))}

∈ dom f → f
z dom f ³ f thm

` ∀ A : U; B : U; f : U
• f ∈ A → B
⇒ {x : A; y : B

| (x , y) ∈ f
• (x , (x , y))}

∈ dom f ³ f
z dom f ½ f thm

` ∀ A : U; B : U; f : U
• f ∈ A → B
⇒ {x : A; y : B

| (x , y) ∈ f
• (x , (x , y))}

∈ dom f ½ f
z dom f ³½ f thm

` ∀ A : U; B : U; f : U
• f ∈ A → B
⇒ {x : A; y : B

| (x , y) ∈ f
• (x , (x , y))}

∈ dom f ³½ f
z ∩ ↔ thm ` ∀ X : U; Y : U; f , g : U

| f ∈ X ↔ Y
• f ∩ g ∈ dom (f ∩ g) ↔ ran (f ∩ g)

z ↔ ran thm ` ∀ X : U; f : U • f ∈ X ↔ ran f ⇔ f ∈ X ↔ U
z → ran thm ` ∀ X : U; f : U • f ∈ X → ran f ⇔ f ∈ X → U
z ∩ → thm ` ∀ X : U; Y : U; f , g : U

| f ∈ X → Y
• f ∩ g ∈ dom (f ∩ g) → ran (f ∩ g)

z ∩ ½ thm ` ∀ X : U; Y : U; f , g : U
| f ∈ X ½ Y
• f ∩ g ∈ dom (f ∩ g) ½ ran (f ∩ g)

z ³ ran thm ` ∀ X : U; Y : U; f : U | f ∈ X → Y • f ∈ dom f ³ ran f
z ∩ ³ thm ` ∀ X : U; Y : U; f , g : U

| f ∈ X ³ Y
• f ∩ g ∈ dom (f ∩ g) ³ ran (f ∩ g)

z ∩ ³½ thm ` ∀ X : U; Y : U; f , g : U
| f ∈ X ³½ Y
• f ∩ g ∈ dom (f ∩ g) ³½ ran (f ∩ g)

z → diff singleton thm
` ∀ X : U; Y : U
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• ∀ f : X → Y ; x : U; y : U
• (x , y) ∈ f ⇒ f \ {(x , y)} ∈ X \ {x} → Y

z ³½ diff singleton thm
` ∀ X : U; Y : U

• ∀ f : X ³½ Y ; x : X ; y : Y
• (x , y) ∈ f ⇒ f \ {(x , y)} ∈ X \ {x} ³½ Y \ {y}

z singleton app thm
` ∀ x : U; y : U • {(x , y)} x = y

z empty ³ thm
` ∀ X : U • (∃ f : {} ³ X • true) ⇔ X = {}

z → empty thm
` ∀ X : U • (∃ f : X → {} • true) ⇔ X = {}
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9.1.5 The Theory z language

9.1.5.1 Parents

Z hol

9.1.5.2 Children

z language ps

9.1.5.3 Notes

This theory is a cache theory; its contents have not been listed.
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9.1.6 The Z Theory z language ps

9.1.6.1 Parents

z language

9.1.6.2 Children

z sets

9.1.6.3 Theorems

z app thm ` ∀ a : U; f : U; x : U
• (∀ f a : U | (a, f a) ∈ f • f a = x ) ∧ (a, x ) ∈ f
⇒ f a = x

z sets ext thm
` ∀ x : U; y : U • x = y ⇔ (∀ z : U • z ∈ x ⇔ z ∈ y)

z ∈ P thm1 ` ∀ t : U; u : U • t ∈ P u ⇔ (∀ z : U • z ∈ t ⇒ z ∈ u)
z ∈ app thm ` ∀ a : U; x : U; f : U

• (∃ f x : U
• a ∈ f x
∧ (x , f x ) ∈ f
∧ (∀ f x1 : U • (x , f x1 ) ∈ f ⇒ f x1 = f x ))

⇒ a ∈ f x
z app ∈ thm ` ∀ a : U; x : U; f : U

• (∃ f x : U
• f x ∈ a
∧ (x , f x ) ∈ f
∧ (∀ f x1 : U • (x , f x1 ) ∈ f ⇒ f x1 = f x ))

⇒ f x ∈ a
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9.1.7 The Z Theory z library

9.1.7.1 Parents

z sequences1 z arithmetic tools z bags
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9.1.8 The Z Theory z numbers

9.1.8.1 Parents

z functions

9.1.8.2 Children

z reals z sequences
z numbers1 z arithmetic tools

9.1.8.3 Global Variables

Z P Z
N P Z
(∼ ) Z ↔ Z
( + ) Z × Z ↔ Z
( − ) Z × Z ↔ Z
( ∗ ) Z × Z ↔ Z
( ≤ ) Z ↔ Z
( < ) Z ↔ Z
( ≥ ) Z ↔ Z
( > ) Z ↔ Z
(abs ) Z ↔ Z
( div ) Z × Z ↔ Z
( mod ) Z × Z ↔ Z
N1 P Z
succ Z ↔ Z
iter[X] Z ↔ (X ↔ X ) ↔ X ↔ X
( )[X] (X ↔ X ) × Z ↔ X ↔ X
( .. ) Z × Z ↔ P Z
F X P (P X )
F1 X P (P X )
#[X] P X ↔ Z
X 7 7→ Y P (X ↔ Y )
X 7 7½ Y P (X ↔ Y )
min P Z ↔ Z
max P Z ↔ Z

9.1.8.4 Fixity

fun 20 leftassoc
( .. )

fun 30 leftassoc
( + )( − )

fun 40 leftassoc
( div ) ( mod ) ( ∗ )
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fun 50 rightassoc
(abs ) (∼ )

fun 70 rightassoc
( )

gen 5 rightassoc
( 7 7½ ) ( 7 7→ )

gen 70 rightassoc
(F ) (F1 )

rel ( < )( > )( ≤ )( ≥ )

9.1.8.5 Axioms

N
∼

+ ` (( + ) ∈ Z × Z → Z
∧ (∼ ) ∈ Z → Z
∧ N ∈ P Z)
∧ (∀ i , j , k : Z
• i + j + k = i + (j + k)
∧ i + j = j + i
∧ i + ∼ i = 0
∧ i + 0 = i)

∧ (∀ h : P Z
• 1 ∈ h ∧ (∀ i , j : h • i + j ∈ h ∧ ∼ i ∈ h)
⇒ h = Z)

∧ N =
⋂ {s : P Z | 0 ∈ s ∧ {i : s • i + 1} ⊆ s}

∧ ∼ 1 6∈ N
z′int def
Z′Int ` p∀ i• pZpZ ′Int (i + 1 )qq = pZpZ ′Int iq + 1qq
− ` ( − ) ∈ Z × Z → Z ∧ (∀ i , j : Z • i − j = i + ∼ j )
∗ ` ( ∗ ) ∈ Z × Z → Z

∧ (∀ i , j , k : Z
• i ∗ j ∗ k = i ∗ (j ∗ k)
∧ i ∗ j = j ∗ i
∧ i ∗ (j + k) = i ∗ j + i ∗ k
∧ 1 ∗ i = i)

≤
<
≥
> ` {( ≤ ), ( < ), ( ≥ ), ( > )} ⊆ Z ↔ Z

∧ (∀ i , j : Z
• (i ≤ j ⇔ j − i ∈ N)
∧ (i < j ⇔ i + 1 ≤ j )
∧ (i ≥ j ⇔ j ≤ i)
∧ (i > j ⇔ j < i))
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abs ` (abs ) ∈ Z → N ∧ (abs ) = (∼ ) ⊕ id N
div
mod ` {( div ), ( mod )} ⊆ Z × Z \ {0} → Z

∧ (∀ i : Z; j : Z \ {0}
• i = i div j ∗ j + i mod j
∧ 0 ≤ i mod j
∧ i mod j < abs j )

succ ` succ ∈ N → N ∧ (∀ n : N • succ n = n + 1 )
iter ` [X ](iter [X ] ∈ Z → (X ↔ X ) → X ↔ X

∧ (∀ r : X ↔ X
• iter [X ] 0 r = id X
∧ (∀ k : N
• iter [X ] (k + 1 ) r = r o

9 iter [X ] k r)
∧ (∀ k : N
• iter [X ] (∼ k) r = iter [X ] k (r ∼))))

` [X ](( )[X ] ∈ (X ↔ X ) × Z → X ↔ X
∧ (∀ r : X ↔ X ; k : Z
• ( )[X ] (r , k) = iter k r))

.. ` ( .. ) ∈ Z × Z → P Z
∧ (∀ x , y : Z • x .. y = {k : Z | x ≤ k ∧ k ≤ y})

# ` [X ](#[X ] ∈ F X → N
∧ (∀ S : F X
• #[X ] S

= (µ n : N | (∃ f : 1 .. n ½ S • ran f = S ))))
min ` min ∈ P1 Z 7→ Z

∧ min
= {S : P1 Z; m : Z
| m ∈ S ∧ (∀ n : S • m ≤ n)
• S 7→ m}

max ` max ∈ P1 Z 7→ Z
∧ max

= {S : P1 Z; m : Z
| m ∈ S ∧ (∀ n : S • m ≥ n)
• S 7→ m}

9.1.8.6 Definitions

Z ` Z = U
N1 ` N1 = N \ {0}
F ` [X ](F X

= {S : P X
| ∃ n : N • ∃ f : 1 .. n → S • ran f = S})

F1 ` [X ](F1 X = F X \ {∅})
7 7→ ` [X , Y ](X 7 7→ Y = {f : X 7→ Y | dom f ∈ F X })
7 7½ ` [X , Y ](X 7 7½ Y = (X 7 7→ Y ) ∩ (X 7½ Y ))

9.1.8.7 Theorems

z plus comm thm
` ∀ i , j : U • i + j = j + i

z plus assoc thm
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` ∀ i , j , k : U • i + j + k = i + (j + k)
z plus assoc thm1

` ∀ i , j , k : U • i + (j + k) = i + j + k
z plus order thm

` ∀ i : U
• ∀ j , k : U
• j + i = i + j
∧ i + j + k = i + (j + k)
∧ j + (i + k) = i + (j + k)

z plus0 thm ` ∀ i : U • i + 0 = i ∧ 0 + i = i
z plus minus thm

` ∀ i : U • i + ∼ i = 0 ∧ ∼ i + i = 0
z N thm ` N =

⋂ {s : U | 0 ∈ s ∧ {i : s • i + 1} ⊆ s}
∧ ¬
∼ 1 ∈ N

z plus cyclic group thm
` ∀ h : U

• 1 ∈ h ∧ (∀ i , j : h • i + j ∈ h ∧ ∼ i ∈ h)
⇒ h = U

z int homomorphism thm
` p∀ i j• pZpZ ′Int (i + j )qq = pZpZ ′Int iq + pZ ′Int jqqq

z Z induction thm
` p∀ p
• p pZ1q

∧ (∀ i• p i ⇒ p pZ∼ iq)
∧ (∀ i j• p i ∧ p j ⇒ p pZ i + jq)

⇒ (∀ m• p m)q
z N plus1 thm

` ∀ i : N • i + 1 ∈ N
z 0 N thm ` 0 ∈ N
z N induction thm

` p∀ p
• p pZ0q ∧ (∀ i• i ∈ pZNq ∧ p i ⇒ p pZ i + 1q)

⇒ (∀ m• m ∈ pZNq ⇒ p m)q
z N plus thm ` ∀ i , j : N • i + j ∈ N
z Z eq thm ` ∀ i , j : U • i = j ⇔ i + ∼ j = 0
z minus thm ` ∀ i , j : U

• ∼ ∼ i = i
∧ i + ∼ i = 0
∧ ∼ i + i = 0
∧ ∼ (i + j ) = ∼ i + ∼ j
∧ ∼ 0 = 0

z minus clauses
` ∀ i : U

• ∼ ∼ i = i ∧ ∼ 0 = 0 ∧ i + ∼ i = 0 ∧ ∼ i + i = 0
z N cases thm

` ∀ i : N • i = 0 ∨ (∃ j : N • i = j + 1 )
z ¬ N thm ` ∀ i : U • ¬ i ∈ N ⇒ ∼ i ∈ N
z Z cases thm

` ∀ i : U • ∃ j : N • i = j ∨ i = ∼ j
z N ¬ plus1 thm
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` ∀ i : N • ¬ i + 1 = 0
z Z cases thm1

` ∀ i : U • i ∈ N ∨ (∃ j : N • i = ∼ (j + 1 ))
z N ¬ minus thm

` ∀ i : N • i = 0 ∨ ¬ ∼ i ∈ N
z plus clauses

` ∀ i , j , k : U
• (i + k = j + k ⇔ i = j )
∧ (k + i = j + k ⇔ i = j )
∧ (i + k = k + j ⇔ i = j )
∧ (k + i = k + j ⇔ i = j )
∧ (i + k = k ⇔ i = 0 )
∧ (k + i = k ⇔ i = 0 )
∧ (k = k + j ⇔ j = 0 )
∧ (k = j + k ⇔ j = 0 )
∧ i + 0 = i
∧ 0 + i = i
∧ ¬
1 = 0
∧ ¬
0 = 1

z times comm thm
` ∀ i , j : U • i ∗ j = j ∗ i

z times assoc thm
` ∀ i , j , k : U • i ∗ j ∗ k = i ∗ (j ∗ k)

z times assoc thm1
` ∀ i , j , k : U • i ∗ (j ∗ k) = i ∗ j ∗ k

z times order thm
` ∀ i : U

• ∀ j , k : U
• j ∗ i = i ∗ j
∧ i ∗ j ∗ k = i ∗ (j ∗ k)
∧ j ∗ (i ∗ k) = i ∗ (j ∗ k)

z times1 thm ` ∀ i : U • i ∗ 1 = i ∧ 1 ∗ i = i
z times plus distrib thm

` ∀ i , j , k : U
• i ∗ (j + k) = i ∗ j + i ∗ k
∧ (i + j ) ∗ k = i ∗ k + j ∗ k

z times0 thm ` ∀ i : U • 0 ∗ i = 0 ∧ i ∗ 0 = 0
z minus times thm

` ∀ i , j : U
• ∼ i ∗ j = ∼ (i ∗ j )
∧ i ∗ ∼ j = ∼ (i ∗ j )
∧ ∼ i ∗ ∼ j = i ∗ j

z N times thm
` ∀ i , j : N • i ∗ j ∈ N

z times eq 0 thm
` ∀ i , j : U • i ∗ j = 0 ⇔ i = 0 ∨ j = 0

z times clauses
` ∀ i , j : U

• 0 ∗ i = 0 ∧ i ∗ 0 = 0 ∧ i ∗ 1 = i ∧ 1 ∗ i = i
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z ≤ trans thm
` ∀ i , j , k : U | i ≤ j ∧ j ≤ k • i ≤ k

z less trans thm
` ∀ i , j , k : U | i < j ∧ j < k • i < k

z less ≤ trans thm
` ∀ i , j , k : U | i < j ∧ j ≤ k • i < k

z ≤ less trans thm
` ∀ i , j , k : U | i ≤ j ∧ j < k • i < k

z minus N ≤ thm
` ∀ i : U; j : N • i + ∼ j ≤ i

z ≤ plus N thm
` ∀ i : U; j : N • i ≤ i + j

z ≤ cases thm
` ∀ i , j : U • i ≤ j ∨ j ≤ i

z ≤ refl thm ` ∀ i : U • i ≤ i
z ∈ N thm ` ∀ i : U • i ∈ N ⇔ 0 ≤ i
z ≤ ≤ 0 thm ` ∀ i , j : U • i ≤ j ⇔ i + ∼ j ≤ 0
z ≤ antisym thm

` ∀ i , j : U | i ≤ j ∧ j ≤ i • i = j
z ¬ less thm ` ∀ i , j : U • ¬ i < j ⇔ j ≤ i
z ¬ ≤ thm ` ∀ i , j : U • ¬ i ≤ j ⇔ j < i
z ≤ clauses ` ∀ i , j , k : U

• (i + k ≤ j + k ⇔ i ≤ j )
∧ (k + i ≤ j + k ⇔ i ≤ j )
∧ (i + k ≤ k + j ⇔ i ≤ j )
∧ (k + i ≤ k + j ⇔ i ≤ j )
∧ (i + k ≤ k ⇔ i ≤ 0 )
∧ (k + i ≤ k ⇔ i ≤ 0 )
∧ (i ≤ k + i ⇔ 0 ≤ k)
∧ (i ≤ i + k ⇔ 0 ≤ k)
∧ i ≤ i
∧ ¬
1 ≤ 0
∧ 0 ≤ 1

z less clauses
` ∀ i , j , k : U

• (i + k < j + k ⇔ i < j )
∧ (k + i < j + k ⇔ i < j )
∧ (i + k < k + j ⇔ i < j )
∧ (k + i < k + j ⇔ i < j )
∧ (i + k < k ⇔ i < 0 )
∧ (k + i < k ⇔ i < 0 )
∧ (i < k + i ⇔ 0 < k)
∧ (i < i + k ⇔ 0 < k)
∧ ¬
i < i
∧ 0 < 1
∧ ¬
1 < 0

z less irrefl thm
` ∀ i , j : U • ¬ (i < j ∧ j < i)
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z abs thm ` ∀ i : N • abs i = i ∧ abs ∼ i = i
z abs minus thm

` ∀ i : U • abs ∼ i = abs i
z abs N thm ` ∀ i : U • abs i ∈ N
z abs times thm

` ∀ i , j : U • abs (i ∗ j ) = abs i ∗ abs j
z abs plus thm

` ∀ i , j : U • abs (i + j ) ≤ abs i + abs j
z abs eq 0 thm

` ∀ i : U • abs i = 0 ⇔ i = 0
z N abs minus thm

` ∀ i , j : N | j ≤ i • abs (i + ∼ j ) ≤ i
z ≤ induction thm

` p∀ j p
• p j ∧ (∀ i• pZ(j , i)q ∈ pZ( ≤ )q ∧ p i ⇒ p pZ i + 1q)

⇒ (∀ m• pZ(j , m)q ∈ pZ( ≤ )q ⇒ p m)q
z less plus1 thm

` ∀ m, n : U • m < n + 1 ⇔ m = n ∨ m < n
z cov induction thm

` p∀ j p
• (∀ i

• pZ(j , i)q ∈ pZ( ≤ )q
∧ pZ∀ k : Z • j ≤ k ∧ k < i ⇒ pp kqq

⇒ p i)
⇒ (∀ i• pZ(j , i)q ∈ pZ( ≤ )q ⇒ p i)q

z div mod unique thm
` ∀ i , j , d , r : U

| ¬
j = 0
• i = d ∗ j + r ∧ 0 ≤ r ∧ r < abs j
⇔ d = i div j ∧ r = i mod j

z ≤ less eq thm
` ∀ x , y : U • x ≤ y ⇔ x < y ∨ x = y

z ∈ N1 thm ` ∀ x : U • x ∈ N1 ⇔ 0 < x
z F thm ` ∀ X : U

• F X
= {S : P X
| ∃ n : N • ∃ f : 1 .. n → S • ran f = S}

z F1 thm ` ∀ X : U • F1 X = F X \ {∅}
z F empty thm

` F {} = P {}
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9.1.9 The Z Theory z numbers1

9.1.9.1 Parents

z arithmetic tools z numbers z functions1

9.1.9.2 Children

z sequences1

9.1.9.3 Theorems

z dot dot clauses
` ∀ i , i1 , i2 , j1 , j2 : U

• (i ∈ i1 .. i2 ⇔ i1 ≤ i ∧ i ≤ i2 )
∧ (i1 .. i2 = {} ⇔ i2 < i1 )
∧ (i1 .. i2 ⊆ j1 .. j2
⇔ i2 < i1 ∨ j1 ≤ i1 ∧ i2 ≤ j2 )

z dot dot plus thm
` ∀ n, i1 , i2 : U

• {i : i1 .. i2 • i + n} = i1 + n .. i2 + n
z less cases thm

` ∀ i , j : U • i < j ∨ i = j ∨ j < i
z ≤ ≤ plus1 thm

` ∀ i , j : U • i ≤ j ∧ j ≤ i + 1 ⇔ j = i ∨ j = i + 1
z dot dot diff thm

` ∀ i : N • (1 .. i + 1 ) \ {i + 1} = 1 .. i
z dot dot ∪ thm

` ∀ i : N • (1 .. i) ∪ {i + 1} = 1 .. i + 1
z dot dot ∩ thm

` ∀ i : N • (1 .. i) ∩ {i + 1} = {}
z empty F thm

` [X ]({} ∈ F X )
z F ∪ singleton thm

` [X ](∀ x : X ; a : F X • a ∪ {x} ∈ F X )
z F thm1 ` [X ](F X

=
⋂

{u : P P X
| {} ∈ u ∧ (∀ x : X ; a : u • a ∪ {x} ∈ u)})

z F induction thm
` p∀ X p
• p pZ{}q

∧ (∀ x a
• p a ∧ a ∈ pZF X q ∧ x ∈ X ∧ ¬ x ∈ a

⇒ p pZa ∪ {x}q)
⇒ (∀ a• a ∈ pZF X q ⇒ p a)q

z F P thm ` [X ](F X = P X ∩ (F ))
z F size thm ` ∀ A : U; f : U; n : N

| f ∈ 1 .. n ³½ A
• A ∈ (F ) ∧ # A = n

z size empty thm
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` {} ∈ (F ) ∧ # {} = 0
z size singleton thm

` ∀ x : U • {x} ∈ (F ) ∧ # {x} = 1
z size dot dot thm

` ∀ n : N • 1 .. n ∈ (F ) ∧ # (1 .. n) = n
z size 7 7→ thm ` ∀ X : U; Y : U; f : U

| f ∈ X 7 7→ Y
• f ∈ (F ) ∧ # f = # (dom f )

z size seq thm
` ∀ X : U; f : U; n : N | f ∈ 1 .. n → X • # f = n

z size ∪ singleton thm
` ∀ a : (F ); x : U | ¬ x ∈ a • # (a ∪ {x}) = # a + 1

z F ∩ thm ` ∀ a, b : U | a ∈ (F ) ∨ b ∈ (F ) • a ∩ b ∈ (F )
z F diff thm ` ∀ a, b : U | a ∈ (F ) • a \ b ∈ (F )
z ⊆ F thm ` ∀ a : (F ); b : U | b ⊆ a • b ∈ (F )
z size ∪ thm ` ∀ a, b : (F )

• a ∪ b ∈ (F ) ∧ # (a ∪ b) + # (a ∩ b) = # a + # b
z

⋃
F thm ` ∀ u : F (F ) • ⋃

u ∈ (F )
z size diff thm

` ∀ a : (F ); b : U
• a \ b ∈ (F ) ∧ # (a \ b) + # (a ∩ b) = # a

z size N thm ` ∀ a : (F ) • # a ∈ N
z F size thm1

` ∀ a : (F ) • ∃ f : 1 .. # a ³½ a • true
z size mono thm

` ∀ a : (F ); b : U | b ⊆ a • # b ≤ # a
z size ∪ ≤ thm

` ∀ a, b : (F ) • # (a ∪ b) ≤ # a + # b
z size eq thm

` ∀ a, b : (F ) | a ⊆ b ∧ # a = # b • a = b
z size 0 thm ` ∀ a : (F ) • # a = 0 ⇔ a = {}
z size 1 thm ` ∀ a : (F ) • # a = 1 ⇔ (∃ x : U • a = {x})
z size pair thm

` ∀ x , y : U | ¬ x = y • {x , y} ∈ (F ) ∧ # {x , y} = 2
z size 2 thm ` ∀ a : (F )

• # a = 2 ⇔ (∃ x , y : U • ¬ x = y ∧ a = {x , y})
z size × thm ` ∀ a : (F ); b : (F )

• a × b ∈ (F ) ∧ # (a × b) = # a ∗ # b
z size ≤ 1 thm

` ∀ a : (F ) | # a ≤ 1 • a = {} ∨ (∃ x : U • a = {x})
z size dot dot thm1

` ∀ i , j : Z
• i .. j ∈ (F )
∧ (i ≤ j ⇒ # (i .. j ) = j + ∼ i + 1 )
∧ (j < i ⇒ # (i .. j ) = 0 )

z pigeon hole thm
` ∀ u : F (F ) | # (

⋃
u) > # u • ∃ a : u • # a > 1

z div thm ` ∀ i , j , k : Z
| ¬
j = 0
• i div j = k
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⇔ (∃ m : Z • i = k ∗ j + m ∧ 0 ≤ m ∧ m < abs j )
z mod thm ` ∀ i , j , k : Z

| ¬
j = 0
• i mod j = k
⇔ (∃ d : Z • i = d ∗ j + k ∧ 0 ≤ k ∧ k < abs j )

z abs pos thm
` ∀ i : Z | 0 < i • abs i = i ∧ abs ∼ i = i

z abs neg thm
` ∀ i : Z | i < 0 • abs i = ∼ i ∧ abs ∼ i = ∼ i

z abs ≤ times thm
` ∀ i , j : Z | ¬ i = 0 ∧ ¬ j = 0 • abs j ≤ abs (i ∗ j )

z abs 0 less thm
` ∀ i : Z | ¬ i = 0 • 0 < abs i

z 0 less times thm
` ∀ i , j : Z

• 0 < i ∗ j ⇔ 0 < i ∧ 0 < j ∨ i < 0 ∧ j < 0
z times less 0 thm

` ∀ i , j : Z
• i ∗ j < 0 ⇔ 0 < i ∧ j < 0 ∨ i < 0 ∧ 0 < j

z ∈ succ thm ` p∀ i j
• pZ(i , j )q ∈ pZsuccq

⇔ pZ(0 , i)q ∈ pZ( ≤ )q ∧ j = pZ i + 1qq
z succ0 thm

` succ 0 = id Z
z succn thm

` ∀ n : Z | 1 ≤ n • succ n = {m : N • m 7→ m + n}
z succminus n thm

` ∀ n : N | 1 ≤ n • succ ∼ n = {m : N • m + n 7→ m}
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9.1.10 The Z Theory z reals

9.1.10.1 Parents

R z numbers

9.1.10.2 Global Variables

R P R
(absR ) R ↔ R
( /R ) R × R ↔ R
( ∗R ) R × R ↔ R
( +R ) R × R ↔ R
(∼R ) R ↔ R
( ≤R ) R ↔ R
( <R ) R ↔ R
( −R ) R × R ↔ R
( ≥R ) R ↔ R
( >R ) R ↔ R
real Z ↔ R
( /Z ) Z × Z ↔ R
( ̂Z ) R × Z ↔ R
( ..R ) R × R ↔ P R
( lbR ) R ↔ P R
glbR P R ↔ R
( ubR ) R ↔ P R
lubR P R ↔ R
Z′Float U

9.1.10.3 Fixity

fun 20 leftassoc
( ..R )

fun 30 leftassoc
( +R ) ( −R )

fun 40 leftassoc
( ∗R ) ( /R ) ( /Z )

fun 50 rightassoc
(absR ) (∼R )

fun 60 rightassoc
( ̂Z )

rel ( lbR ) ( <R ) ( ≤R )
( ubR ) ( >R ) ( ≥R )
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9.1.10.4 Axioms

absR
/R

∗R
+R

∼R

≤R

<R ` (( <R ) ∈ R ↔ R
∧ ( ≤R ) ∈ R ↔ R
∧ (∼R ) ∈ R → R
∧ ( +R ) ∈ R × R → R
∧ ( ∗R ) ∈ R × R → R
∧ ( /R ) ∈ R × R → R
∧ (absR ) ∈ R → R)
∧ (∀ x , y : R • x <R y ⇔ px < yq)
∧ (∀ x , y : R • x ≤R y ⇔ px ≤ yq)
∧ (∀ x : R • ∼R x = p∼ xq)
∧ (∀ x , y : R • x +R y = px + yq)
∧ (∀ x , y : R • x ∗R y = px ∗ yq)
∧ (∀ x , y : R • x /R y = px / yq)
∧ (∀ x : R • absR x = pAbs xq)

−R

≥R

>R ` (( >R ) ∈ R ↔ R
∧ ( ≥R ) ∈ R ↔ R
∧ ( −R ) ∈ R × R → R)
∧ (∀ x , y : R • x >R y ⇔ y <R x )
∧ (∀ x , y : R • x ≥R y ⇔ y ≤R x )
∧ (∀ x , y : R • x −R y = x +R ∼R y)

real ` real ∈ Z → R
∧ real 1 = p1 .q
∧ (∀ i : Z • real (∼ i) = ∼R real i)
∧ (∀ i , j : Z • real (i + j ) = real i +R real j )

/Z ` ( /Z ) ∈ Z × Z → R
∧ (∀ i , j : Z • i /Z j = real i /R real j )

̂Z ` ( ̂Z ) ∈ R × Z → R
∧ p∀ x m• pZx ̂Z pZ ′Int mqq = x ̂ mq
∧ p∀ x m
• pZx ̂Z (∼ pZ ′Int (m + 1 )q)q = 1 . / x ̂ (m + 1 )q

..R ` ( ..R ) ∈ R × R → P R
∧ (∀ x , y : R
• x ..R y = {t : R | x ≤R t ∧ t ≤R y})

lbR ` ( lbR ) ∈ R ↔ P R
∧ (∀ r : R; sr : P R
• r lbR sr ⇔ (∀ x : sr • r ≤R x ))

glbR ` glbR ∈ P R 7→ R
∧ (∀ sr : P R; glb : R
• sr 7→ glb ∈ glbR

⇔ glb lbR sr
∧ (∀ lb : R | lb lbR sr • lb ≤R glb))

ubR ` ( ubR ) ∈ R ↔ P R
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∧ (∀ r : R; sr : P R
• r ubR sr ⇔ (∀ x : sr • r ≥R x ))

lubR ` lubR ∈ P R 7→ R
∧ (∀ sr : P R; lub : R
• sr 7→ lub ∈ lubR

⇔ lub ubR sr
∧ (∀ ub : R | ub ubR sr • ub ≥R lub))

9.1.10.5 Definitions

R ` R = U
Z′Float ` p∀ m p e

• pZpZ ′Float m p eqq
= pZreal m ∗R real 10 ̂Z (e + ∼ p)qq

9.1.10.6 Theorems

z R unbounded below thm
` ∀ x : R • ∃ y : R • y <R x

z R unbounded above thm
` ∀ x : R • ∃ y : R • x <R y

z R less irrefl thm
` ∀ x : R • ¬ x <R x

z R less antisym thm
` ∀ x , y : R • ¬ (x <R y ∧ y <R x )

z R less trans thm
` ∀ x , y , z : R • x <R y ∧ y <R z ⇒ x <R z

z R less cases thm
` ∀ x , y : R • x <R y ∨ x = y ∨ y <R x

z R ≤ cases thm
` ∀ x , y : R • x ≤R y ∨ y ≤R x

z R ≤ less cases thm
` ∀ x , y : R • x ≤R y ∨ y <R x

z R eq ≤ thm ` ∀ x , y : R • x = y ⇔ x ≤R y ∧ y ≤R x
z R ≤ antisym thm

` ∀ x , y : R • x ≤R y ∧ y ≤R x ⇒ x = y
z R less ≤ trans thm

` ∀ x , y , z : R • x <R y ∧ y ≤R z ⇒ x <R z
z R ≤ less trans thm

` ∀ x , y , z : R • x ≤R y ∧ y <R z ⇒ x <R z
z R ≤ refl thm

` ∀ x : R • x ≤R x
z R ≤ trans thm

` ∀ x , y , z : R • x ≤R y ∧ y ≤R z ⇒ x ≤R z
z R ≤ ¬ less thm

` ∀ x , y : R • x ≤R y ⇔ ¬ y <R x
z R ¬ ≤ less thm

` ∀ x , y : R • ¬ x ≤R y ⇔ y <R x
z R less ¬ eq thm

` ∀ x , y : R • x <R y ⇒ ¬ x = y
z R less dense thm
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` ∀ x , y : R • x <R y ⇒ (∃ z : R • x <R z ∧ z <R y)
z R complete thm

` ∀ A : P R
• ¬ A = {} ∧ (∃ b : R • ∀ x : R • x ∈ A ⇒ x ≤R b)
⇒ (∃ s : R
• (∀ x : R • x ∈ A ⇒ x ≤R s)
∧ (∀ b : R
• (∀ x : R • x ∈ A ⇒ x ≤R b) ⇒ s ≤R b))

z R plus assoc thm
` ∀ x , y , z : R • x +R y +R z = x +R (y +R z )

z R plus assoc thm1
` ∀ x , y , z : R • x +R (y +R z ) = x +R y +R z

z R plus comm thm
` ∀ x , y : R • x +R y = y +R x

z R plus unit thm
` ∀ x : R • x +R real 0 = x

z R plus mono thm
` ∀ x , y , z : R • y <R z ⇒ x +R y <R x +R z

z R plus mono thm1
` ∀ x , y , z : R • y <R z ⇒ y +R x <R z +R x

z R plus mono thm2
` ∀ x , y , s, t : R

• x <R y ∧ s <R t ⇒ x +R s <R y +R t
z R plus 0 thm

` ∀ x : R • x +R real 0 = x ∧ real 0 +R x = x
z R plus order thm

` ∀ x , y , z : R
• y +R x = x +R y
∧ x +R y +R z = x +R (y +R z )
∧ y +R (x +R z ) = x +R (y +R z )

z R plus minus thm
` ∀ x : R • x +R ∼R x = real 0 ∧ ∼R x +R x = real 0

z R eq thm ` ∀ x , y : R • x = y ⇔ x +R ∼R y = real 0
z R minus clauses

` ∀ x , y : R
• ∼R ∼R x = x
∧ x +R ∼R x = real 0
∧ ∼R x +R x = real 0
∧ ∼R (x +R y) = ∼R x +R ∼R y
∧ ∼R real 0 = real 0

z R minus eq thm
` ∀ x , y : R • ∼R x = ∼R y ⇔ x = y

z R plus clauses
` ∀ x , y , z : R

• (x +R z = y +R z ⇔ x = y)
∧ (z +R x = y +R z ⇔ x = y)
∧ (x +R z = z +R y ⇔ x = y)
∧ (z +R x = z +R y ⇔ x = y)
∧ (x +R z = z ⇔ x = real 0 )
∧ (z +R x = z ⇔ x = real 0 )
∧ (z = z +R y ⇔ y = real 0 )
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∧ (z = y +R z ⇔ y = real 0 )
∧ x +R real 0 = x
∧ real 0 +R x = x
∧ ¬
real 1 = real 0
∧ ¬
real 0 = real 1

z R less clauses
` ∀ x , y , z : R

• (x +R z <R y +R z ⇔ x <R y)
∧ (z +R x <R y +R z ⇔ x <R y)
∧ (x +R z <R z +R y ⇔ x <R y)
∧ (z +R x <R z +R y ⇔ x <R y)
∧ (x +R z <R z ⇔ x <R real 0 )
∧ (z +R x <R z ⇔ x <R real 0 )
∧ (x <R z +R x ⇔ real 0 <R z )
∧ (x <R x +R z ⇔ real 0 <R z )
∧ ¬
x <R x
∧ real 0 <R real 1
∧ ¬
real 1 <R real 0

z R ≤ clauses
` ∀ x , y , z : R

• (x +R z ≤R y +R z ⇔ x ≤R y)
∧ (z +R x ≤R y +R z ⇔ x ≤R y)
∧ (x +R z ≤R z +R y ⇔ x ≤R y)
∧ (z +R x ≤R z +R y ⇔ x ≤R y)
∧ (x +R z ≤R z ⇔ x ≤R real 0 )
∧ (z +R x ≤R z ⇔ x ≤R real 0 )
∧ (x ≤R z +R x ⇔ real 0 ≤R z )
∧ (x ≤R x +R z ⇔ real 0 ≤R z )
∧ x ≤R x
∧ real 0 ≤R real 1
∧ ¬
real 1 ≤R real 0

z R times assoc thm
` ∀ x , y , z : R • x ∗R y ∗R z = x ∗R (y ∗R z )

z R times comm thm
` ∀ x , y : R • x ∗R y = y ∗R x

z R times unit thm
` ∀ x : R • x ∗R real 1 = x

z R 0 less 0 less times thm
` ∀ x , y : R

• real 0 <R x ∧ real 0 <R y ⇒ real 0 <R x ∗R y
z R times assoc thm1

` ∀ x , y , z : R • x ∗R (y ∗R z ) = x ∗R y ∗R z
z R times plus distrib thm

` ∀ x , y , z : R
• x ∗R (y +R z ) = x ∗R y +R x ∗R z
∧ (x +R y) ∗R z = x ∗R z +R y ∗R z
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z R times order thm
` ∀ x , y , z : R

• y ∗R x = x ∗R y
∧ x ∗R y ∗R z = x ∗R (y ∗R z )
∧ y ∗R (x ∗R z ) = x ∗R (y ∗R z )

z R times clauses
` ∀ x : R

• real 0 ∗R x = real 0
∧ x ∗R real 0 = real 0
∧ x ∗R real 1 = x
∧ real 1 ∗R x = x

z R over clauses
` (∀ y , z : R • ¬ z = real 0 ⇒ y ∗R z /R z = y)

∧ (∀ x , y , z : R
• ¬ z = real 0 ⇒ x ∗R y /R z = x ∗R (y /R z ))

z float thm ` ∀ m, p, e : Z
• pZ ′Float m p eq

= real m ∗R real 10 ̂Z (e + ∼ p)
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9.1.11 The Z Theory z relations

9.1.11.1 Parents

z sets

9.1.11.2 Children

z functions

9.1.11.3 Global Variables

( 7→ )[X, Y]
X × Y ↔ X × Y

ran[X, Y] (X ↔ Y ) ↔ P Y
dom[X, Y] (X ↔ Y ) ↔ P X
id X X ↔ X
( ◦ )[X, Y, Z]

(Y ↔ Z ) × (X ↔ Y ) ↔ X ↔ Z
( o

9 )[X, Y, Z]
(X ↔ Y ) × (Y ↔ Z ) ↔ X ↔ Z

( B )[X, Y]
(X ↔ Y ) × P Y ↔ X ↔ Y

( C )[X, Y]
P X × (X ↔ Y ) ↔ X ↔ Y

( −B )[X, Y]
(X ↔ Y ) × P Y ↔ X ↔ Y

( −C )[X, Y]
P X × (X ↔ Y ) ↔ X ↔ Y

( ∼)[X, Y]
(X ↔ Y ) ↔ Y ↔ X

( (| |))[X, Y]
(X ↔ Y ) × P X ↔ P Y

( +)[X] (X ↔ X ) ↔ X ↔ X
( ∗)[X] (X ↔ X ) ↔ X ↔ X
( ⊕ )[X, Y]

(X ↔ Y ) × (X ↔ Y ) ↔ X ↔ Y

9.1.11.4 Fixity

fun 10 leftassoc
( 7→ )

fun 40 leftassoc
( ◦ ) ( o

9 )

fun 50 leftassoc
( ⊕ )
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fun 60 leftassoc
( −B )( B )

fun 65 rightassoc
( −C )( C )

fun 70 rightassoc
( (| |)) ( ∗) ( +) ( ∼)

gen 70 rightassoc
(id )

9.1.11.5 Axioms

7→ ` [X ,
Y ](( 7→ )[X , Y ] ∈ X × Y → X × Y
∧ (∀ x : X ; y : Y • ( 7→ )[X , Y ] (x , y) = (x , y)))

ran
dom ` [X ,

Y ]((dom[X , Y ] ∈ (X ↔ Y ) → P X
∧ ran[X , Y ] ∈ (X ↔ Y ) → P Y )
∧ (∀ R : X ↔ Y
• dom[X , Y ] R = {x : X ; y : Y | x 7→ y ∈ R • x}
∧ ran[X , Y ] R

= {x : X ; y : Y
| x 7→ y ∈ R
• y}))

◦
o
9 ` [X ,

Y ,
Z ]((( o

9 )[X , Y , Z ] ∈ (X ↔ Y ) × (Y ↔ Z ) → X ↔ Z
∧ ( ◦ )[X , Y , Z ] ∈ (Y ↔ Z ) × (X ↔ Y ) → X ↔ Z )
∧ (∀ R : X ↔ Y ; S : Y ↔ Z
• ( o

9 )[X , Y , Z ] (R, S )
= ( ◦ )[X , Y , Z ] (S , R)

∧ ( ◦ )[X , Y , Z ] (S , R)
= {x : X ; y : Y ; z : Z
| x 7→ y ∈ R ∧ y 7→ z ∈ S
• x 7→ z}))

B
C ` [X ,

Y ]((( C )[X , Y ] ∈ P X × (X ↔ Y ) → X ↔ Y
∧ ( B )[X , Y ] ∈ (X ↔ Y ) × P Y → X ↔ Y )
∧ (∀ S : P X ; R : X ↔ Y
• ( C )[X , Y ] (S , R)

= {x : X ; y : Y
| x ∈ S ∧ x 7→ y ∈ R
• x 7→ y})

∧ (∀ R : X ↔ Y ; T : P Y
• ( B )[X , Y ] (R, T )
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= {x : X ; y : Y
| x 7→ y ∈ R ∧ y ∈ T
• x 7→ y}))

−B
−C ` [X ,

Y ]((( −C )[X , Y ] ∈ P X × (X ↔ Y ) → X ↔ Y
∧ ( −B )[X , Y ] ∈ (X ↔ Y ) × P Y → X ↔ Y )
∧ (∀ S : P X ; R : X ↔ Y
• ( −C )[X , Y ] (S , R)

= {x : X ; y : Y
| x 6∈ S ∧ x 7→ y ∈ R
• x 7→ y})

∧ (∀ R : X ↔ Y ; T : P Y
• ( −B )[X , Y ] (R, T )

= {x : X ; y : Y
| x 7→ y ∈ R ∧ y 6∈ T
• x 7→ y}))

∼ ` [X ,
Y ](( ∼)[X , Y ] ∈ (X ↔ Y ) → Y ↔ X
∧ (∀ R : X ↔ Y
• ( ∼)[X , Y ] R

= {x : X ; y : Y
| x 7→ y ∈ R
• y 7→ x}))

(| |) ` [X ,
Y ](( (| |))[X , Y ] ∈ (X ↔ Y ) × P X → P Y
∧ (∀ R : X ↔ Y ; S : P X
• ( (| |))[X , Y ] (R, S )

= {x : X ; y : Y
| x ∈ S ∧ x 7→ y ∈ R
• y}))

+

∗ ` [X ]({( +)[X ], ( ∗)[X ]} ⊆ (X ↔ X ) → X ↔ X
∧ (∀ R : X ↔ X
• ( +)[X ] R

=
⋂

{Q : X ↔ X
| R ⊆ Q ∧ Q o

9 Q ⊆ Q}
∧ ( ∗)[X ] R

=
⋂

{Q : X ↔ X
| id X ⊆ Q
∧ R ⊆ Q
∧ Q o

9 Q ⊆ Q}))
⊕ ` [X ,

Y ](( ⊕ )[X , Y ] ∈ (X ↔ Y ) × (X ↔ Y ) → X ↔ Y
∧ (∀ f , g : X ↔ Y
• ( ⊕ )[X , Y ] (f , g) = dom g −C f ∪ g))

9.1.11.6 Definitions

id ` [X ](id X = {x : X • x 7→ x})
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9.1.11.7 Theorems

z ↔ thm ` ∀ X : U; Y : U • X ↔ Y = P (X × Y )
z 7→ thm ` ∀ x : U; y : U • x 7→ y = (x , y)
z dom thm ` ∀ z : U; R : U • z ∈ dom R ⇔ (∃ y : U • (z , y) ∈ R)
z ran thm ` ∀ z : U; R : U • z ∈ ran R ⇔ (∃ x : U • (x , z ) ∈ R)
z id thm ` ∀ X : U • id X = {x : U | x ∈ X • (x , x )}
z o

9 thm ` ∀ R : U; S : U • R o
9 S = S ◦ R

z ◦ thm ` ∀ x : U; S : U; R : U
• x ∈ S ◦ R
⇔ (∃ y : U • (x .1 , y) ∈ R ∧ (y , x .2 ) ∈ S )

z C thm ` ∀ x : U; S : U; R : U • x ∈ S C R ⇔ x .1 ∈ S ∧ x ∈ R
z B thm ` ∀ x : U; R : U; S : U • x ∈ R B S ⇔ x ∈ R ∧ x .2 ∈ S
z −C thm ` ∀ x : U; S : U; R : U • x ∈ S −C R ⇔ ¬ x .1 ∈ S ∧ x ∈ R
z −B thm ` ∀ x : U; R : U; S : U • x ∈ R −B S ⇔ x ∈ R ∧ ¬ x .2 ∈ S
z rel inv thm

` ∀ x : U; R : U • x ∈ R ∼ ⇔ (x .2 , x .1 ) ∈ R
z rel image thm

` ∀ y : U; R : U; S : U
• y ∈ R (| S |) ⇔ (∃ x : U • x ∈ S ∧ (x , y) ∈ R)

z trans closure thm
` ∀ R : U

• R +

=
⋂ {Q : U | R ⊆ Q ∧ Q o

9 Q ⊆ Q}
z reflex trans closure thm

` ∀ R : U
• R ∗

=
⋂

{Q : U
| (id ) ⊆ Q
∧ R ⊆ Q
∧ Q o

9 Q ⊆ Q}
z ⊕ thm ` ∀ f : U; g : U • f ⊕ g = dom g −C f ∪ g
z ↔ clauses ` ∀ X : U • X ↔ {} = {{}} ∧ {} ↔ X = {{}}
z dom clauses

` ∀ a : U; b : U
• dom U = U
∧ dom {} = {}
∧ dom {a 7→ b} = {a}
∧ dom {(a, b)} = {a}

z ran clauses
` ∀ a : U; b : U

• ran U = U
∧ ran {} = {}
∧ ran {a 7→ b} = {b}
∧ ran {(a, b)} = {b}

z id clauses ` id {} = {}
z o

9 clauses ` ∀ R : U • R o
9 {} = {} ∧ {} o

9 R = {} ∧ U o
9 U = U

z ◦ clauses ` ∀ R : U • R ◦ {} = {} ∧ {} ◦ R = {} ∧ U ◦ U = U
z C clauses ` ∀ R : U; S : U

• U C R = R ∧ {} C R = {} ∧ S C {} = {}
z B clauses ` ∀ R : U; S : U
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• R B U = R ∧ {} B S = {} ∧ R B {} = {}
z −C clauses ` ∀ R : U; S : U

• U −C R = {} ∧ {} −C R = R ∧ S −C {} = {}
z −B clauses ` ∀ R : U; S : U

• R −B U = {} ∧ {} −B S = {} ∧ R −B {} = R
z rel inv clauses

` U ∼ = U ∧ {} ∼ = {}
z rel image clauses

` ∀ R : U; S : U • R (| {} |) = {} ∧ {} (| S |) = {}
z trans closure clauses

` U + = U ∧ {} + = {}
z reflex closure clauses

` U ∗ = U ∧ {} ∗ = (id )
z ⊕ clauses ` ∀ f : U • f ⊕ {} = f ∧ {} ⊕ f = f ∧ f ⊕ U = U
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9.1.12 The Z Theory z sequences

9.1.12.1 Parents

z numbers

9.1.12.2 Children

z sequences1 z bags

9.1.12.3 Global Variables

seq X P (Z ↔ X )
seq1 X P (Z ↔ X )
iseq X P (Z ↔ X )
( a )[X] (Z ↔ X ) × (Z ↔ X ) ↔ Z ↔ X
head[X] (Z ↔ X ) ↔ X
last[X] (Z ↔ X ) ↔ X
tail[X] (Z ↔ X ) ↔ Z ↔ X
front[X] (Z ↔ X ) ↔ Z ↔ X
rev[X] (Z ↔ X ) ↔ Z ↔ X
squash[X] (Z ↔ X ) ↔ Z ↔ X
( » )[X] P Z × (Z ↔ X ) ↔ Z ↔ X
( ¹ )[X] (Z ↔ X ) × P X ↔ Z ↔ X
a/[X] (Z ↔ Z ↔ X ) ↔ Z ↔ X
(disjoint )[I, X]

P (I ↔ P X )
( partition )[I, X]

(I ↔ P X ) ↔ P X

9.1.12.4 Fixity

fun 30 leftassoc
( a )

fun 40 leftassoc
( ¹ )

fun 45 rightassoc
( » )

gen 70 rightassoc
(iseq )(seq ) (seq1 )

rel (disjoint ) ( partition )
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9.1.12.5 Axioms

a ` [X ](( a )[X ] ∈ seq X × seq X → seq X
∧ (∀ s, t : seq X
• ( a )[X ] (s, t)

= s ∪ {n : dom t • n + # s 7→ t n}))
head ` [X ](head [X ] ∈ seq1 X → X

∧ (∀ s : seq1 X • head [X ] s = s 1 ))
last ` [X ](last [X ] ∈ seq1 X → X

∧ (∀ s : seq1 X • last [X ] s = s (# s)))
tail ` [X ](tail [X ] ∈ seq1 X → seq X

∧ (∀ s : seq1 X
• tail [X ] s = (λ n : 1 .. # s − 1 • s (n + 1 ))))

front ` [X ](front [X ] ∈ seq1 X → seq X
∧ (∀ s : seq1 X
• front [X ] s = (1 .. # s − 1 ) C s))

rev ` [X ](rev [X ] ∈ seq X → seq X
∧ (∀ s : seq X
• rev [X ] s = (λ n : dom s • s (# s − n + 1 ))))

squash ` [X ](squash[X ] ∈ (Z 7 7→ X ) → seq X
∧ (∀ f : Z 7 7→ X
• squash[X ] f

= {p : f
• # {i : dom f | i ≤ p.1} 7→ p.2}))

» ` [X ](( » )[X ] ∈ P Z × seq X → seq X
∧ (∀ a : P Z; s : seq X
• ( » )[X ] (a, s) = squash (a C s)))

¹ ` [X ](( ¹ )[X ] ∈ seq X × P X → seq X
∧ (∀ s : seq X ; a : P X
• ( ¹ )[X ] (s, a) = squash (s B a)))

a/ ` [X ](a/[X ] ∈ seq seq X → seq X
∧ a/[X ] 〈〉 = 〈〉
∧ (∀ s : seq X • a/[X ] 〈s〉 = s)
∧ (∀ q , r : seq seq X
• a/[X ] (q a r) = a/[X ] q a a/[X ] r))

disjoint ` [I ,
X ]((disjoint )[I , X ] ∈ P (I 7→ P X )
∧ (∀ S : I 7→ P X
• S ∈ (disjoint )[I , X ]
⇔ (∀ i , j : dom S | i 6= j • S i ∩ S j = ∅)))

partition
` [I ,

X ](( partition )[I , X ] ∈ (I 7→ P X ) ↔ P X
∧ (∀ S : I 7→ P X ; T : P X
• (S , T ) ∈ ( partition )[I , X ]
⇔ disjoint S ∧ ⋃ {i : dom S • S i} = T ))

9.1.12.6 Definitions

seq ` [X ](seq X = {f : N 7 7→ X | dom f = 1 .. # f })
seq1 ` [X ](seq1 X = {f : seq X | # f > 0})
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iseq ` [X ](iseq X = seq X ∩ (N 7½ X ))
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9.1.13 The Z Theory z sequences1

9.1.13.1 Parents

z sequences z numbers1

9.1.13.2 Children

z library

9.1.13.3 Theorems

z seq thm ` ∀ X : U • seq X =
⋃ {n : N • 1 .. n → X }

z prim seq induction thm
` p∀ X p
• p pZ{}q

∧ (∀ x n s
• x ∈ X ∧ n ∈ pZNq ∧ s ∈ pZ1 .. n → X q ∧ p s

⇒ p pZs ∪ {(n + 1 , x )}q)
⇒ (∀ s• s ∈ pZseq X q ⇒ p s)q

z seq thm1 ` ∀ X : U; n : U
• seq X = {s : U | ∃ n : N • s ∈ 1 .. n → X }

z size seq thm1
` ∀ X : U; s : U; n : N

• s ∈ seq X ∧ # s = n ⇔ s ∈ 1 .. n → X
z size seq thm2

` ∀ n : N; s : (seq ) • # s = n ⇔ dom s = 1 .. n
z size seq N thm

` ∀ s : (seq ) • # s ∈ N
z singleton seq thm

` ∀ x : U
• 〈x 〉 ∈ (seq )
∧ dom 〈x 〉 = {1}
∧ ran 〈x 〉 = {x}
∧ 〈x 〉 1 = x

z seq u thm ` ∀ X : U • ∀ s : seq X • s ∈ (seq )
z a thm ` ∀ X , Y : U

• ∀ s : seq X ; t : seq Y
• s a t = s ∪ {n : dom t • n + # s 7→ t n}

z a ∈ seq thm
` ∀ X , Y : U • ∀ s : seq X ; t : seq Y • s a t ∈ (seq )

z a ∈ seq thm1
` ∀ s : (seq ); t : (seq ) • s a t ∈ (seq )

z a def thm ` ∀ i : U; t : (seq )
• {n : dom t

• n + i 7→ t n}
= {n : U; x : U
| (n, x ) ∈ t
• (n + i , x )}

z a singleton thm
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` [X ](∀ s : seq X ; x : X
• s a 〈x 〉 = s ∪ {(# s + 1 , x )})

z a singleton thm1
` ∀ s : (seq ); x : U • s a 〈x 〉 = s ∪ {(# s + 1 , x )}

z 〈〉 thm ` 〈〉 = {}
z 〈〉 seq thm ` ∀ X : U • 〈〉 ∈ seq X
z seq induction thm

` p∀ X p
• p pZ〈〉q

∧ (∀ x s
• x ∈ X ∧ s ∈ pZseq X q ∧ p s ⇒ p pZs a 〈x 〉q)

⇒ (∀ s• s ∈ pZseq X q ⇒ p s)q
z a 〈〉 thm ` ∀ X : U • ∀ s : seq X • s a 〈〉 = s
z 〈〉 a thm ` ∀ X : U • ∀ s : seq X • 〈〉 a s = s
z dom seq thm

` ∀ s : (seq ) • dom s = 1 .. # s
z dom a thm ` ∀ s : (seq ); t : (seq )

• dom (s a t) = 1 .. # s + # t
z seq seq x thm

` ∀ X : U; s : (seq ) • s ∈ seq X ⇔ ran s ⊆ X
z singleton seq x thm

` ∀ X : U • ∀ x : U • 〈x 〉 ∈ seq X ⇔ x ∈ X
z a seq x thm

` ∀ X : U; s1 , s2 : (seq )
• s1 a s2 ∈ seq X ⇔ s1 ∈ seq X ∧ s2 ∈ seq X

z size a thm ` ∀ s, t : (seq ); x : U • # (s a t) = # s + # t
z size singleton seq thm

` ∀ x : U • # 〈x 〉 = 1
z seq cases thm

` ∀ s : (seq )
• s = 〈〉 ∨ (∃ s1 : (seq ); x : U • s = s1 a 〈x 〉)

z ¬ a empty thm
` ∀ s : (seq ); x : U • ¬ s a 〈x 〉 = 〈〉

z a one one thm
` ∀ s : (seq ); t : (seq ); x , y : U

• s a 〈x 〉 = t a 〈y〉 ⇔ s = t ∧ x = y
z a assoc thm

` ∀ s1 , s2 , s3 : (seq )
• s1 a s2 a s3 = s1 a (s2 a s3 )

z a assoc thm1
` ∀ s1 , s2 , s3 : (seq )

• s1 a (s2 a s3 ) = s1 a s2 a s3
z seq induction thm1

` p∀ X p
• p pZ〈〉q

∧ (∀ x s
• x ∈ X ∧ s ∈ pZseq X q ∧ p s ⇒ p pZ〈x 〉 a sq)

⇒ (∀ s• s ∈ pZseq X q ⇒ p s)q
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z num list thm
` p∀ l n
• pZpZ ′NumList (l , n)qq

= pZ{i : U; x : U
| (i , x ) ∈ p$”Z ′〈〉” lq
• (i + pZ ′Int nq, x )}qq

z seqd ∈ seq thm
` p∀ l• pZp$”Z ′〈〉” lqq ∈ pZ(seq )qq

z seqd a thm ` p∀ a l• pZp$”Z ′〈〉” (Cons a l)qq = pZ〈a〉 a p$”Z ′〈〉” lqqq
z seqd a rw thm

` p∀ a b l
• pZp$”Z ′〈〉” (Cons a (Cons b l))qq

= pZ〈a〉 a (〈b〉 a p$”Z ′〈〉” lq)qq
z ∈ seq app eq thm

` ∀ s : (seq ); m : U; x : U • (m, x ) ∈ s ⇒ s m = x
z ∈ seqd app eq thm

` p∀ l m x
• pZ(m, x )q ∈ pZp$”Z ′〈〉” lqq ⇒ pZp$”Z ′〈〉” lq mq = xq

z size seqd thm
` # 〈〉 = 0

∧ p∀ a l
• pZ# p$”Z ′〈〉” (Cons a l)qq = pZ1 + # p$”Z ′〈〉” lqqq

z size seqd length thm
` p∀ l• pZ# p$”Z ′〈〉” lqq = pZpZ ′Int (Length l)qqq

z dom seqd thm
` p∀ l• pZdom p$”Z ′〈〉” lqq = pZ1 .. # p$”Z ′〈〉” lqqq

z ran seqd thm
` p∀ l• pZran p$”Z ′〈〉” lqq = pZpZ ′Setd lqqq

z seqd a 〈〉 clauses
` p∀ l
• pZp$”Z ′〈〉” lq a 〈〉q = pZp$”Z ′〈〉” lqq

∧ pZ〈〉 a p$”Z ′〈〉” lqq = pZp$”Z ′〈〉” lqqq
z seqd eq thm

` p∀ x y l1 l2
• pZp$”Z ′〈〉” (Cons x l1 )qq = pZp$”Z ′〈〉” (Cons y l2 )qq

⇔ x = y ∧ pZp$”Z ′〈〉” l1qq = pZp$”Z ′〈〉” l2qqq
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9.1.14 The Z Theory z sets

9.1.14.1 Parents

z language ps

9.1.14.2 Children

z relations

9.1.14.3 Global Variables

X ↔ Y P (X ↔ Y )
X → Y P (X ↔ Y )
( 6∈ )[X] X ↔ P X
( 6= )[X] X ↔ X
∅[X] P X
( ⊂ )[X] P X ↔ P X
P1 X P (P X )
( ∪ )[X] P X × P X ↔ P X
( ∩ )[X] P X × P X ↔ P X
( \ )[X] P X × P X ↔ P X
( ª )[X] P X × P X ↔ P X⋃

[X] P (P X ) ↔ P X⋂
[X] P (P X ) ↔ P X

second[X, Y] X × Y ↔ Y
first[X, Y] X × Y ↔ X
(if ? then ! else !)[X]

B × X × X ↔ X
( ⊕

⊕ )[X] X × P X ↔ X
(Π ?) B ↔ B
(¿ ! À)[X]

X ↔ X
( )[X, Y]

P (X × (X ↔ Y ) × Y )

9.1.14.4 Fixity

fun 0 rightassoc
(if ? then ! else !) ( ⊕

⊕ )
(¿ ! À) (Π ?)

fun 25 leftassoc
( ª )

fun 30 leftassoc
( \ ) ( ∪ )
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fun 40 leftassoc
( ∩ )

gen 5 rightassoc
( ↔ ) ( → )

gen 70 rightassoc
(P1 )

rel ( 6∈ ) ( ⊂ )( 6= )( )

9.1.14.5 Axioms

6∈
6= ` [X ]((( 6= )[X ] ∈ X ↔ X

∧ ( 6∈ )[X ] ∈ X ↔ P X )
∧ (∀ x , y : X • (x , y) ∈ ( 6= )[X ] ⇔ ¬ x = y)
∧ (∀ x : X ; S : P X
• (x , S ) ∈ ( 6∈ )[X ] ⇔ ¬ x ∈ S ))

⊂ ` [X ](( ⊂ )[X ] ∈ P X ↔ P X
∧ (∀ S , T : P X
• (S , T ) ∈ ( ⊂ )[X ] ⇔ S ⊆ T ∧ S 6= T ))

∪
∩
\
ª ` [X ]({( ∪ )[X ], ( ∩ )[X ], ( \ )[X ], ( ª )[X ]}

⊆ P X × P X → P X
∧ (∀ S , T : P X
• ( ∪ )[X ] (S , T ) = {x : X | x ∈ S ∨ x ∈ T}
∧ ( ∩ )[X ] (S , T ) = {x : X | x ∈ S ∧ x ∈ T}
∧ ( \ )[X ] (S , T ) = {x : X | x ∈ S ∧ x 6∈ T}
∧ ( ª )[X ] (S , T )

= {x : X
| ¬

(x ∈ S ⇔ x ∈ T )}))⋃
⋂ ` [X ]({⋃[X ],

⋂
[X ]} ⊆ P (P X ) → P X

∧ (∀ A : P P X
• ⋃

[X ] A = {x : X | ∃ S : A • x ∈ S}
∧ ⋂

[X ] A = {x : X | ∀ S : A • x ∈ S}))
second
first ` [X ,

Y ]((first [X , Y ] ∈ X × Y → X
∧ second [X , Y ] ∈ X × Y → Y )
∧ (∀ x : X ; y : Y
• first [X , Y ] (x , y) = x
∧ second [X , Y ] (x , y) = y))

if ? then ! else !
` [X ]((if ? then ! else !)[X ] ∈ B × X × X → X

∧ (∀ x , y : X
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• (if ? then ! else !)[X ] (true, x , y) = x
∧ (if ? then ! else !)[X ] (false, x , y)

= y))
⊕
⊕ ` [X ](( ⊕

⊕ )[X ] ∈ X × P X → X ∧ ( ⊕
⊕ )[X ] = first)

Π ? ` (Π ?) ∈ B → B ∧ (∀ x : B • Π x ⇔ x )
¿ ! À ` [X ]((¿ ! À)[X ] ∈ X → X

∧ (∀ x : X • (¿ ! À)[X ] x = x ))
` [X ,

Y ](( )[X , Y ] ∈ P (X × P (X × Y ) × Y )
∧ (∀ x : X ; R : P (X × Y ); y : Y
• (x , R, y) ∈ ( )[X , Y ] ⇔ (x , y) ∈ R))

9.1.14.6 Definitions

↔ ` [X , Y ](X ↔ Y = P (X × Y ))
→ ` [X ,

Y ](X → Y
= {f : X ↔ Y
| ∀ x : X • ∃1 y : Y • (x , y) ∈ f })

∅ ` [X ](∅[X ] = {x : X | false})
P1 ` [X ](P1 X = {S : P X | S 6= ∅})

9.1.14.7 Theorems

z 6= thm ` ∀ x : U; y : U • x 6= y ⇔ ¬ x = y
z 6∈ thm ` ∀ x : U; S : U • x 6∈ S ⇔ ¬ x ∈ S
z ∅ thm ` ∀ x1 : U • ¬ x1 ∈ ∅
z ∅ thm1 ` ∅ = {}
z P1 thm ` ∀ X : U • P1 X = {S : P X | S 6= ∅}
z ∪ thm ` ∀ z : U; s : U; t : U • z ∈ s ∪ t ⇔ z ∈ s ∨ z ∈ t
z ∩ thm ` ∀ z : U; s : U; t : U • z ∈ s ∩ t ⇔ z ∈ s ∧ z ∈ t
z set dif thm

` ∀ z : U; s : U; t : U • z ∈ s \ t ⇔ z ∈ s ∧ z 6∈ t
z ª thm ` ∀ z : U; s : U; t : U • z ∈ s ª t ⇔ ¬ (z ∈ s ⇔ z ∈ t)
z ⊆ thm1 ` p∀ X

• pZ( ⊆ )[X ]q ∈ pZP X ↔ P X q
∧ pZ∀ S , T : P X
• (S , T ) ∈ ( ⊆ )[X ]
⇔ (∀ x : X • x ∈ S ⇒ x ∈ T )qq

z ⊆ thm ` ∀ s : U; t : U • s ⊆ t ⇔ (∀ x : U • x ∈ s ⇒ x ∈ t)
z ∈ P thm ` ∀ s : U; t : U • s ∈ P t ⇔ s ⊆ t
z ⊂ thm ` ∀ s : U; t : U • s ⊂ t ⇔ s ⊆ t ∧ s 6= t
z

⋃
thm ` ∀ z : U; a : U • z ∈ ⋃

a ⇔ (∃ S : U • S ∈ a ∧ z ∈ S )
z

⋂
thm ` ∀ z : U; a : U • z ∈ ⋂

a ⇔ (∀ S : U • S ∈ a ⇒ z ∈ S )
z first thm ` ∀ x : U • first x = x .1
z second thm ` ∀ x : U • second x = x .2
z if thm ` ∀ x , y : U

• if true then x else y = x
∧ if false then x else y = y

z guillemets thm
` ∀ x : U • ¿ x À = x
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z underlining brackets thm
` ∀ x : U; R : U; y : U • x R y ⇔ (x , y) ∈ R

z ∪ clauses ` ∀ a : U
• a ∪ {} = a
∧ {} ∪ a = a
∧ a ∪ U = U
∧ U ∪ a = U
∧ a ∪ a = a

z ∩ clauses ` ∀ a : U
• a ∩ {} = {}
∧ {} ∩ a = {}
∧ a ∩ U = a
∧ U ∩ a = a
∧ a ∩ a = a

z set dif clauses
` ∀ a : U

• a \ {} = a
∧ {} \ a = {}
∧ a \ U = {}
∧ a \ a = {}

z ª clauses ` ∀ a : U
• a ª {} = a
∧ {} ª a = a
∧ a ª U = U \ a
∧ U ª a = U \ a
∧ a ª a = {}

z ⊆ clauses ` ∀ a : U • a ⊆ a ∧ {} ⊆ a ∧ a ⊆ U
z ⊂ clauses ` ∀ a : U • ¬ a ⊂ a ∧ ¬ a ⊂ {} ∧ {} ⊂ U
z

⋂
clauses ` ⋂ {} = U ∧ ⋂

U = {}
z

⋃
clauses ` ⋃ {} = {} ∧ ⋃

U = U
z P clauses ` ∀ a : U • P {} = {{}} ∧ P U = U ∧ a ∈ P a ∧ {} ∈ P a
z P1 clauses

` ∀ a : U
• P1 {} = {} ∧ (a ∈ P1 a ⇔ a 6= {}) ∧ ¬ {} ∈ P1 a

z × clauses ` ∀ a : U • a × {} = {} ∧ {} × a = {} ∧ U × U = U
z sets ext clauses

` ∀ s, t : U
• (s = t ⇔ (∀ x : U • x ∈ s ⇔ x ∈ t))
∧ (s ⊆ t ⇔ (∀ x : U • x ∈ s ⇒ x ∈ t))
∧ (s ⊂ t
⇔ (∀ x : U • x ∈ s ⇒ x ∈ t)
∧ (∃ y : U • y ∈ t ∧ ¬ y ∈ s))
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9.2 Theory Related ML Values

This section contains various theory related ML values (e.g. the value of theorems bound to ML
names, or special tactics of proof contexts associated with the theory). Where a theorem or definition
is bound to an ML name the value of the theorem is to be found in the theory listing, only the ML
name is given below.

9.2.1 Z Sets

SML

signature ZSets = sig

Description This provides the Z library sets material. It creates the theory z sets.

SML

(∗ Proof Context : ′z ∈ set lib ∗)
Description A component proof context for handling the membership of expressions created
by Z set operations of the Z library.

Predicates and expressions treated by this proof context are constructs formed from:
⋂

,
⋃

, ∩, ∪, \, ª, P1 , ∅

Contents

Rewriting:

Stripping theorems:

Stripping conclusions:

All three of the above have theorems concerning the membership (∈) of terms generated by the
following operators:
⋂

,
⋃

, ∩, ∪, \, ª, P1 , ∅

Stripping also contains the above in negated forms.

Rewriting canonicalisation:

U simplification has the definition of ↔ added.

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to be used with proof context “′z set-
lang” and “′z normal” It is not intended to be mixed with HOL proof contexts.

See Also ′z sets ext lib
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SML

(∗ Proof Context : ′z normal ∗)
Description A component proof context for normalising certain constructs of the Z library.
The normalisation is done to fix on, in each case, one of two possible equivalent representations
of the same concept. These constructs are:

x 6= y normalised to ¬(x = y)
x 6∈ y normalised to ¬(x ∈ y)
∅ normalised to {}
x ∈ P y normalised to x ⊆ y
if true then x else y normalised to x
if false then x else y normalised to y

Contents

Rewriting:

z ∈ P thm, z ∅ thm1 , z 6∈ thm, z 6= thm, z if thm

Stripping theorems:

z ∈ P thm, z ∅ thm, z 6∈ thm, z 6= thm, z if thm
and these all pushed through ¬
Stripping conclusions:

z ∈ P thm, z ∅ thm, z 6∈ thm, z 6= thm, z if thm
and these all pushed through ¬
Rewriting canonicalisation:

U simplification has the definition of ↔ added.

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to be used with proof contexts “′z set lib”
or “′z set alg”.
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SML

(∗ Proof Context : ′z sets alg ∗)
Description A component proof context for handling algebraic reasoning of expressions created
by Z set operations of the Z library.

Predicates and expressions treated by this proof context are constructs formed from:

∈, ∩, ∪, \, ª, ⊆, ⊂,
⋂

,
⋃

, P, P1 , {D | false • V }, ×
Contents

Rewriting:

z ∪ clauses, z ∩ clauses, z set dif clauses, z ª clauses,
z ⊆ clauses, z ⊂ clauses, z

⋃
clauses, z

⋂
clauses,

z P clauses, z P1 clauses, z seta false conv ,
z × clauses

Stripping theorems:

z ∪ clauses, z ∩ clauses, z set dif clauses, z ª clauses,
z ⊆ clauses, z ⊂ clauses, z

⋃
clauses, z

⋂
clauses,

z P clauses, z P1 clauses, z seta false conv ,
z × clauses
as necessary converted to membership statements by ∈ C ,
And all of this pushed through ¬
Stripping conclusions:

z ∪ clauses, z ∩ clauses, z set dif clauses, z ª clauses,
z ⊆ clauses, z ⊂ clauses, z

⋃
clauses, z

⋂
clauses,

z P clauses, z P1 clauses, z seta false conv ,
z × clauses
as necessary converted to membership statements by ∈ C ,
And all of this pushed through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to usable with proof context “′z ∈ set-
lib”, and always with “′z normal”. The proof context ensures that its simplifications will be

attempted before more general rules concerned membership of set operators are used.

It is not intended to be mixed with HOL proof contexts.
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SML

(∗ Proof Context : ′z sets ext lib ∗)
Description An aggressive component proof context for handling the manipulation of Z set
expressions, by breaking them into predicate calculus, within the Z library.

Predicates treated by this proof context are constructs formed from:

⊆, ⊂
Contents

Rewriting:

z ⊆ conv , z ⊂ thm, z setd ⊆ conv

Stripping theorems:

z ⊆ conv , z ⊂ thm, z setd ⊆ conv ,
plus these all pushed in through ¬
Stripping conclusions:

z ⊆ conv , z ⊂ thm, z setd ⊆ conv ,
plus these all pushed in through ¬
In all of the above z setd ⊆ conv , which does the conversion:

{x1 ,x2 ,...} ⊆ y −−−> x1 ∈ y ∧ x2 ∈ y ∧ ...

is used, where applicable, in preference to z ⊆ conv , which, in the simplest cases, does the
conversion:

p ⊆ q −−−> ∀ x1 • x1 ∈ p ⇒ xx1 ∈ q

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to always be used in conjunction with
“′z set lib” and “′z set ext lang”. If used with “′z sets alg” then the simplification in that proof
context will take precedence over the extensionality effects of this proof context.

It is not intended to be mixed with HOL proof contexts.

See Also ′z ∈ set lib

SML

val mk z if : (TERM ∗ TERM ∗ TERM ) −> TERM ;
val dest z if : TERM −> (TERM ∗ TERM ∗ TERM );
val is z if : TERM −> bool ;

Description Constructor, destructor and discriminator functions for Z conditional terms.

Errors

78003 ?0 is not a Z conditional term
78004 ?0 and ?1 do not have the same types
78005 ?0 is not of type p:BOOLq
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SML

val mk z ⊆ : (TERM ∗ TERM ) −> TERM ;
val dest z ⊆ : TERM −> (TERM ∗ TERM );
val is z ⊆ : TERM −> bool ;

Description Constructor, destructor and discriminator functions for Z subset terms.

Errors

78006 ?0 is not of the form pZa ⊆ sq
78004 ?0 and ?1 do not have the same types
78007 ?0 does not have a Z set type

SML

val z seta false conv : CONV ;

Description Simplifies a Z set abstraction whose predicate is false.

Conversion

`{ D | false • P} = {}
z seta false conv
pZ{ D | false • P}q

Errors

78002 ?0 is not of the form: pZ{D | false • P}q

SML

val z ⊆ conv : CONV ;

Description Use z ⊆ thm in combination with knowledge about tuples. Given as input an
equality of the form v ⊆ w then:

If w is of type ty SET where ty is not a tuple type:

Conversion

` (v ⊆ w) ⇔
(∀ xn : U • xn ∈ v ⇒ xn ∈ w)

z ⊆ conv
pZv ⊆ wq

where xn is the first variable in the list x1 , x2 ,... that doesn’t appear in v or w (free or bound).

If w is of type ty SET where ty is an n-tuple type, or binding type, then sufficient x i will be
introduced, instead of just xn, to allow xn to be replaced by a construct of bindings and tuples of
the x i , such that no x i has a binding or tuple type and appears exactly once in the construct.

Example

z ⊆ conv pZp ⊆ r × [a,b:X ] × x2q =
` p ⊆ r × [a, b : X ] × x2

⇔ (∀ x1 : U; x3 : U; x4 : U; x5 : U
• (x1 , (a =̂ x3 , b =̂ x4 ), x5 ) ∈ p
⇒ (x1 , (a =̂ x3 , b =̂ x4 ), x5 ) ∈ r × [a, b : X ] × x2 )

Notice how the introduced universal quantification “skips” x2 which is present in the input term.

See Also z ⊆ thm, z ∈ P conv .

Errors

78001 ?0 is not of the form pZv ⊆ wq
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SML

val z ⊕
⊕ def : THM ;

val z′Π def : THM ;
val z′if def : THM ;
val z′guillemets def : THM ;
val z′underlining brackets def : THM ;

Description These are the ML bindings of the definitions of built-in global variables that
support the use of the ProofPower-Z language.

SML

val z 6= def : THM ;
val z 6∈ def : THM ;
val z ∅ def : THM ;
val z ⊂ def : THM ;
val z P1 def : THM ;
val z ∪ def : THM ;
val z ∩ def : THM ;
val z setdif def : THM ;
val z ª def : THM ;
val z

⋃
def : THM ;

val z
⋂

def : THM ;
val z first def : THM ;
val z second def : THM ;
val z ↔ def : THM ;
val z → def : THM ;

Description These are the ML bindings of the definitions of the theory z sets.
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SML

val z 6= thm: THM ;
val z 6∈ thm: THM ;
val z ∅ thm: THM ;
val z ⊆ thm: THM ;
val z ⊆ thm1: THM ;
val z ⊂ thm: THM ;
val z ∈ P thm: THM ;
val z P1 thm: THM ;
val z ∪ thm: THM ;
val z ∩ thm: THM ;
val z set dif thm: THM ;
val z ª thm: THM ;
val z

⋃
thm: THM ;

val z
⋂

thm: THM ;
val z first thm: THM ;
val z second thm: THM ;
val z ∪ clauses: THM ;
val z ∩ clauses: THM ;
val z set dif clauses: THM ;
val z ª clauses: THM ;
val z ⊆ clauses: THM ;
val z ⊂ clauses: THM ;
val z

⋃
clauses: THM ;

val z
⋂

clauses: THM ;
val z P clauses: THM ;
val z P1 clauses: THM ;
val z × clauses: THM ;
val z if thm: THM ;
val z guillemets thm: THM ;
val z underlining brackets thm: THM ;
val z sets ext clauses: THM ;

Description These are the ML bindings of the theorems of the theory z sets.

9.2.2 Z Relations

SML

signature ZRelations = sig

Description This provides the basic proof support for the Z library relations. It creates the
theory z relations.
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SML

(∗ Proof Context : ′z ∈ rel ∗)
Description A component proof context for handling the membership of Z relations created by
Z library operations.

Predicates treated by this proof context are constructs formed from:

7→, ⊕, +, ∗, ∼, (| |), −B, −C, B, C,
o, o

9, id , ran, dom, ↔
Contents

Rewriting:

z 7→ thm

Stripping theorems:

Stripping conclusions:

All three of the above also have theorems concerning the membership of terms generated by the
following operators:

⊕, +, ∗, ∼, (| |), −B, −C, B, C,
o, o

9, id , ran, dom, ↔
Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z relations. It is intended to be used with proof contexts
“z sets ext” and “z sets alg”. It is not intended to be mixed with HOL proof contexts.
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SML

(∗ Proof Context : ′z rel alg ∗)
Description A component proof context for the simplification of Z relations created by Z library
operations.

Predicates treated by this proof context are constructs formed from:

⊕, +, ∗, ∼, (| |), −B, −C, B, C,
o, o

9, id , ran, dom, ↔
Contents

Rewriting:

z ↔ clauses, z dom clauses, z ran clauses,z id clauses,
z o

9 clauses, z ◦ clauses, z C clauses, z B clauses,
z −C clauses, z −B clauses, z rel inv clauses, z rel image clauses,
z trans closure clauses, z reflex closure clauses,
z ⊕ clauses

Stripping theorems:

z ↔ clauses, z dom clauses, z ran clauses,z id clauses,
z o

9 clauses, z ◦ clauses, z C clauses, z B clauses,
z −C clauses, z −B clauses, z rel inv clauses, z rel image clauses,
z trans closure clauses, z reflex closure clauses,
z ⊕ clauses
Expressed as memberships, as necessary , using ∈ C
All also pushed through ¬
Stripping conclusions:

z ↔ clauses, z dom clauses, z ran clauses,z id clauses,
z o

9 clauses, z ◦ clauses, z C clauses, z B clauses,
z −C clauses, z −B clauses, z rel inv clauses, z rel image clauses,
z trans closure clauses, z reflex closure clauses,
z ⊕ clauses
Expressed as memberships, as necessary , using ∈ C
All also pushed through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z relations. It is intended to be used with proof contexts
“z sets ext” and “z sets alg”. There are clashes of effects if merged with “z ∈ rel”, resolved in
favour of “z ∈ rel”, though the resulting merge has its uses. It is not intended to be mixed with
HOL proof contexts.
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SML

(∗ Proof Context : ′z tuples ∗)
Description A component proof context for handling the manipulation of Z tuples and cartesian
products within the Z language and library.

Expressions and predicates treated by this proof context are constructs formed from:

(membership of ) ×, equations of tuple displays,
selection from tuple displays, first , second , 7→
Contents

Rewriting:

z ∈ × conv ,
z tuple eq conv , z sel t conv ,
z second thm, z first thm

Stripping theorems:

z ∈ × conv ,
z tuple eq conv , ∈ C z sel t conv ,
z sel t conv (where component of tuple is boolean),
plus these all pushed in through ¬
Stripping conclusions:

z ∈ × conv ,
z tuple eq conv , ∈ C z sel t conv ,
z sel t conv (where component of tuple is boolean),
plus these all pushed in through ¬
Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, basic prove conv , and no exis-
tence prover (1-tuples and 2-tuples are handled in proof context “z predicates”).

Usage Notes It requires theory z relations. It is intended to be used with proof contexts
“z sets ext” and “z sets alg”. It should not be used with “′z tuples lang”. It is not intended to
be mixed with HOL proof contexts.
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SML

(∗ Proof Context : ′z elementwise eq ∗)
Description A aggressive component proof context for forcing the elementwise comparison of
any two items of tuple or binding types.

Predicates and expressions treated by this proof context are:

x = y where x has a tuple type
x = y where x has the type of a bidning display

Contents

Rewriting:

z binding eq conv3 , z tuple eq conv1

Stripping theorems:

z binding eq conv3 , z tuple eq conv1
plus these all pushed in through ¬
Stripping conclusions:

z binding eq conv3 , z tuple eq conv1 ,
plus these all pushed in through ¬
Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z relations. It is intended to be used with proof context
“z language”. It is not intended to be mixed with HOL proof contexts.

SML

(∗ Proof Context : z language ∗)
Description A mild complete proof context for reasoning in the Z language. It will also do
some minor peices of Z Library reasoning - in particular, it “understands” maplets and ⊆.

It consists of the merge of the proof contexts:

"z predicates",
"′z ∈ set lang",
"′z bindings",
"′z schemas",
"′z tuples"

Usage Notes It requires theory z relations (rather than z language ps as one might expect).
This is because we wish to provide a proof context that can be added to to provide Library
reasoning facilities. This means that we cannot use the Z language proof context “′z tuples
lang ′′, asthisisincompatiblewith“’z tuples”, its library extension. This is why this proof context
understands maplets, which are Z Library contructs.
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SML

(∗ Proof Context : z language ext ∗)
Description An aggressive complete proof context for reasoning in the Z language. It uses the
extensionality of sets, and will also decompose any equality of objects of schema or tuple type into
a pairwise equality clause. It will also do some minor peices of Z Library reasoning - in particular,
it “understands” maplets and ⊆.

It consists of the merge of the proof contexts:

"z predicates",
"′z ∈ set lang",
"′z sets ext lang",
"′z bindings",
"′z schemas",
"′z tuples",
"′z elementwise eq"

Usage Notes It requires theory z relations (rather than z language ps as one might expect).
This is because we wish to provide a proof context that can be added to to provide Library
reasoning facilities. This means that we cannot use the Z language proof context “′z tuples
lang ′′, asthisisincompatiblewith“’z tuples”, its library extension. This is why this proof context
understands maplets, which are Z Library contructs.

SML

(∗ Proof Context : z sets ext ∗)
Description An aggressive complete proof context for handling the manipulation of Z set ex-
pressions, by breaking them into predicate calculus.

It consists of the merge of the proof contexts:

"z language ext",
"′z ∈ set lib",
"′z sets ext lib",
"′z normal"

Usage Notes It requires theory z relations.

It is not intended to be mixed with HOL proof contexts or “z sets alg”, which offers an alternative
approach to reasoning about sets.

SML

(∗ Proof Context : z sets alg ∗)
Description A mild complete proof context for handling the manipulation of Z set expressions,
by algebraic reasoning and knowledge of the set membership of the set operators.

It consists of the merge of the proof contexts:

"z language",
"′z ∈ set lib",
"′z sets alg",
"′z normal"

Usage Notes It requires theory z relations. The proof context ensures that its simplifications
will be attempted before more general rules concerned membership of set operators are used
(including extensionality rules).

It is not intended to be mixed with HOL proof contexts.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



9.2. Theory Related ML Values 505

SML

(∗ Proof Context : z rel ext ∗)
Description An aggressive complete proof context for reasoning about Z relations. When
stripping or rewriting it attempts to reduce any predicate concerning relational constructs to
predicate calculus. As a side effect set constructs are also reduced to predicate calculus. The
proof context is a merge of:

z sets ext − extensional reasoning about sets
′z ∈ rel − membership of relational constructs
′z rel alg − simplifications of relational constructs

It requires the theory “z relations”.

SML

val z ↔ thm: THM ;
val z 7→ thm: THM ;
val z dom thm: THM ;
val z ran thm: THM ;
val z id thm: THM ;
val z o

9 thm: THM ;
val z ◦ thm: THM ;
val z C thm: THM ;
val z B thm: THM ;
val z −C thm: THM ;
val z −B thm: THM ;
val z rel inv thm: THM ;
val z rel image thm: THM ;
val z trans closure thm: THM ;
val z reflex trans closure thm: THM ;
val z ⊕ thm: THM ;
val z ↔ clauses: THM ;
val z dom clauses: THM ;
val z ran clauses: THM ;
val z id clauses: THM ;
val z o

9 clauses: THM ;
val z ◦ clauses: THM ;
val z C clauses: THM ;
val z B clauses: THM ;
val z −C clauses: THM ;
val z −B clauses: THM ;
val z rel inv clauses: THM ;
val z rel image clauses: THM ;
val z trans closure clauses: THM ;
val z reflex closure clauses: THM ;
val z ⊕ clauses: THM ;

Description The ML bindings of the theorems (other than consistency ones) in theory z -
relations.
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SML

val z binding eq conv3 : CONV ;

Description A conversion for eliminating equations of bindings to an elementwise equality
clause. In general this does:

Conversion

` (b1 = b2 ) ⇔ (b1 .s1 = b2 .s1 ) ∧
(b1 .s2 = b2 .s2 ) ∧ ...

z binding eq conv3
pZb1 = b2q

However, it will expand on either side θ-terms into binding displays, and also use z sel s conv on
selections from binding displays (whether from θ-terms or otherwise).

Errors

42013 ?0 is not of the form pZbinding = bindingq

SML

val z selt conv : CONV ;

Description This conversion carries out the selection from a tuple display.

Conversion

` (t1 ,...,t i ,...,tn).i = t i

z sel t conv
pZ(t1 ,...,t i ,...,tn).iq

x 7→ y will be treated as a 2-tuple.

See Also z sel t lang conv

Errors

47185 ?0 is not a Z tuple selection
42006 ?0 is not of the form pZ(x ,...).iq

SML

val z tuple eq conv : CONV ;

Description A conversion for eliminating tuples over equality.

Conversion

` (t1 ,t2 ,...) = (u1 ,u2 ,...) ⇔
((t1 = u1 ) ∧ (t2 = u2 ) ∧ ...)

z tuple eq conv
pZ(t1 ,t2 ,...) = (u1 ,u2 ,...)q

x 7→ y will be treated as a 2-tuple.

See Also z tuple lang eq conv

Errors

42003 ?0 is not of the form: pZ(x1 ,...) = (y1 ,...)q
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SML

val z tuple eq conv1 : CONV ;

Description A conversion for eliminating tuples over equality to an elementwise equality clause.

Conversion

` (t1 = t2 ) ⇔ (t1 .1 = t2 .1 ∧ ...)
z tuple eq conv
pZt1 = t2q

This will then use z sel t conv to eliminate explicit tuples. x 7→ y will be treated as a 2-tuple.

See Also z tuple lang eq conv

Errors

83001 ?0 is not of the form: pZtuple1 = tuple2q

SML

val z tuple intro conv : CONV ;

Description This conversion carries out the elimination of a tuple display of tuple selections
from the same tuple.

Conversion

` (t .1 ,...,t .n) = t
z tuple intro conv
pZ(t .1 ,...,t .n)q

where n is the arity of t . x 7→ y will be treated as a 2-tuple.

See Also z tuple lang intro conv

Errors

42005 ?0 is not of the form: pZ(t .1 ,...,t .n)q

SML

val z 7→ def : THM ;
val z dom def : THM ;
val z ran def : THM ;
val z id def : THM ;
val z o

9 def : THM ;
val z ◦ def : THM ;
val z C def : THM ;
val z B def : THM ;
val z −C def : THM ;
val z −B def : THM ;
val z rel inv def : THM ;
val z rel image def : THM ;
val z tc def : THM ;
val z rtc def : THM ;
val z ⊕ def : THM ;

Description These are the definitions of the theory z relations.

9.2.3 Z Functions

SML

signature ZFunctions = sig

Description This provides the basic proof support for the Z library functions. It creates the
theory z functions.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



508 Chapter 9. THEORIES

SML

(∗ Proof Context : ′z ∈ fun ∗)
Description A component proof context for handling the membership of Z functions created
by Z library operations. Expressions and predicates treated by this proof context are constructs
formed from:

7³, ³, ³½, 7½, ½, 7→, →
Contents

Rewriting:

Stripping theorems:

Stripping conclusions:

All three of the above also have theorems concerning the membership of terms generated by the
following operators:

7³, ³, ³½, 7½, ½, 7→, →
Stripping also contains the above in negated forms.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. It is intended to be used with proof context “′z ∈ rel”.
It is not intended to be mixed with HOL proof contexts.
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SML

(∗ Proof Context : ′z fun alg ∗)
Description A component proof context for handling the simplification of Z functions created
by Z library operations. Expressions and predicates treated by this proof context are constructs
formed from:

7→, →, 7½, ½, 7³, ³, ³½

Contents

Rewriting:

z 7→ clauses, z → clauses, z 7½ clauses,
z ½ clauses, z ³ clauses, z 7³ clauses, z ³½ clauses

Stripping theorems:

z 7→ clauses, z → clauses, z 7½ clauses,
z ½ clauses, z ³ clauses, z 7³ clauses, z ³½ clauses
Expressed as membership statements as necessary, using ∈ C .
All also pushed through ¬.

Stripping conclusions:

z 7→ clauses, z → clauses, z 7½ clauses,
z ½ clauses, z ³ clauses, z 7³ clauses, z ³½ clauses
Expressed as membership statements as necessary, using ∈ C .
All also pushed through ¬.

Rewriting canonicalisation:

Automatic proof procedures are respectively z basic prove tac, z basic prove conv , and no ex-
istence prover.

Usage Notes It requires theory z sets. The proof context ensures that its simplifications will
be attempted before more general rules concerned membership of set operators are used (including
extensionality rules).

It is not intended to be mixed with HOL proof contexts.

SML

(∗ Proof Context : z fun ext ∗)
Description An aggressive complete proof context for reasoning about Z functions. When
stripping or rewriting it attempts to reduce any predicate concerning function constructs to pred-
icate calculus. As a side effect relational and set constructs are also reduced to predicate calculus.
The proof context is a merge of:

z rel ext − extensional reasoning about relations (and sets)
′z ∈ fun − membership of function constructs
′z fun alg − simplifications of function constructs

It requires the theory “z functions”.

SML

val z 7→ def : THM ; val z 7½ def : THM ;
val z ½ def : THM ; val z 7³ def : THM ;
val z ³ def : THM ; val z ³½ def : THM ;

Description These are the ML bindings of the defining theorems in the theory z functions.
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SML

val z 7→ thm : THM ; val z 7→ thm1 : THM ;
val z → thm : THM ; val z → app thm : THM ;
val z 7½ thm : THM ; val z ½ thm : THM ;
val z 7³ thm : THM ; val z ³ thm : THM ;
val z ³½ thm : THM ; val z ∈ first thm : THM ;
val z ∈ second thm : THM ; val z → app ∈ rel thm : THM ;
val z → app eq ⇔ ∈ rel thm : THM ; val z → ∈ rel ⇔ app eq thm : THM ;
val z 7→ clauses : THM ; val z → clauses : THM ;
val z 7½ clauses : THM ; val z ½ clauses : THM ;
val z 7³ clauses : THM ; val z ³ clauses : THM ;
val z ³½ clauses : THM ; val z fun app clauses : THM ;
val z fun ∈ clauses : THM ; val z fun dom clauses : THM ;
val z fun ran clauses : THM ;

Description These are the ML bindings of the theorems in the theory z functions.

9.2.4 Z Numbers

SML

signature ZNumbers = sig

Description This provides the basic proof support for the Z library relations. It creates the
theory z numbers.
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SML

(∗ Proof Context : ′z numbers ∗)
Description A component proof context for handling the basic arithmetic operations for Z.

Expressions and predicates treated by this proof context are constructs formed from:

+, ∗, −, abs, div , mod , Z, ≤, <, ≥, >, =, N

Contents

Rewriting:

z plus conv , z times conv , z subtract minus conv
z abs conv , z div conv , z mod conv
z Z eq conv , z ≤ conv , z less conv
z ≥ ≤ conv , z greater less conv , z ∈ N conv
z plus clauses, z minus clauses, z ≤ clauses
z less clauses, z ¬ ≤ thm, z ¬ less thm,
z ∈ N1 thm, simple z dot conv , z ∈ dot dot conv

Stripping theorems:

z Z eq conv , z ≤ conv , z less conv
z ≥ ≤ conv , z greater less conv , z ∈ N conv
z plus clauses, z minus clauses, z ≤ clauses
z less clauses, z ∈ N1 thm, z ∈ dot dot conv
and all the above pushed through ¬

z ¬ ≤ thm, z ¬ less thm, z ≤ conv , z less conv

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

U-simplification:

` Z = U

Automatic proof procedures: z basic prove tac, z basic prove conv .

Automatic existence prover: blank.

See Also Proof context ′z numbers1
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SML

(∗ Proof Context : ′z numbers1 ∗)
Description A component proof context for handling the basic arithmetic operations for Z. It
is distinct from ′z numbers by its normalising all inequalities to ≤.

Expressions and predicates treated by this proof context are constructs formed from:

+, ∗, −, abs, div , mod , Z, ≤, <, ≥, >, =, N

Contents

Rewriting:

z plus conv , z times conv , z subtract minus conv
z abs conv , z div conv , z mod conv
z Z eq conv , z ≤ conv , z less conv
z ≥ ≤ conv , z greater less conv , z ∈ N conv
z plus clauses, z minus clauses, z ≤ clauses
z less clauses, z ¬ less thm,
z ∈ N1 thm, z simple dot dot conv , z ∈ dot dot conv ,
conv rule (ONCE MAP C eq sym conv) z ¬ ≤ thm

The final conversion to < to ≤ will only occur if no other rewriting applies.

Stripping theorems:

z Z eq conv , z ≤ conv , z less conv
z ≥ ≤ conv , z greater less conv , z ∈ N conv
z plus clauses, z minus clauses, z ≤ clauses
z less clauses, z ∈ N1 thm, z ∈ dot dot conv
and all the above pushed through ¬

z ¬ less thm, z ≤ conv , z less conv ,
conv rule (ONCE MAP C eq sym conv) z ¬ ≤ thm

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

U-simplification:

` Z = U

Automatic proof procedures: z basic prove tac, z basic prove conv .

Automatic existence prover: blank.
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SML

val dest z ≤ : TERM −> TERM ∗ TERM ;
val dest z ≥ : TERM −> TERM ∗ TERM ;
val dest z abs : TERM −> TERM ;
val dest z div : TERM −> TERM ∗ TERM ;
val dest z greater : TERM −> TERM ∗ TERM ;
val dest z less : TERM −> TERM ∗ TERM ;
val dest z minus : TERM −> TERM ;
val dest z mod : TERM −> TERM ∗ TERM ;
val dest z plus : TERM −> TERM ∗ TERM ;
val dest z signed int : TERM −> INTEGER;
val dest z subtract : TERM −> TERM ∗ TERM ;
val dest z times : TERM −> TERM ∗ TERM ;

Description These are derived destructor functions for the Z basic arithmetic operations. An
optionally signed integer literal, signed int , is taken to be either a numeric literal or the result of
applying (∼ ) to a numeric literal. The other constructors correspond directly to the arithmetic
operations of the theory z numbers with alphabetic names assigned to give a valid ML name as
needed (greater :>, less :<, minus: ∼, plus : +, subtract : −, times : ∗).
As usual, there are also corresponding discriminator (is . . .) and constructor functions (mk . . .).
For programming convenience, dest z signed int returns 0 and is z signed int returns true when
applied to ∼0 , but mk z signed int cannot be used to construct such a term.

Errors

86101 ?0 is not of the form pZ i ≤ jq
86102 ?0 is not of the form pZ i ≥ jq
86103 ?0 is not of the form pZabs iq
86104 ?0 is not of the form pZ i div jq
86105 ?0 is not of the form pZ i > jq
86106 ?0 is not of the form pZ i < jq
86107 ?0 is not of the form pZ∼iq
86108 ?0 is not of the form pZ i mod jq
86109 ?0 is not of the form pZ i + jq
86110 ?0 is not an optionally signed integer literal
86111 ?0 is not of the form pZ i − jq
86112 ?0 is not of the form pZ i ∗ jq

SML

val is z ≤ : TERM −> bool ;
val is z ≥ : TERM −> bool ;
val is z abs : TERM −> bool ;
val is z div : TERM −> bool ;
val is z greater : TERM −> bool ;
val is z less : TERM −> bool ;
val is z minus : TERM −> bool ;
val is z mod : TERM −> bool ;
val is z plus : TERM −> bool ;
val is z signed int : TERM −> bool ;
val is z subtract : TERM −> bool ;
val is z times : TERM −> bool ;

Description These are derived discriminator functions for the Z basic arithmetic operations.
See the documentation for the destructor functions (dest z plus etc.) for more information.
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SML

val mk z ≤ : TERM ∗ TERM −> TERM ;
val mk z ≥ : TERM ∗ TERM −> TERM ;
val mk z abs : TERM −> TERM ;
val mk z div : TERM ∗ TERM −> TERM ;
val mk z greater : TERM ∗ TERM −> TERM ;
val mk z less : TERM ∗ TERM −> TERM ;
val mk z minus : TERM −> TERM ;
val mk z mod : TERM ∗ TERM −> TERM ;
val mk z plus : TERM ∗ TERM −> TERM ;
val mk z signed int : INTEGER −> TERM ;
val mk z subtract : TERM ∗ TERM −> TERM ;
val mk z times : TERM ∗ TERM −> TERM ;

Description These are derived constructor functions for the Z basic arithmetic operations. See
the documentation for the destructor functions (dest z plus etc.) for more information.

Errors

86201 ?0 does not have type Z

SML

val z cov induction tac : TERM −> TACTIC

Description A course of values induction tactic for a subset of the integers. To prove j≤x ⇒ t ,
it suffices to prove t [i/x ] on the assumptions that j≤i and ∀k • j≤k ∧ k<i ⇒ t [k/x ].

(Course of values induction is sometimes called complete induction.) The term argument must
appear free in the conclusion of the goal. It must also appear once, and only once, in the
assumptions, in an assumption of the form j≤x .

Tactic

{ Γ , j≤x} t [x ]
{ Γ , j≤x} t [j/x ] ;

strip {j≤i , pZ∀k• j≤k ∧ k<x ⇒ t [k ]q, Γ} t [x ]

z cov induction tac pZxq

See Also z Z cases thm, z intro ∀ tac, z N induction tac,

z Z induction tac, z ≤ induction tac

Errors As for z ≤ induction tac.
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SML

val z simple dot dot conv : CONV ;
val z ∈ dot dot conv : CONV ;

Description The first of these two conversions simplifies certain dots terms, the second, given a
membership of a dodts expression, first tries the simplifications, and whether or not that succeeds,
expands the membership.

Conversion

` (x .. x ) = {x}
z simple dot dot conv
pZx .. xq

and
Conversion

` (n1 .. n2 ) = {}
z simple dot dot conv
pZn1 .. n2q

where n1 is a numeric literal less than the numeric literal n2 .
Conversion

` x ∈ y .. y ⇔ x = y
z ∈ dot dot conv
pZx ∈ y .. yq

Conversion

` x ∈ n1 .. n2 ⇔ false
z ∈ dot dot conv
pZx ∈ n1 .. n2q

where n1 is a numeric literal less than the numeric literal n2 .
Conversion

` x ∈ low .. high ⇔ low ≤ x ∧ x ≤ high
z ∈ dot dot conv
pZx ∈ low .. highq

See Also z dot dot conv
Errors

86001 ?0 is not of the form: pZ low .. highq where the
expresion can be simplified

86002 ?0 is not of the form: pZx ∈ low .. highq
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SML

val z ∈ N thm : THM ; val z ¬ ≤ thm : THM ;
val z ¬ N thm : THM ; val z ¬ less thm : THM ;
val z ≤ ≤ 0 thm : THM ; val z ≤ antisym thm : THM ;
val z ≤ cases thm : THM ; val z ≤ clauses : THM ;
val z ≤ induction thm : THM ; val z ≤ less trans thm : THM ;
val z ≤ plus N thm : THM ; val z ≤ refl thm : THM ;
val z ≤ trans thm : THM ; val z N ¬ minus thm : THM ;
val z N ¬ plus1 thm : THM ; val z N abs minus thm : THM ;
val z N cases thm : THM ; val z N induction thm : THM ;
val z N plus1 thm : THM ; val z N plus thm : THM ;
val z N thm : THM ; val z N times thm : THM ;
val z Z cases thm : THM ; val z Z cases thm1 : THM ;
val z Z eq thm : THM ; val z Z induction thm : THM ;
val z 0 N thm : THM ; val z abs N thm : THM ;
val z abs eq 0 thm : THM ; val z abs minus thm : THM ;
val z abs plus thm : THM ; val z abs thm : THM ;
val z abs times thm : THM ; val z cov induction thm : THM ;
val z div mod unique thm : THM ; val z int homomorphism thm : THM ;
val z less ≤ trans thm : THM ; val z less clauses : THM ;
val z less irrefl thm : THM ; val z less trans thm : THM ;
val z minus N ≤ thm : THM ; val z minus clauses : THM ;
val z minus thm : THM ; val z minus times thm : THM ;
val z plus0 thm : THM ; val z plus assoc thm : THM ;
val z plus assoc thm1 : THM ; val z plus clauses : THM ;
val z plus comm thm : THM ; val z plus cyclic group thm : THM ;
val z plus minus thm : THM ; val z plus order thm : THM ;
val z times0 thm : THM ; val z times1 thm : THM ;
val z times assoc thm : THM ; val z times assoc thm1 : THM ;
val z times clauses : THM ; val z times comm thm : THM ;
val z times eq 0 thm : THM ; val z times order thm : THM ;
val z times plus distrib thm : THM ; val z ≤ less eq thm : THM ;
val z F thm : THM ; val z F1 thm : THM ;
val z F empty thm : THM ; val z ∈ N1 thm : THM ;

Description These are the ML value bindings for the theorems saved in the theory z numbers.
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SML

val z ≤ induction tac : TERM −> TACTIC

Description An induction tactic for a subset of the integers. To prove j≤x ⇒ t , it suffices to
prove t [j/x ] and to prove t [x + 1/x ] on the assumptions t and j≤x . The term argument must be
a variable of type p :Zq and must appear free in the conclusion of the goal. It must also appear
once, and only once in the assumptions, in an assumption of the form j≤x .

Tactic

{ Γ , j≤x} t [x ]
{ Γ , j≤x} t [j/x ] ; strip {t [x ], j≤x , Γ} t [x+1 ]

z ≤ induction tac pZxq

See Also z Z cases thm, z intro ∀ tac, z N induction tac,

z Z induction tac, z cov induction tac

Errors

86401 ?0 is not a variable of type p:Zq
86402 A term of the form pZ j ≤ iq where i is the induction variable

could not be found in the assumptions
86403 ?0 appears free in more than one assumption of the goal
86404 ?0 does not appear free in the conclusions of the goal

SML

val z N induction tac : TACTIC

Description This tactic implements induction over the natural numbers in Z: to prove
x ∈ N ⇒ t , it suffices to prove t [0/x ] and to prove t [x + 1/x ] on the assumption that t . The
conclusion of the goal must have the form x ∈ N ⇒ t .

Tactic

{ Γ } x ∈ N ⇒ t
{ Γ } t [0/x ] ; strip{t , Γ} t [x+1/x ]

z N induction tac

See Also z Z cases thm, z intro ∀ tac, z Z induction tac,

z ≤ induction tac, z cov induction tac

Errors As for gen induction tac1 .
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SML

val z N plus conv : CONV ; val z N times conv : CONV ;

val z subtract minus conv : CONV ; val z greater less conv : CONV
val z ≥ ≤ conv : CONV ; val z ∈ N conv : CONV ;

val z plus conv : CONV ; val z times conv : CONV
val z abs conv : CONV ; val z div conv : CONV
val z mod conv : CONV ; val z ≤ conv : CONV
val z less conv : CONV val z Z eq conv : CONV

Description These conversions are used to perform evaluation of arithmetic expressions in-
volving numeric literal operands. The normal interface to the conversion is via the proof context
′z numbers and other proof contexts which contain it.

The first block above gives conversions to evaluate expressions of the form i op j where i and j are
numeric literals and op is one of + or ∗. The second block gives conversions to transform terms
of the form i − j , i > j , i > j and i ∈N into i + ∼j , j < i , j ≤ i and 0 ≤ i respectively. The
third block give conversions which evaluate expressions of the form i op j or abs i , where op is one
of +, ∗, div , mod , ≤, <, or =, and where i and j are signed integer literals (i.e., either numeric
literals or of the form ∼k , where k is a numeric literal). Thus the second block of conversions
transform expressions of the form i − j , i > j , i ≥ j and i ∈N into a form which can be evaluated
by the conversions in the third block if i and j are signed literals.

Errors

86301 ?0 is not of the form ?1 where pZ iq and pZ jq are numeric literals
86302 ?0 is not of the form ?1
86303 ?0 is not of the form ?1 where pZ iq and pZ jq are optionally signed

numeric literals

SML

val z Z def : THM ; val z N def : THM ;
val z arith def : THM ; val z inequality def : THM ;
val z N1 def : THM ; val z succ def : THM ;
val z iter def : THM ; val z dot dot def : THM ;
val z F def : THM ; val z F1 def : THM ;
val z hash def : THM ; val z 7 7→ def : THM ;
val z 7 7½ def : THM ; val z min def : THM ;
val z max def : THM ; val z′int def : THM

Description These are the ML bindings of the definitions of the theory z numbers.
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SML

val z Z induction tac : TERM −> TACTIC

Description An induction-like tactic for the integers, based on the fact that any subset of the
integers containing 1 and closed under negation and addition must contain every integer.

Tactic

{ Γ } t
{ Γ } t [1/x ] ;

strip{t [i/x ], Γ} t [∼i/x ] ;
strip{t [i/x ] ∧ t [j/x ], Γ} t [i+j/x ]

z Z induction tac pZxq

See Also z Z cases thm, z intro ∀ tac, z N induction tac,

z ≤ induction tac, z cov induction tac

Errors As for gen induction tac.

9.2.5 Z Arithmetic Proof Support

SML

signature ZArithmeticTools = sig

Description This is the signature of a structure containing arithmetic and an automatic linear
arithmetic prover for the integers in Z.

SML

(∗ Proof Context : z lin arith ∗)
(∗ Proof Context : z lin arith1 ∗)
Description “z lin arith” is a proof context whose main purpose is to supply a decision
procedure for problems in linear arithmetic in Z. “z lin arith1” differs from it only by using
“′z numbers1”. The proof context provides an interface to the proof context ′Z lin arith which
provides the analogous facilities for the HOL integers.

Contents The proof context is the result of merging z predicates, ′z numbers(1 ) and
′z lin arith.

Examples PC T1"z lin arith"prove tac[] will prove any of the following goals:

([], pZ∀a, b, c:Z•a ≤ b ∧ (a + b < c + a) ⇒ a < cq)
([], pZ∀a, b, c:Z•a ≥ b ∧ ¬ b < c ⇒ a ≥ cq)
([], pZ∀a, b, c:Z•a + 2∗b < 2∗a ⇒ b + b < aq)
([], pZ∀ x , y :Z• ¬ (2∗x + y = 4 ∧ 4∗x + 2∗y = 7 )q)

In the following example, an induction reduces the problem to linear arithmetic, and then the
automatic proof tactic in z lin arith completes the proof.

set goal([], pZ∀b:N•(b + 1 )∗(b + 1 ) > 0q);
a(PC T1 "z library" REPEAT strip tac);
a( z ≤ induction tacpZbq THEN PC T1 "z lin arith" asm prove tac[]);
pop thm();

See Also ′z lin arith

Errors The errors reported by the automatic proof tactic are as for ′Z lin arith.
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SML

(∗ Proof Context : ′z lin arith ∗)
(∗ Proof Context : ′z lin arith1 ∗)
Description “′z lin arith” is a component proof context whose purpose is to supply a decision
procedure for problems in linear arithmetic for the integers in Z. “′z lin arith1” i a copy, only
differing in using “′z numbers1”.

Contents The rewriting, theorem stripping and conclusion stripping components are those from
′z numbers augmented with the following transformations:

pZ(a ⊕
⊕ Z) = bq → pZa ≤ b ∧ b ≤ aq

pZa ≤ bq → p pMLTRY C z Z conv pz Z aqq ≤ pMLTRY C z Z conv pbqqq
pZa < bq → p pMLTRY C z Z conv paqq < pMLTRY C z Z conv pbqqq
pZx ∈ Nq → p0 ≤ xq

(where all variables are of type Z). The effect of the above scheme is to transformed any Z
equation or inequality in ≤ or < into an equivalent inequality over the HOL integers. The
automatic proof procedures for the proof context are (slight adaptations of) the ones in the proof
context Z lin arith, which can then automatically prove the transformed form if it is a theorem
of linear arithmetic.

The automatic proof components is an interface to the one for ′Z lin arith. Other components
are as for ′z numbers.

Examples A typical use of the proof context would be to solve problems containing a mixture
of (linear) arithmetic and set theory.

For example, MERGE PCS T1 ["z sets ext", "′z lin arith"]prove tac[]will prove any of the fol-
lowing goals:

([], pZ∀m:Z• {i :Z | m ≤ i ∧ i < m+3} = {m, m+1 , m+2}q)
([], pZ{i , j : Z | 30∗i = 105∗j} = {i , j : Z | 2∗i = 7∗j}q)
([], pZ{i : Z | 5∗i = 6∗i} = {0}q)

See Also z lin arith, z numbers, ′z numbers

Errors The errors reported by the automatic proof tactic are as for ′Z lin arith.

SML

val z anf conv : CONV ;

Description z anf conv is a conversion which proves theorems of the form ` t1 = t2 where
t1 is a Z expression formed from atoms of type Z and t2 is in what we may call additive normal
form, i.e. it has the form: t1 + t2 + ..., where the t i have the form s1 ∗ s2 ∗ ...where the
s i are atoms. Here, by atom we mean an expression which is not of the form t1 + t2 + ...or
s1 ∗ s2 ∗ ....

The summands t i and, within them, the factors s j are given in increasing order with respect to
the ordering on terms analogous to that given by the function z term order , q.v. Arithmetic
computation is carried out on atoms to ensure that at most one of the summands is a numeric
literal and that, within each summand, at most one factor is a numeric literal. Any literal appears
at the beginning of its factor or summand and addition of 0 or multiplication by 1 is simplified
out. Any signs are moved to the first factor in each summand.

The conversion fails with error number 106010 if there no changes can be made to the term.

Errors

106010 ?0 is not of type p:Zq or is already in additive normal form
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SML

val z Z conv : CONV ;
val Z z conv : CONV ;

Description In the theory z arithmetic tools, isomorphisms, z Z and Z z , are defined between
the Z integers and the HOL integers. These may be used to translate an arithmetic problem in Z
into one in HOL. These conversions implement this translation and its inverse.

The operators handled by the conversions are +, ∗, ∼ and −.

The translation to HOL is carried out according to the following scheme:

z ZpZt1 + t2q → pz Z t1 + z Z t2q
z ZpZt1 ∗ t2q → pz Z t1 ∗ z Z t2q
z ZpZ∼t1q → p∼ z Z t1q
z ZpZZ z t1q → pt1q
z ZpZZ ′Int cq → pNZ cq

z Z conv implements the above scheme recursively to translate the result of applying z Z to a Z
arithmetic expression into HOL.

Z z conv is the analogue of z Z conv , performing the translation of Z z applied to a HOL integer
arithmetic expression into Z.

Uses Tactic programming.

See Also z anf conv , z lin arith, ′z lin arith

Errors

106001 ?0 is not of the form pz Z pZtqq where pZtq is constructed from +, ∼, −, ∗ or
integer constants

106002 ?0 is not of the form pZ z ptqq where ptq is constructed from +, ∼, −, ∗ or
integer constants

SML

val z Z def : THM ;
val Z z def : THM ;
val z Z plus thm : THM ;
val z Z times thm : THM ;
val z Z subtract thm : THM ;
val z Z minus thm : THM ;
val Z z plus thm : THM ;
val Z z times thm : THM ;
val Z z subtract thm : THM ;
val Z z minus thm : THM ;
val z Z one one thm : THM ;
val Z z one one thm : THM ;
val z ≤ Z ≤ thm : THM ;
val z less Z less thm : THM ;

Description These are the Standard ML bindings for the theorems saved in the theory
z arithmetic tools which provides isomorphisms between the ring of integers in HOL and the
ring of integers in Z. The main purpose of this theory is to allow proof procedures for HOL inte-
gers to be adapted to work with Z. The most common way of using these isomorphisms is via the
proof context z lin arith, q.v.
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9.2.6 Z Sequences

SML

signature ZSequences = sig

Description This provides the basic proof support for the Z library sequences. It creates the
theory z sequences.

SML

val z seq def : THM ;
val z seq1 def : THM ;
val z iseq def : THM ;
val z a def : THM ;
val z head def : THM ;
val z last def : THM ;
val z tail def : THM ;
val z front def : THM ;
val z rev def : THM ;
val z squash def : THM ;
val z » def : THM ;
val z ¹ def : THM ;
val z a/ def : THM ;
val z disjoint def : THM ;
val z partition def : THM ;

Description These are the ML bindings of the definitions of the theory of z sequences.

9.2.7 Z Finiteness and Sequences

SML

signature ZFunctions1 = sig

Description This provides additional proof support for the Z library functions. It creates the
theory z functions1 .

SML

signature ZNumbers1 = sig

Description This provides additional proof support for the Z library functions. It creates the
theory z functions1 .

SML

signature ZSequences1 = sig

Description This provides additional proof support for the Z library sequences. It creates the
theory z sequences1 .
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SML

val z dot dot clauses : THM ; val z dot dot plus thm : THM ;
val z less cases thm : THM ; val z ≤ ≤ plus1 thm : THM ;
val z dot dot diff thm : THM ; val z dot dot ∪ thm : THM ;
val z dot dot ∩ thm : THM ; val z empty F thm : THM ;
val z F ∪ singleton thm : THM ; val z F thm1 : THM ;
val z F induction thm : THM ; val z F size thm : THM ;
val z F size thm1 : THM ; val z ⊆ F thm : THM ;
val z size empty thm : THM ; val z size singleton thm : THM ;
val z size dot dot thm : THM ; val z size 7 7→ thm : THM ;
val z size seq thm : THM ; val z size ∪ singleton thm : THM ;
val z F ∩ thm : THM ; val z F diff thm : THM ;
val z size ∪ thm : THM ; val z

⋃
F thm : THM ;

val z size diff thm : THM ; val z size N thm : THM ;
val z size mono thm : THM ; val z size ∪ ≤ thm : THM ;
val z size eq thm : THM ; val z size 0 thm : THM ;
val z size 1 thm : THM ; val z size 2 thm : THM ;
val z size pair thm : THM ; val z size × thm : THM ;
val z size ≤ 1 thm : THM ; val z size dot dot thm1 : THM ;
val z pigeon hole thm : THM ; val z F P thm : THM ;
val z div thm : THM ; val z mod thm : THM ;
val z abs pos thm : THM ; val z abs neg thm : THM ;
val z abs ≤ times thm : THM ; val z abs 0 less thm : THM ;
val z 0 less times thm : THM ; val z times less 0 thm : THM ;
val z ∈ succ thm :THM ; val z succ0 thm :THM ;
val z succn thm :THM ; val z succminus n thm :THM ;

Description These are the ML bindings of the theorems in the theory z numbers1 .

SML

val z dot dot conv : CONV ;

Description This conversion expands a range between two integer literals into a set display:

Example

z dot dot conv pZ1 .. 5q gives
` 1 .. 5 = {1 , 2 , 3 , 4 , 5}

Errors

107002 ?0 is not of the form pZa .. bq where pZaq and pZbq are integer literals
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SML

val z seqd app conv : CONV ;
val z size seqd conv : CONV ;
val z seqd eq conv : CONV ;

Description Conversions for sequence displays.

z seqd app conv applies to terms of the form sm, where s is a sequence display and m is a
numeric literal.

z size seqd conv

Description applies to terms of the form #s, where s is a sequence display.

z seqd eq conv

Description applies to terms of the form s 1 = s 2 , where s 1 and s 2 are sequence displays.

Errors

107011 ?0 is not of the form p〈t1 , ...〉 mq
107012 ?0 is not a positive integer literal
107013 ?0 is not a valid index for the sequence ?1
107020 ?0 is not of the form p〈t1 , ...〉 = 〈u1 , ...〉q
107021 ?0 is not of the form p#〈t1 , ...〉q

SML

val z seq induction tac : TERM −> TACTIC ;
val z seq induction tac1 : TERM −> TACTIC ;

Description Induction tactics for Z sequences. To prove s ∈ seq A ⇒ t , it suffices to prove
t [〈〉/s] and to prove t [s a 〈x 〉/s](or t [〈x 〉 a s/s]) on the assumptions t , s ∈ seq A and x ∈ A.
The term argument must be a variable of the same type as a Z sequence and must appear free in
the conclusion of the goal. It must also appear once, and only once, in an assumption of the form
s ∈ seq A.

Tactic

{ Γ , s ∈ seq A} t [s]
{ Γ } t [〈〉/s] ;

strip {t , s ∈ seq A, x ∈ A, Γ} t [s a 〈x 〉/s]

z seq induction tac pZsq

Tactic

{ Γ , s ∈ seq A} t [s]
{ Γ } t [〈〉/s] ;

strip {t , s ∈ seq A, x ∈ A, Γ} t [〈x 〉 a s/s]

z seq induction tac1 pZsq

Errors

107031 A term of the form pZs ∈ seq Aq where s is the induction variable
could not be found in the assumptions

107032 ?0 is not a variable
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SML

val z size dot dot conv : CONV ;

Description This conversion will calculate the size of a range between two integer literals,
including the empty range case when the end of the range is less than the start.

Example

z size dot dot conv pZ# (1 .. 5 ) q gives
` # (1 .. 5 ) = 5

z size dot dot conv pZ# (10 .. 1 ) q gives
` # (10 .. 1 ) = 0

Errors

107001 ?0 is not of the form pZ#(a .. b)q where pZaq and pZbq are integer literals

SML

val z ¬ a empty thm : THM ; val z dom a thm : THM ;
val z dom seqd thm : THM ; val z dom seq thm : THM ;
val z a assoc thm1 : THM ; val z a assoc thm : THM ;
val z a def thm : THM ; val z a one one thm : THM ;
val z a ∈ seq thm1 : THM ; val z a ∈ seq thm : THM ;
val z a seq x thm : THM ; val z a singleton thm1 : THM ;
val z a singleton thm : THM ; val z 〈〉 a thm : THM ;
val z a 〈〉 thm : THM ; val z a thm : THM ;
val z prim seq induction thm : THM ; val z ran seqd thm : THM ;
val z ∈ seq app eq thm : THM ; val z seq cases thm : THM ;
val z ∈ seqd app eq thm : THM ; val z seqd a 〈〉 clauses : THM ;
val z seqd a rw thm : THM ; val z seqd a thm : THM ;
val z seqd ∈ seq thm : THM ; val z seq induction thm1 : THM ;
val z seq induction thm : THM ; val z seq seq x thm : THM ;
val z seq thm1 : THM ; val z 〈〉 seq thm : THM ;
val z seq thm : THM ; val z seq u thm : THM ;
val z singleton seq thm : THM ; val z singleton seq x thm : THM ;
val z size a thm : THM ; val z size seqd length thm : THM ;
val z size seqd thm : THM ; val z size seq N thm : THM ;
val z size seq thm1 : THM ; val z size seq thm2 : THM ;
val z size singleton seq thm : THM ; val z 〈〉 thm : THM ;
val z seqd eq thm : THM ;

Description These are the ML bindings of the theorems in the theory z sequences1 .
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SML

val z F induction tac : TERM −> TACTIC ;

Description An induction tactic for Z finite sets. To prove s ∈ F A ⇒ t , it suffices to prove
t [{}/s] and to prove t [s ∪ {x}/s] on the assumptions t , s ∈ F A, x ∈ A and ¬x ∈ s. The term
argument must be a variable of the same type as a Z set and must appear free in the conclusion
of the goal. It must also appear once, and only once, in an assumption of the form s ∈ F A.

Tactic

{ Γ , s ∈ F A} t [s]
{ Γ } t [{}/s] ;

strip {t , s ∈ F A, x ∈ A, ¬x ∈ s, Γ} t [s ∪ {x}/s]
z F induction tac pZsq

Errors

107033 A term of the form pZs ∈ F Aq where s is the induction variable
could not be found in the assumptions

SML

val z C → thm : THM ; val z ran C thm : THM ;
val z ∈ → thm : THM ; val z → ran eq ³ thm : THM ;
val z ½ ran eq ³½ thm : THM ; val z ran mono thm : THM ;
val z 7→ thm2 : THM ; val z ³ thm1 : THM ;
val z 7½ thm1 : THM ; val z → dom thm : THM ;
val z ½ thm1 : THM ; val z ∪ ↔ thm : THM ;
val z ran ∪ thm : THM ; val z ∪ → thm : THM ;
val z ∪ ½ thm : THM ; val z ∪ ³ thm : THM ;
val z ∪ ³½ thm : THM ; val z ◦ → thm : THM ;
val z ◦ ³ thm : THM ; val z ◦ ½ thm : THM ;
val z ◦ ³½ thm : THM ; val z rel inv ³½ thm : THM ;
val z id thm1 : THM ; val z id ³½ thm : THM ;
val z simple swap ³½ thm : THM ; val z swap ³½ thm : THM ;
val z ³½ trans thm : THM ; val z dom f ↔ f thm : THM ;
val z dom f → f thm : THM ; val z dom f ³ f thm : THM ;
val z dom f ½ f thm : THM ; val z dom f ³½ f thm : THM ;
val z ∩ ↔ thm : THM ; val z ↔ ran thm : THM ;
val z → ran thm : THM ; val z ∩ → thm : THM ;
val z ∩ ½ thm : THM ; val z ³ ran thm : THM ;
val z ∩ ³ thm : THM ; val z ∩ ³½ thm : THM ;
val z → diff singleton thm : THM ; val z ³½ diff singleton thm : THM ;
val z singleton app thm : THM ; val z empty ³ thm : THM ;
val z → empty thm : THM ; val z ⊕ 7→ app thm : THM ;
val z ⊕ 7→ app thm1 : THM ; val z dom ⊕ 7→ thm : THM ;
val z ⊕ 7→ ∈ → thm : THM ;

Description These are the ML bindings of the theorems in the theory z functions1 .

9.2.8 Z Bags

SML

signature ZBags = sig

Description This provides the basic proof support for the Z library bags. It creates the theory
z bags.
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SML

signature ZLibrary = sig

Description This provides a “marker” theory, indicating the “top” of the Z library theories. It
creates the theory z library .

As a side effect, loading this structure will set the current theory to z library , the current proof
context to “z library”, and tidies the subgoal package and proof context stacks.

SML

(∗ Proof Context : z library ∗)
Description A mild complete proof context for handling the manipulation of Z language and
library expressions and predicates. Its contents are chosen to be “uncontroversial”. That is, any
effect is considered to be “almost always the correct thing”.

It consists of the merge of the proof contexts:

"z sets alg", − simplification of set contructs, and Z language
"′z rel alg", − simplification of relational contructs
"′z fun alg", − simplification of function contructs
"′z numbers" − simplification of numeric contructs

Usage Notes It requires theory z bags.

It is not intended to be mixed with HOL proof contexts or “z library ext”, which offers an
aggressive approach.

SML

(∗ Proof Context : z library ext ∗)
Description A agressive complete proof context for handling the manipulation of Z language
and library expressions and predicates. Its purpose is to strip or rewrite its input into the Z
predicate calculus.

It consists of the merge of the proof contexts:

"z fun ext", − extensional reasoning about functions (and
realtions and sets)

"′z numbers" − simplification of numeric contructs

Usage Notes It requires theory z bags.

It is not intended to be mixed with HOL proof contexts or “z library ext”, which offers an
aggressive approach.
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SML

(∗ Proof Context : z library1 ∗)
Description A mild complete proof context for handling the manipulation of Z language and
library expressions and predicates. Its contents are chosen to be “uncontroversial”. That is, any
effect is considered to be “almost always the correct thing”.

It differs from z library only in using z numbers1 .

It consists of the merge of the proof contexts:

"z sets alg", − simplification of set contructs, and Z language
"′z rel alg", − simplification of relational contructs
"′z fun alg", − simplification of function contructs
"′z numbers1" − simplification of numeric contructs

Usage Notes It requires theory z bags.

It is not intended to be mixed with HOL proof contexts or “z library ext”, which offers an
aggressive approach.

SML

(∗ Proof Context : z library1 ext ∗)
Description A agressive complete proof context for handling the manipulation of Z language
and library expressions and predicates. Its purpose is to strip or rewrite its input into the Z
predicate calculus.

It differs from z library only in using z numbers1 .

It consists of the merge of the proof contexts:

"z fun ext", − extensional reasoning about functions (and
realtions and sets)

"′z numbers1" − simplification of numeric contructs

Usage Notes It requires theory z bags.

It is not intended to be mixed with HOL proof contexts or “z library ext”, which offers an
aggressive approach.

SML

val z bag def : THM ; val z count def : THM ;
val z in def : THM ; val z ] def : THM ;
val z items def : THM ;

Description These are the definitions of the Z bag theory.
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9.2.9 Z Reals

SML

(∗ Proof Context : ′z reals ∗)
Description A component proof context for handling the basic arithmetic operations for real
numbers in Z.

Expressions and predicates treated by this proof context are constructs formed from:

+R, ∗R, −R, /R, ≤R, <R, ≥R, >R, ̂Z , =

Contents

Rewriting:

z R plus conv , z R times conv , z R subtract conv
z R abs conv , z R div conv , z R mod conv
z R eq conv , z R ≤ conv , z R less conv
z R ≥ conv , z R greater conv ,
z R plus clauses, z R minus clauses, z R ≤ clauses
z R less clauses, z R lit norm conv

Stripping theorems:

z R eq conv , z R ≤ conv , z R less conv
z R ≥ conv , z R greater conv ,
z R plus clauses, z R minus clauses, z R ≤ clauses
z R less clauses,
and all the above pushed through ¬

Stripping conclusions: as for stripping theorems.

Rewriting canonicalisation: blank.

Automatic proof procedures: z basic prove tac, z basic prove conv .

Automatic existence prover: blank.

SML

(∗ Proof Context : z R lin arith ∗)
Description This is a component proof context whose main purpose is to supply a decision
procedure for problems in linear arithmetic for the real numbers in Z.

Contents The rewriting components converts Z real arithmetic expressions into equivalent HOL
ones and the automatic proof tactic then uses the HOL linear arithmetic proof context to attempt
the proof.
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SML

val dest z R ≤ : TERM −> TERM ∗ TERM ;
val dest z R ≥ : TERM −> TERM ∗ TERM ;
val dest z R Z exp : TERM −> TERM ∗ TERM ;
val dest z R abs : TERM −> TERM ;
val dest z R frac : TERM −> TERM ∗ TERM ;
val dest z R greater : TERM −> TERM ∗ TERM ;
val dest z R less : TERM −> TERM ∗ TERM ;
val dest z R minus : TERM −> TERM ;
val dest z R over : TERM −> TERM ∗ TERM ;
val dest z R plus : TERM −> TERM ∗ TERM ;
val dest z real : TERM −> TERM ;
val dest z R subtract : TERM −> TERM ∗ TERM ;
val dest z R times : TERM −> TERM ∗ TERM ;

Description These are derived destructor functions for the Z basic arithmetic operations. An
optionally signed integer literal, signed int , is taken to be either a numeric literal or the result of
applying (∼ ) to a numeric literal. The other constructors correspond directly to the arithmetic
operations of the theory z numbers with alphabetic names assigned to give a valid ML name as
needed (greater :>, less :<, minus: ∼, plus : +, subtract : −, times : ∗).
As usual, there are also corresponding discriminator (is . . .) and constructor functions (mk . . .).

Errors

117101 ?0 is not of the form pZx ≤R yq
117102 ?0 is not of the form pZx ≥R yq
117103 ?0 is not of the form pZabsR xq
117104 ?0 is not of the form pZx /R yq
117105 ?0 is not of the form pZx >R yq
117106 ?0 is not of the form pZx <R yq
117107 ?0 is not of the form pZ∼R xq
117109 ?0 is not of the form pZx +R yq
117110 ?0 is not of the form pZx /Z yq
117111 ?0 is not of the form pZx −R yq
117112 ?0 is not of the form pZx ∗R yq
117113 ?0 is not of the form pZreal xq

SML

val is z R ≤ : TERM −> bool ;
val is z R ≥ : TERM −> bool ;
val is z R Z exp : TERM −> bool ;
val is z R abs : TERM −> bool ;
val is z R frac : TERM −> bool ;
val is z R greater : TERM −> bool ;
val is z R less : TERM −> bool ;
val is z R minus : TERM −> bool ;
val is z R over : TERM −> bool ;
val is z R plus : TERM −> bool ;
val is z real : TERM −> bool ;
val is z R subtract : TERM −> bool ;
val is z R times : TERM −> bool ;

Description These are derived discriminator functions for the Z basic arithmetic operations.
See the documentation for the destructor functions (dest z plus etc.) for more information.
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SML

val mk z R ≤ : TERM ∗ TERM −> TERM ;
val mk z R ≥ : TERM ∗ TERM −> TERM ;
val mk z R Z exp : TERM ∗ TERM −> TERM ;
val mk z R abs : TERM −> TERM ;
val mk z R frac : TERM ∗ TERM −> TERM ;
val mk z R greater : TERM ∗ TERM −> TERM ;
val mk z R less : TERM ∗ TERM −> TERM ;
val mk z R over : TERM ∗ TERM −> TERM ;
val mk z R minus : TERM −> TERM ;
val mk z R plus : TERM ∗ TERM −> TERM ;
val mk z real : TERM −> TERM ;
val mk z R subtract : TERM ∗ TERM −> TERM ;
val mk z R times : TERM ∗ TERM −> TERM ;

Description These are derived constructor functions for the Z basic arithmetic operations. See
the documentation for the destructor functions (dest z plus etc.) for more information.

Errors

117201 ?0 does not have type R

SML

val z float conv : CONV ;

Description The conversion z float conv converts a floating point literal into a normalised real
literal form.
Errors

117006 ?0 is not a Z floating point literal

SML

val z R complete thm : THM ;
val z R unbounded above thm : THM ;
val z R unbounded below thm : THM ;
val z R less antisym thm : THM ;
val z R less cases thm : THM ;
val z R less clauses : THM ;
val z R less dense thm : THM ;
val z R less irrefl thm : THM ;
val z R less thm : THM ;
val z R less trans thm : THM ;

Description These are ML bindings for the theorems that characterise the ordering relation
<R on the real numbers.
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SML

val z R eq ≤ thm : THM ;
val z R eq thm : THM ;
val z R less ≤ trans thm : THM ;
val z R less ¬ eq thm : THM ;
val z R ≤ ¬ less thm : THM ;
val z R ≤ antisym thm : THM ;
val z R ≤ cases thm : THM ;
val z R ≤ clauses : THM ;
val z R ≤ less cases thm : THM ;
val z R ≤ less trans thm : THM ;
val z R ≤ refl thm : THM ;
val z R ≤ thm : THM ;
val z R ≤ trans thm : THM ;
val z R ¬ ≤ less thm : THM ;
val z R ¬ less ≤ thm : THM ;
val z R 0 less 0 less times thm : THM ;

val z R greater thm : THM ;
val z R ≥ thm : THM ;

Description These are ML bindings for theorems that deal with the equality and ordering
relations.

SML

val z R eval conv : CONV ; val Z R EVAL C : CONV −> CONV ;

Description z R eval conv computes theorems of the form ` t1 = t2 where t1 is an expres-
sion made up from rational literals (see z R plus conv) using real addition, subtraction, multi-
plication, division, reciprocal, absolute value and unary negation. t2 will be an optionally signed
rational literal in normal form. The conversion fails if the expression cannot be evaluated (e.g.,
because it contains variables).

z R EVAL C conv is similar to R eval conv but it also applies conv to any subterm that
cannot be evaluated using the conversions for the arithmetic operations listed above. E.g.,
z R EVAL C z R Z exp conv will evaluate expressions involving the usual arithmetic opera-
tions and also exponentiation of rational literals by natural number literals.

Errors

117020 ?0 cannot be evaluated

SML

val z R lin arith prove conv : THM list −> CONV ;
val z R lin arith prove tac : THM list −> TACTIC ;

Description This conversion and tactic implement the linear arithmetic decision procedure for
real numbers. The usual interface to these is via the proof context z reals, q.v.
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SML

val z R minus clauses : THM ;
val z R minus eq thm : THM ;
val z R minus thm : THM ;
val z R plus 0 thm : THM ;
val z R plus assoc thm : THM ;
val z R plus assoc thm1 : THM ;
val z R plus clauses : THM ;
val z R plus comm thm : THM ;
val z R plus minus thm : THM ;
val z R plus mono thm : THM ;
val z R plus mono thm1 : THM ;
val z R plus mono thm2 : THM ;
val z R plus order thm : THM ;
val z R plus thm : THM ;
val z R plus unit thm : THM ;
val z R subtract thm : THM ;

Description ML bindings for theorems about addition, unary minus and subtraction for the
real numbers.

SML

val z R real NR thm : THM ;
val z R real 0 thm : THM ;
val z float thm : THM ;

Description ML bindings for theorems concerning Z integer and floating point real literals.

SML

val z R times assoc thm : THM ;
val z R times assoc thm1 : THM ;
val z R times clauses : THM ;
val z R times comm thm : THM ;
val z R times order thm : THM ;
val z R times plus distrib thm : THM ;
val z R times thm : THM ;
val z R times unit thm : THM ;
val z R over thm : THM ;
val z R over clauses : THM ;

Description ML bindings for theorems about multiplication and division of real numbers.
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SML

val z R ≤ conv : CONV ; (∗ ≤R ∗)
val z R eq conv : CONV ; (∗ = ∗)
val z R less conv : CONV ; (∗ <R ∗)
val z R minus conv : CONV ; (∗ ∼R ∗)
val z R over conv : CONV ; (∗ /R ∗)
val z R plus conv : CONV ; (∗ +R ∗)
val z R times conv : CONV ; (∗ ∗R ∗)
val z R Z exp conv : CONV ; (∗ ̂Z ∗)
val z R abs conv : CONV ; (∗ absZ ∗)

val z R greater conv : CONV ; (∗ >R ∗)
val z R ≥ conv : CONV ; (∗ ≥R ∗)
val z R subtract conv : CONV ; (∗ −R ∗)

val z R lit norm conv : CONV ;

val z R lit conv : CONV ; val z R lit conv1 : CONV ;

Description These are conversions for carrying out real arithmetic computation. The first and
second blocks of conversions deal with expressions of the form c op d, where c and d are real
literal expressions (see below) and where op is the operator given in the ML comment alongside
the conversion above. The conversions in the first block actually carry out the computation to
give a theorem c op d = e or c op d ⇔ v where e and v are a real literal expression or a truth
value as appropriate.

The conversions in the second block rewrite their argument in terms of the operators supported
by the conversions in the first block.

The conversion z R lit norm conv normalises real literal expressions, i.e., expressions of either
of the forms real i or i /Z j , where i and j are optionally signed integer literals. The conversion
puts the result in a normal form, where the sign if any is moved to the outside, where real is used
whenever possible and where if the form i /Z j has to be used, i and it j are taken to be coprime.
This conversion fails if its argument cannot be normalised or is already in the normal form.

The final two conversions z R lit conv and z R lit conv1 convert to and from Z and HOL real
literal expressions.

Errors

117001 ?0 is not a Z real fraction with integer literal operands
117002 ?0 is not an HOL real fraction with literal operands
117003 ?0 is not of the form ?1 where x and y are real literal expressions
117004 ?0 is not of the form ?1 where x is a real literal expression
117005 ?0 is not of the form x ̂Z i where x is a real literal expression and i is an integer literal
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SML

val z R Z exp def : THM ;
val z R ≥ def : THM ;
val z R ≤ def : THM ;
val z R abs def : THM ;
val z R def : THM ;
val z R dot dot def : THM ;
val z R frac def : THM ;
val z R greater def : THM ;
val z R less def : THM ;
val z R minus def : THM ;
val z R over def : THM ;
val z R plus def : THM ;
val z R real def : THM ;
val z R subtract def : THM ;
val z R times def : THM ;
val z R lb def : THM ;
val z R glb def : THM ;
val z R ub def : THM ;
val z R lub def : THM ;

Description ML bindings for the definitions in the theory of real numbers.
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⇒ THEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
⇒ thm tac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
⇒ thm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
⇒ trans rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
⇒ T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
⇒ ∧ rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
∼ <= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
∼ = # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
∼ = $ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
∼ = |− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
∼ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
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KEYWORD INDEX

if ?then !else ! 490
if ?then !else ! 490

(if ?then !else !)[X ] 489
(if ?then !else !)[X ] 489

if ?then !else ! 490
if ?then !else ! 490

% << % !% >> % 491
% << % !% >> % 491

(% << % !% >> %)[X ] 489
(% << % !% >> %)[X ] 489

(if ?then !else !)[X ] 489
(if ?then !else !)[X ] 489

′basic prove ∃ conv 341
′char 348
′combin 351
′fun ext 344
′list 348
′mmp1 349
′mmp2 349
′one 351
′pair 345
′pair1 346
′paired abstractions 342
′prop eq 293
′prop eq pair 293
′propositions 343
′sets alg 352
′sets ext 353
′sets ext1 354
′sho rw 349
′simple abstractions 342
′sum 350
′z bindings 421
′z decl 380
′z elementwise eq 503
′z fc 380
′z fun alg 509
′z lin arith 520
′z lin arith1 520
′z normal 494
′z numbers 511
′z numbers1 512
′z predicates 379
′z reals 529
′z rel alg 501
′z schemas 432
′z sets alg 495
′z sets ext lang 419
′z sets ext lib 496

′z tuples 502
′z tuples lang 420
′z ∈ fun 508
′z ∈ rel 500
′z ∈ set lang 418
′z ∈ set lib 493
′N 346
′N lit 347
( ∗ ) 462
( ∗ R ) 472
( + ) 462
( + R ) 472
( − ) 462
( − R ) 472
( .. ) 462
( ..R ) 472
( /R ) 472
( /Z ) 472
( < ) 462
( < R ) 472
( > ) 462
( > R ) 472
( div ) 462
( in )[X ] 450
( lbR ) 472
( mod ) 462
( partition )[I ,X ] 483
( ubR ) 472
( )[X ] 489
( ̂Z ) 472
( −B )[X ,Y ] 478
( ] )[X ] 450
( ◦ )[X ,Y ,Z ] 478
( 6∈ )[X ] 489
( B )[X ,Y ] 478
( ⊂ )[X ] 489
( ∩ )[X ] 489
( ª )[X ] 489
( (| |))[X ,Y ] 478
( ⊕ )[X ,Y ] 478
( ⊕
⊕ )[X ] 489

( o
9 )[X ,Y ,Z ] 478

( ≤ ) 462
( ≤R ) 472
( 6= )[X ] 489
( ≥ ) 462
( ≥R ) 472
( ∪ )[X ] 489
( −C )[X ,Y ] 478
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( ↗ l)[X ] 462
( ↗∗ l)[X ] 478
( ↗+ l)[X ] 478
( ↗∼l)[X ,Y ] 478
( a )[X ] 483
( » )[X ] 483
( 7→ )[X ,Y ] 478
( C )[X ,Y ] 478
( ( ) )[X ,Y ] 489
( ¹ )[X ] 483
(abs ) 462
(absR ) 472
(disjoint )[I ,X ] 483
(if ?then !else !)[X ] 489
(% << %

!% >> %)[X ] 489
(∼ ) 462
(∼R ) 472
(Π ?) 489
([[...]])[X ] 450

( ∗ ) 462
( ∗ ) 462

( ∗ R ) 472
( ∗ R ) 472
( + ) 462

( + ) 462
( + R ) 472
( + R ) 472
( − ) 462

( − ) 462
( − R ) 472
( − R ) 472

( .. ) 462
( .. ) 462

( ..R ) 472
( ..R ) 472

( /R ) 472
( /R ) 472

( /Z ) 472
( /Z ) 472

( < ) 462
( < ) 462

( < R ) 472
( < R ) 472
( > ) 462

( > ) 462
( > R ) 472
( > R ) 472
( div ) 462
( div ) 462

( lbR ) 472
( lbR ) 472

( mod ) 462
( mod ) 462
( ubR ) 472
( ubR ) 472
( ̂Z ) 472
( ̂Z ) 472

( ≤ ) 462
( ≤ ) 462

( ≤R ) 472
( ≤R ) 472
( ≥ ) 462
( ≥ ) 462

( ≥R ) 472
( ≥R ) 472
(abs ) 462
(abs ) 462

(absR ) 472
(absR ) 472

(∼ ) 462
(∼ ) 462

(∼R ) 472
(∼R ) 472

( partition )[I ,X ] 483
( partition )[I ,X ] 483
(disjoint )[I ,X ] 483
(disjoint )[I ,X ] 483

( ◦ )[X ,Y ,Z ] 478
( ◦ )[X ,Y ,Z ] 478
( o

9 )[X ,Y ,Z ] 478
( o

9 )[X ,Y ,Z ] 478
( −B )[X ,Y ] 478
( −B )[X ,Y ] 478

( B )[X ,Y ] 478
( B )[X ,Y ] 478

( ⊕ )[X ,Y ] 478
( ⊕ )[X ,Y ] 478

( −C )[X ,Y ] 478
( −C )[X ,Y ] 478

( 7→ )[X ,Y ] 478
( 7→ )[X ,Y ] 478
( C )[X ,Y ] 478
( C )[X ,Y ] 478

( ( ) )[X ,Y ] 489
( ( ) )[X ,Y ] 489
( in )[X ] 450
( in )[X ] 450
( )[X ] 489
( )[X ] 489

( ] )[X ] 450
( ] )[X ] 450

( 6∈ )[X ] 489
( 6∈ )[X ] 489

( ⊂ )[X ] 489
( ⊂ )[X ] 489

( ∩ )[X ] 489
( ∩ )[X ] 489

( ª )[X ] 489
( ª )[X ] 489
( ⊕
⊕ )[X ] 489

( ⊕
⊕ )[X ] 489

( 6= )[X ] 489
( 6= )[X ] 489

( ∪ )[X ] 489
( ∪ )[X ] 489
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( a )[X ] 483
( a )[X ] 483
( » )[X ] 483
( » )[X ] 483

( ¹ )[X ] 483
( ¹ )[X ] 483

∗ 463
∗ 463

∗ 463
( ∗ ) 462

∗∗ 28
∗R 473
∗ R 473

∗ R 473
( ∗R ) 472

+ 463
+ 463

+ 463
( + ) 462

+R 473
+ R 473

+ R 473
( +R ) 472

− 463
− 463

− 463
( − ) 462

−R 473
− R 473

− R 473
( −R ) 472

.. 464
.. 464

.. 464
( .. ) 462
[[ ...]] 450

([[ ...]])[X ] 450
..R 473
..R 473

..R 473
( ..R ) 472

/R 473
/R 473

/R 473
( /R ) 472

/Z 473
/Z 473

/Z 473
( /Z ) 472

z R 0 less 0 less times
thm 476

z R 0 less 0 less times
thm 532

z abs 0 less thm 471
z abs 0 less thm 523

z 0 less times thm 471
z 0 less times thm 523

z R 0 less 0 less times thm 476

z R 0 less 0 less times thm 532
fun 0rightassoc 450
fun 0rightassoc 489

z abs eq 0 thm 468
z abs eq 0 thm 516

z size 0 thm 470
z size 0 thm 523

z times eq 0 thm 466
z times eq 0 thm 516

z times less 0 thm 471
z times less 0 thm 523

z R plus 0 thm 475
z R plus 0 thm 533
z R real 0 thm 533

z ≤ ≤ 0 thm 467
z ≤ ≤ 0 thm 516

z 0 N thm 465
z 0 N thm 516

z size 1 thm 470
z size 1 thm 523

z size ≤ 1 thm 470
z size ≤ 1 thm 523

fun 10leftassoc 478
z size 2 thm 470
z size 2 thm 523

fun 20leftassoc 462
fun 20leftassoc 472
fun 25leftassoc 489
fun 30leftassoc 450
fun 30leftassoc 462
fun 30leftassoc 472
fun 30leftassoc 483
fun 30leftassoc 489
fun 40leftassoc 462
fun 40leftassoc 472
fun 40leftassoc 478
fun 40leftassoc 483
fun 40leftassoc 490
fun 45rightassoc 483
gen 5rightassoc 452
gen 5rightassoc 463
gen 5rightassoc 490
fun 50leftassoc 478
fun 50rightassoc 463
fun 50rightassoc 472
fun 60leftassoc 479
fun 60rightassoc 472
fun 65rightassoc 479
fun 70rightassoc 463
fun 70rightassoc 479
gen 70rightassoc 450
gen 70rightassoc 463
gen 70rightassoc 479
gen 70rightassoc 483
gen 70rightassoc 490

< 463
< 463

< 463
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( < ) 462
< R 473

< R 473
< R 473

( < R ) 472
=: 81
= # 132
= $ 80
= |− 132
> 463

> 463
> 463
( > ) 462

> R 473
> R 473

> R 473
( > R ) 472

if ?then !else ! 490
if ?then !else ! 490

(if ?then !else !)[X ] 489
(if ?then !else !)[X ] 489
Π ? 491
Π ? 491

(Π ?) 489
(Π ?) 489

@∗ 39
@+ 39
@− 39
@ < 39
@ <= 39
@ > 39
@ >= 39
@@ 39
@∼ 39
a 223
abandon reader writer 59

declare type abbrev 124
expand type abbrev 124

get type abbrev 126
is type abbrev 127

undeclare type abbrev 128
get type abbrevs 127

get undeclared type abbrevs 127
LSType Abbrevs 75

LSUndeclaredType Abbrevs 75
z R unbounded above thm 474
z R unbounded above thm 531

abs 464
abs 464
z abs 0 less thm 471
z abs 0 less thm 523
z abs conv 518

z R abs conv 534
z R abs def 535

dest z abs 513
dest z R abs 530

z abs eq 0 thm 468
z abs eq 0 thm 516

is z abs 513
is z R abs 530

z abs minus thm 468
z abs minus thm 516

z N abs minus thm 468
z N abs minus thm 516

mk z abs 514
mk z R abs 531

z abs neg thm 471
z abs neg thm 523
z abs plus thm 468
z abs plus thm 516
z abs pos thm 471
z abs pos thm 523
z abs thm 468
z abs thm 516
z abs times thm 468
z abs times thm 516
z abs ≤ times thm 471
z abs ≤ times thm 523
z abs N thm 468
z abs N thm 516

′paired abstractions 342
′simple abstractions 342

absR 473
absR 473

accept tac 231
current ad cs ∃ conv 330

pp′set eval ad cs ∃ convs 330
current ad mmp rule 317
current ad nd net 330

pp′set eval ad nd net 330
current ad pr conv 317
current ad pr tac 317
current ad rw canon 329

pp′set eval ad rw canon 329
current ad rw eqm rule 317
current ad rw net 328

pp′set eval ad rw net 328
current ad sc conv 329

pp′set eval ad sc conv 329
current ad st conv 329

pp′set eval ad st conv 329
current ad ∃ cd thms 330

pp′set eval ad ∃ cd thms 330
current ad ∃ vs thms 331

pp′set eval ad ∃ vs thms 331
add error code 59
add error codes 59
add general reader 59
add named reader 59
add new symbols 60
add rw thms 338
add sc thms 338
add specific reader 59
add st thms 339
add ∃ cd thms 339
advance 58
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′sets alg 352
′z fun alg 509
′z rel alg 501
′z sets alg 495
z sets alg 504

declare alias 122
get alias 125
get alias info 125

resolve alias 127
undeclare alias 128

get aliases 124
get undeclared aliases 127

LS Aliases 75
LSUndeclared Aliases 75

all 20
all asm ante tac 231
ALL ASM FC T 246
ALL ASM FC T1 247
all asm fc tac 245
ALL ASM

FORWARD
CHAIN T 246

ALL ASM
FORWARD
CHAIN T1 247

all asm forward
chain tac 245

delete all conjectures 150
is all decimal 31

all different 20
all distinct 20
ALL FC T 246
ALL FC T1 247
all fc tac 245
ALL FORWARD

CHAIN T 246
ALL FORWARD

CHAIN T1 247
all forward chain tac 245
ALL SIMPLE ∀ C 153
all simple ∀ elim 154
ALL SIMPLE ∃ C 154
all simple β conv 154
all simple β rule 154
all submatch tt 152
all substring tt 152
all subterm tt 152

T All 151
ALL VAR ELIM

ASM T 232
ALL VAR ELIM

ASM T1 232
all var elim asm tac 232
all var elim asm

tac1 232
is all z type 382

all z ∀ intro 381
ALL ∧ C 155

ALL ∨ C 155
all ⇒ intro 155
all ∀ arb elim 155
all ∀ elim 155
all ∀ intro 156
all ∀ uncurry conv 156
all ∃ uncurry conv 156
all β conv 157
all β rule 157
all β tac 233
ALL ε T 233
all ε tac 233

is theory ancestor 142
TS Ancestor 119

get ancestors 138
save and exit 51
fun and 28
HT And 70

skip and look at next 58
AND OR C 157

save and quit 51
pp′Types AndTerms 79

Types AndTerms 79
ZTypes AndTerms 359

ANF C 297
anf conv 297

z anf conv 520
ante tac 233

all asm ante tac 231
asm ante tac 234

list asm ante tac 254
z R less antisym thm 474
z R less antisym thm 531

z R ≤ antisym thm 474
z R ≤ antisym thm 532

z ≤ antisym thm 467
z ≤ antisym thm 516

any 20
get HOL any 62
get ML any 62

any submatch tt 152
any substring tt 152
any subterm tt 152

T Any 151
term any 113
type any 115

app 20
App 79
app arg rule 158
APP C 158

z fun app clauses 454
z fun app clauses 510

if app conv 170
z app conv 421

z seqd app conv 524
D App 80

dest app 81
dest z app 363
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z app eq tac 422
z ∈ seq app eq thm 488
z ∈ seq app eq thm 525

z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525

z → ∈ rel ⇔ app eq thm 453
z → ∈ rel ⇔ app eq thm 510

z → app eq ⇔ ∈ rel thm 453
z → app eq ⇔ ∈ rel thm 510

app fun rule 158
app if conv 158

is app 90
is z app 363

list mk app 95
mk app 99

mk z app 363
KIMk AppRule 129

mk app rule 176
strip app 109

z app thm 460
z singleton app thm 458
z singleton app thm 526

z ∈ app thm 460
z ⊕ 7→ app thm 455
z ⊕ 7→ app thm 526

z → app thm 453
z → app thm 510

z ⊕ 7→ app thm1 455
z ⊕ 7→ app thm1 526

time app 54
Z App 360

z → app ∈ rel thm 453
z → app ∈ rel thm 510

z app ∈ thm 460
z app λ rule 422

open append 41
apply tactic 223

HT AqTm 70
HT AqTy 70

all ∀ arb elim 155
∀ arb elim 210

area of 16
app arg rule 158
BdzF Argc 359
′z lin arith 520

z arith def 518
z R lin arith prove conv 532
z R lin arith prove tac 532

z lin arith 519
z R lin arith 529
′z lin arith1 520
z lin arith1 519

Z ArithmeticTools 519
get type arity 141

array 36
array 38

Dynamic Array 38
DYNAMIC ARRAY 38

PP Array 42
Sparse Array 36

SPARSE ARRAY 36
save as 51
conv ascii 12

ask at terminal 60
asm ante tac 234

all asm ante tac 231
list asm ante tac 254

LIST SWAP ASM CONCL T 256
LIST SWAP NTH ASM CONCL T 256

SWAP ASM CONCL T 276
SWAP NTH ASM CONCL T 276

list swap asm concl tac 256
list swap nth asm concl tac 256

swap asm concl tac 275
swap nth asm concl tac 275

strip asm conv 273
asm elim 159
ASM FC T 246

ALL ASM FC T 246
ASM FC T1 247

ALL ASM FC T1 247
asm fc tac 245

all asm fc tac 245
ASM FORWARD

CHAIN T 246
ALL ASM FORWARD

CHAIN T 246
ASM FORWARD

CHAIN T1 247
ALL ASM FORWARD

CHAIN T1 247
asm forward chain

tac 245
all asm forward chain

tac 245
get asm 223

asm inst term rule 159
asm inst type rule 159
asm intro 159
ASM PROP EQ T 294
asm prove tac 316
asm prove ∃ tac 316
asm rewrite rule 184

once asm rewrite rule 184
pure asm rewrite rule 184

pure once asm rewrite rule 184
asm rewrite tac 263

once asm rewrite tac 263
pure asm rewrite tac 263

pure once asm rewrite tac 263
asm rewrite thm tac 263

once asm rewrite thm tac 263
pure asm rewrite thm tac 263

pure once asm rewrite thm tac 263
asm rule 160

KI AsmRule 129
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prove asm rule 180
∀ asm rule 210
∃ asm rule 213

ALL VAR ELIM ASM T 232
DROP ASM T 240

DROP NTH ASM T 241
GET ASM T 249

GET NTH ASM T 250
LIST DROP ASM T 254

LIST DROP NTH ASM T 254
LIST GET ASM T 255

LIST GET NTH ASM T 255
LIST SPEC ASM T 271

LIST SPEC NTH ASM T 271
POP ASM T 258

SPEC ASM T 271
SPEC NTH ASM T 271

TOP ASM T 280
VAR ELIM ASM T 281

VAR ELIM NTH ASM T 281
ALL VAR ELIM ASM T1 232

asm tac 234
all var elim asm tac 232

check asm tac 238
eq sym asm tac 242

eq sym nth asm tac 242
list spec asm tac 270

list spec nth asm tac 270
spec asm tac 270

spec nth asm tac 270
step strip asm tac 272

strip asm tac 273
var elim asm tac 281

var elim nth asm tac 281
z spec asm tac 399

z spec nth asm tac 399
all var elim asm tac1 232

asms 132
DROP ASMS T 240

DROP FILTER ASMS T 241
GET ASMS T 249

GET FILTER ASMS T 250
concl in asms tac 238

ASSOC 69
Left Assoc 69

Right Assoc 69
z plus assoc thm 464
z plus assoc thm 516

z times assoc thm 466
z times assoc thm 516

z R plus assoc thm 475
z R plus assoc thm 533

z R times assoc thm 476
z R times assoc thm 533

z a assoc thm 487
z a assoc thm 525

z plus assoc thm1 465
z plus assoc thm1 516

z times assoc thm1 466
z times assoc thm1 516

z R plus assoc thm1 475
z R plus assoc thm1 533

z R times assoc thm1 476
z R times assoc thm1 533

z a assoc thm1 487
z a assoc thm1 525

pp print assumptions 73
ASYM C 297

GEN ASYM C 297
look at next 58

skip and look at next 58
ask at terminal 60

Delete Axiom 131
delete axiom 134

get axiom dict 138
get axiom 138
New Axiom 131
new axiom 143
TT Axiom 151
get axioms 138
LS Axioms 75

back chain tac 235
back chain thm tac 236

push back 58
bad proof 236
bag 451

bag 451
z bag def 528

bagX 450
Z Bags 526

LS Banner 75
pp′set banner 49
print banner 50

system banner 49
user banner 49

basic dest z term 361
BasicError 16
basic hol 349
basic hol1 349
BasicIO 41
basic prove conv 356

z basic prove conv 385
basic prove tac 357

z basic prove tac 386
′ basic prove ∃ conv 341

basic res extract 307
basic res next to

process 308
basic res post 308
basic res pre 308
basic res resolver 308
basic res rule 309
basic res subsumption 309
basic res tac 312
basic res tac1 310
basic res tac2 310

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



576 KEYWORD INDEX

basic res tac3 311
basic res tac4 311
BASIC RES TYPE 305
BASIC

RESOLUTION T 306
BASIC

RESOLUTION T1 307
basic resolve rule 307
bc tac 235
bc thm tac 236
BDZ 359
BdzFArgc 359
BdzFCode 359
BdzFCompc 359
BdzFail 359
BdzNotZ 359
BdzOk 359
before kernel state

change 133
z R unbounded below thm 474
z R unbounded below thm 531

bin bool op 81
dest bin op 82

is bin op 91
list mk bin op 96

mk bin op 100
strip bin op 110

Binder 69
BINDER C 160

SIMPLE BINDER C 185
declare binder 122

dest binder 81
dest simple binder 85

HT Binder 70
is binder 91

is simple binder 93
list mk binder 96

mk binder 99
mk simple binder 103

strip binder 110
strip simple binder 110

get binders 125
dest z binding 364

z binding eq conv 423
z binding eq conv1 423
z binding eq conv2 423
z binding eq conv3 506

is z binding 364
mk z binding 364

Z Binding 360
z bindingd elim conv 422
z bindingd intro conv 423
′z bindings 421
HT Blob 70

BOOL 81
bin bool op 81
get box braces 62

get box braces 62

get curly braces 62
get round braces 62

z ′underlining brackets def 498
z underlining brackets thm 492
z underlining brackets thm 499

undo buffer length 222
ALL SIMPLE ∀ C 153
ALL SIMPLE ∃ C 154

ALL ∧ C 155
ALL ∨ C 155

AND OR C 157
ANF C 297
APP C 158

ASYM C 297
BINDER C 160

CHANGED C 160
COND C 161

c contr rule 162
EVERY C 165

EXTEND PC C 319
EXTEND PCS C 319

FIRST C 167
GEN ASYM C 297

LEFT C 173
MAP C 175

MERGE PCS C 325
ONCE MAP C 176

ONCE MAP
WARN C 177

ORELSE C 177
PC C 325

RAND C 181
RANDS C 181
RATOR C 181

REPEAT C 182
REPEAT MAP C 182

REWRITE MAP C 183
RIGHT C 184

SIMPLE BINDER C 185
SIMPLE λ C 193

SUB C 197
THEN C 198

THEN TRY C 199
TOP MAP C 199

TRY C 199
Z DECL C 387

Z DECL INTRO C 387
Z LEFT C 424
Z RAND C 424

Z RANDS C 424
Z RIGHT C 424

Z ∈ ELIM C 427
Z R EVAL C 532

∈ C 431
λ C 219

EXTEND PC C1 319
EXTEND PCS C1 319
MERGE PCS C1 325
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PC C1 325
REPEAT C1 182

SUB C1 197
clear

compactification cache 130
get compactification cache 130
set compactification cache 130

ZPredicate Calculus 378
ZSchema Calculus 432
EVERY CAN 165

FC CAN 167
FC ⇔ CAN 169
FIRST CAN 166

FORWARD CHAIN CAN 167
FORWARD

CHAIN ⇔ CAN 169
can input 41

ORELSE CAN 177
REPEAT CAN 182

REWRITE CAN 182
THEN CAN 198

THEN LIST CAN 198
∨ cancel rule 204

CANON 153
current ad rw canon 329

f rewrite canon 203
fail canon 166

fail with canon 166
fc canon 168

fc ⇔ canon 170
forward chain canon 168

forward chain ⇔ canon 170
id canon 170

initial rw canon 172
pair rw canon 258

pp′set eval ad rw canon 329
simple ¬ rewrite canon 203
simple ∀ rewrite canon 203

z para pred canon 395
z ¬ rewrite canon 402
z ⇒ rewrite canon 403
z ∀ rewrite canon 409
⇔ t rewrite canon 203
∧ rewrite canon 203
¬ rewrite canon 287
∀ rewrite canon 287

fc canon1 168
forward chain canon1 168

get rw canons 337
set rw canons 337

CASES T 237
CASES T2 237
cases tac 237

z less cases thm 469
z less cases thm 523
z seq cases thm 487
z seq cases thm 525

z R less cases thm 474

z R less cases thm 531
z R ≤ cases thm 474
z R ≤ cases thm 532

z R ≤ less cases thm 474
z R ≤ less cases thm 532

z ≤ cases thm 467
z ≤ cases thm 516
z N cases thm 465
z N cases thm 516
z Z cases thm 465
z Z cases thm 516
z Z cases thm1 466
z Z cases thm1 516

add ∃ cd thms 339
current ad ∃ cd thms 330

get ∃ cd thms 339
pp′set eval ad ∃ cd thms 330

set ∃ cd thms 339
FORWARD CHAIN CAN 167

forward chain canon 168
forward chain canon1 168
forward chain rule 169

ALL ASM
FORWARD CHAIN T 246

ALL FORWARD CHAIN T 246
ASM FORWARD CHAIN T 246

FORWARD CHAIN T 246
ALL ASM
FORWARD CHAIN T1 247

ALL FORWARD CHAIN T1 247
ASM FORWARD CHAIN T1 247

FORWARD CHAIN T1 247
all asm forward chain tac 245

all forward chain tac 245
asm forward chain tac 245

back chain tac 235
forward chain tac 245

back chain thm tac 236
FORWARD CHAIN ⇔ CAN 169

forward chain ⇔ canon 170
before kernel state change 133

pp′ change error message 19
KERNEL STATE CHANGE 131

on kernel state change 146
CHANGED C 160
CHANGED T 237
Char 70
CHAR 81

′ char 348
char conv 160

KI CharConv 129
D Char 80

dest char 82
find char 61
HT Char 70
is char 91

is special char 64
mk char 100
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SymUnknown Char 57
Sym Character 57

CharacterUtilities 31
get use extended chars flag 63

use extended chars 56
check asm tac 238
check is z 381
check is z conv result 381
check is z goal 381

set check is z 381
CHECK IS Z T 381
check is z term 381
check is z thm 381
CHECKPOINT 132
checkpoint 132

get children 139
LS Children 75

NAME CLASS 56
z dom clauses 481

z dot dot clauses 469
z dot dot clauses 523
z fun app clauses 454
z fun app clauses 510
z fun dom clauses 454
z fun dom clauses 510
z fun ran clauses 454
z fun ran clauses 510

z fun ∈ clauses 454
z fun ∈ clauses 510

z id clauses 481
z less clauses 467
z less clauses 516

z minus clauses 465
z minus clauses 516

z plus clauses 466
z plus clauses 516
z ran clauses 481

z reflex closure clauses 482
z rel image clauses 482

z rel inv clauses 482
z seqd a 〈〉 clauses 488
z seqd a 〈〉 clauses 525

z set dif clauses 492
z set dif clauses 499

z sets ext clauses 492
z sets ext clauses 499

z times clauses 466
z times clauses 516

z trans closure clauses 482
z ⊆ clauses 492
z ⊆ clauses 499
z −B clauses 482
z ◦ clauses 481

z ³½ clauses 454
z ³½ clauses 510
z B clauses 481
z ⊂ clauses 492
z ⊂ clauses 499

z ∩ clauses 492
z ∩ clauses 499
z ª clauses 492
z ª clauses 499
z

⋂
clauses 492

z
⋂

clauses 499
z ↔ clauses 481
z ⊕ clauses 482
z → clauses 454
z → clauses 510

z R less clauses 476
z R less clauses 531

z R minus clauses 475
z R minus clauses 533

z R over clauses 477
z R over clauses 533
z R plus clauses 475
z R plus clauses 533

z R times clauses 477
z R times clauses 533

z R ≤ clauses 476
z R ≤ clauses 532

z × clauses 492
z × clauses 499
z o

9 clauses 481
z ≤ clauses 467
z ≤ clauses 516
z ∪ clauses 492
z ∪ clauses 499

z 7³ clauses 454
z 7³ clauses 510
z

⋃
clauses 492

z
⋃

clauses 499
z 7→ clauses 454
z 7→ clauses 510
z ½ clauses 454
z ½ clauses 510
z −C clauses 482
z ³ clauses 454
z ³ clauses 510
z P clauses 492
z P clauses 499

z P1 clauses 492
z P1 clauses 499
z C clauses 481

z 7½ clauses 454
z 7½ clauses 510

clear compactification
cache 130

close in 41
close out 41

z reflex closure clauses 482
z trans closure clauses 482

z reflex trans closure thm 481
z trans closure thm 481

cnf conv 298
add error code 59

BdzF Code 359
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add error codes 59
HT Colon 70

′ combin 351
Combinators 30
combine 20

z plus comm thm 464
z plus comm thm 516

z times comm thm 466
z times comm thm 516

z R plus comm thm 475
z R plus comm thm 533

z R times comm thm 476
z R times comm thm 533

comment 52
skip comment 65

commit pc 316
DSet Comp 80

dest set comp 85
is set comp 92

mk set comp 103
compact term 133
compact thm 133
compact type 133

clear compactification cache 130
get compactification cache 130
set compactification cache 130

compactification mask 130
BdzF Compc 359
z R complete thm 475
z R complete thm 531

concl 133
strip concl conv 273

concl in asms tac 238
LIST SWAP ASM CONCL T 256

LIST SWAP NTH
ASM CONCL T 256

STRIP CONCL T 274
SWAP ASM CONCL T 276

SWAP NTH ASM CONCL T 276
list swap asm concl tac 256

list swap nth asm concl tac 256
strip concl tac 274

swap asm concl tac 275
swap nth asm concl tac 275

COND C 161
COND T 238
cond thm 161

delete conjecture 150
get conjecture 150

is proved conjecture 149
new conjecture 150

delete all conjectures 150
get conjectures 150

get proved conjectures 149
get unproved conjectures 149

z push consistency goal 397
z Z consistent 448
Z z consistent 448

Const 79
D Const 80

Delete Const 131
delete const 134

dest const 82
get const info 125
is const 91

key dest const 95
key mk const 95

get const keys 139
declare const language 122

get const language 125
mk const 100
New Const 131
new const 143
get const theory 139
get const type 139
get consts 139
LS Consts 75

term consts 113
contains 20

Proof Context 315
subgoal package ti context 222

Proof Contexts1 341
contr rule 161

c contr rule 162
CONTR T 239
contr tac 239

i contr tac 253
get int control 46

get string control 46
new int control 46

new string control 46
reset int control 47

reset string control 47
set int control 47

set string control 47
pending reset control state 47

System Control 46
get controls 46

get int controls 46
get string controls 46

reset controls 47
reset int controls 47

reset string controls 47
set controls 47

set int controls 47
set string controls 47

CONV 119
′basic prove ∃ conv 341

all simple β conv 154
all ∀ uncurry conv 156
all ∃ uncurry conv 156

all β conv 157
anf conv 297

app if conv 158
conv ascii 12

basic prove conv 356
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char conv 160
cnf conv 298

current ad cs ∃ conv 330
current ad pr conv 317
current ad sc conv 329
current ad st conv 329

dnf conv 299
eq match conv 163

eq sym conv 164
eqn cxt conv 318

conv extended 12
fail conv 166

fail with conv 166
get pr conv 336

id conv 170
if app conv 170
KIChar Conv 129
KIPlus Conv 129
KIRefl Conv 129

KIString Conv 129
KISuc Conv 129

let conv 173
once rewrite conv 183

pair eq conv 294
plus conv 178
poly conv 301

pp′set eval ad sc conv 329
pp′set eval ad st conv 329

prim rewrite conv 179
prim suc conv 180

prove conv 331
prove ∃ conv 332

pure once rewrite conv 183
pure rewrite conv 183

refl conv 181
check is z conv result 381

rewrite conv 183
conv rule 161

set pr conv 336
simple eq match conv 185

simple ho eq match conv 186
simple ¬ in conv 265
simple ∀ ∃ conv 189
simple ∃ ∀ conv 190
simple ∃ ε conv 190
simple ∃1 conv 268
simple α conv 191
simple β conv 192

simple β η conv 192
simple β η norm conv 192

sort conv 302
string conv 194

strip asm conv 273
strip concl conv 273

subst conv 195
suc conv 198

conv tac 239
taut conv 277

CONV THEN 240
z abs conv 518
z anf conv 520
z app conv 421

z basic prove conv 385
z binding eq conv 423

z bindingd elim conv 422
z bindingd intro conv 423

z dec pred conv 389
z dec renames conv 433

z decl pred conv 388
z decor s conv 433

z div conv 518
z dot dot conv 523
z fc prove conv 389

z float conv 531
z greater less conv 518

z h schema conv 434
z h schema pred conv 434

z hides conv 434
z less conv 518
z let conv 424

z mod conv 518
z norm h schema conv 435

z para pred conv 395
z plus conv 518

z pred dec conv 396
z pred decl conv 396

z pres conv 435
z renames conv 436

z schema pred conv 436
z schema pred intro conv 436

z sel s conv 425
z sel t conv 506

z sel t intro conv 425
z sel t lang conv 425
z seqd app conv 524
z seqd eq conv 524

z seta false conv 497
z setd ⊆ conv 398

z setd ∈ P conv 425
z sets ext conv 426

z simple dot dot conv 515
z size dot dot conv 525

z size seqd conv 524
z string conv 426

z subtract minus conv 518
z times conv 518

z tuple eq conv 506
z tuple intro conv 507

z tuple lang eq conv 427
z tuple lang intro conv 427

z ⊆ conv 497
z ∆s conv 437

z ∈ decor s conv 433
z ∈ dot dot conv 515

z ∈ h schema conv 438
z ∈ hides conv 434
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z ∈ pres conv 435
z ∈ renames conv 436

z ∈ seta conv 428
z ∈ setd conv 400

z ∈ string conv 426
z ∈ u conv 401

z ∈ ∆s conv 437
z ∈ Ξ s conv 439
z ∈ ⇔s conv 439
z ∈ 〈〉 conv 429
z ∈ ∧s conv 440
z ∈ ∨s conv 440
z ∈ ¬s conv 441
z ∈ ⇒s conv 441
z ∈ ∀s conv 442

z ∈ ∃1 s conv 442
z ∈ ∃s conv 443
z ∈ × conv 428
z ∈ o

9s conv 443
z ∈ λ conv 430
z ∈ N conv 518
z ∈ P conv 429
z ∈ ¹s conv 445

z Ξ s conv 439
z ⇔s conv 439
z 〈〉 conv 429

z R abs conv 534
z R eq conv 534

z R eval conv 532
z R greater conv 534

z R less conv 534
z R lin arith prove conv 532

z R lit conv 534
z R lit norm conv 534

z R minus conv 534
z R over conv 534
z R plus conv 534

z R subtract conv 534
z R times conv 534

z R ≤ conv 534
z R ≥ conv 534

z R Z exp conv 534
z ∧s conv 440
z ∨s conv 440

z ¬ gen pred conv 402
z ¬ in conv 402
z ¬ ∀ conv 403
z ¬ ∃ conv 403
z ¬s conv 441
z ⇒s conv 441

z ∀ elim conv 405
z ∀ intro conv 407
z ∀ inv conv 408

z ∀s conv 442
z ∃ elim conv 412
z ∃ intro conv 412
z ∃ inv conv 413

z ∃1 conv 415

z ∃1 intro conv 415
z ∃1 s conv 442
z ∃s conv 443
z × conv 430
z o

9s conv 443
z ≤ conv 518

z ≥ ≤ conv 518
z β conv 430
z θ conv 444

z θ eq conv 444
z θ ∈ schema conv 444

z θ ∈ schema intro conv 436
z λ conv 430

z N plus conv 518
z N times conv 518

z ¹s conv 445
z Z conv 521

z Z eq conv 518
¬ in conv 285

¬ simple ∀ conv 206
¬ simple ∃ conv 206

¬ ¬ conv 206
¬ ∀ conv 207
¬ ∃ conv 207

∀ reorder conv 212
∀ uncurry conv 212
∃ reorder conv 214
∃ uncurry conv 214

∃ ε conv 215
∃1 conv 215
α conv 216

α to z conv 416
β conv 217
η conv 218

λ pair conv 219
λ varstruct conv 220

Z z conv 521
eq match conv1 162

get pr conv1 336
simple eq match conv1 186

simple ho eq match conv1 187
simple ∃ ∀ conv1 190

z binding eq conv1 423
z let conv1 424

z schema pred conv1 398
z tuple eq conv1 507

z ∈ h schema conv1 438
z ∈ seta conv1 428
z ∈ setd conv1 428
z R lit conv1 534

z ∀ elim conv1 404
z ∀ intro conv1 405
z ∃ elim conv1 410
z ∃ intro conv1 411

z θ conv1 444
z binding eq conv2 423

z ∀ elim conv2 405
z ∃ elim conv2 411
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z binding eq conv3 506
get cs ∃ convs 335

pp′set eval ad cs ∃ convs 330
set cs ∃ convs 335

count 450
z count def 528

counts 53
count [X ] 450

z cov induction tac 514
z cov induction thm 468
z cov induction thm 516

current ad cs ∃ conv 330
get cs ∃ convs 335

pp′set eval ad cs ∃ convs 330
set cs ∃ convs 335

cthm eqn cxt 161
Ctype 79

dest ctype 82
is ctype 91

key dest ctype 95
key mk ctype 95

mk ctype 100
cup 20

list cup 24
get curly braces 62

current ad cs ∃ conv 330
current ad mmp rule 317
current ad nd net 330
current ad pr conv 317
current ad pr tac 317
current ad rw canon 329
current ad rw eqm

rule 317
current ad rw net 328
current ad sc conv 329
current ad st conv 329
current ad ∃ cd thms 330
current ad ∃ vs thms 331

print current goal 225
top current label 228
get current language 125
set current language 128
get current pc 322
get current terminators 125
get current theory name 139
get current theory status 139

curry 28
eqn cxt conv 318

cthm eqn cxt 161
EQN CXT 315

get rw eqn cxt 338
get sc eqn cxt 338
get st eqn cxt 339

get u simp eqn cxt 383
set rw eqn cxt 338
set sc eqn cxt 338
set st eqn cxt 339

set u simp eqn cxt 383

simple ho thm eqn cxt 340
theory u simp eqn cxt 383

thm eqn cxt 341
u simp eqn cxt 384

z plus cyclic group thm 465
z plus cyclic group thm 516

DApp 80
DChar 80
DConst 80
DEmptyList 80
DEnumSet 80
DEq 80
DFloat 80
DIf 80
DLet 80
DList 80
DPair 80
DSetComp 80
DString 80
DVar 80

USER DATA 121
pp′ database info 48

pp′reset database info 49
pp′set database info 49

ICL′ DATABASE INFO
TYPE 48

pending reset pc database 328
pp make database 9
get user datum 142
SetUser Datum 131

set user datum 147
USER DATUM 119
RES DB TYPE 305

z pred dec conv 396
dest z dec 365

dest z schema dec 368
is z dec 365

is z schema dec 368
mk z dec 365

mk z schema dec 368
z dec pred conv 389
z dec renames conv 433
Z Dec 360

ZSchema Dec 360
is all decimal 31

′z decl 380
Z DECL C 387

z pred decl conv 396
dest z decl 364

Z DECL INTRO C 387
is z decl 364

mk z decl 364
z decl pred conv 388
Z Decl 360

declare alias 122
declare binder 122
declare const

language 122
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declare infix 123
declare left infix 123
declare nonfix 123
declare postfix 123
declare prefix 124
declare right infix 123
declare terminator 124
declare type abbrev 124

z decor s conv 433
z ∈ decor s conv 433

dest z decor s 364
is z decor s 364

mk z decor s 364
Z Decor s 360

z a def thm 486
z a def thm 525

z arith def 518
z bag def 528

z count def 528
z disjoint def 522

z dom def 507
z dot dot def 518

z first def 498
z front def 522
z hash def 518
z head def 522

z id def 507
z in def 528

z inequality def 518
z iseq def 522

z items def 528
z iter def 518
z last def 522
z max def 518
z min def 518

z partition def 522
z ran def 507

z rel image def 507
z rel inv def 507

z rev def 522
z rtc def 507

z second def 498
z seq def 522

z seq1 def 522
z setdif def 498

z squash def 522
z succ def 518
z tail def 522
z tc def 507
z −B def 507
z ] def 528
z ◦ def 507

z a/ def 522
z 6∈ def 498

z ³½ def 509
z B def 507
z ∅ def 498

z 7 7½ def 518
z 7 7→ def 518
z ⊂ def 498
z ∩ def 498
z ª def 498
z

⋂
def 498

z ↔ def 498
z ⊕ def 507
z → def 498
z R def 535

z R abs def 535
z R dot dot def 535

z R frac def 535
z R glb def 535

z R greater def 535
z R lb def 535

z R less def 535
z R lub def 535

z R minus def 535
z R over def 535
z R plus def 535
z R real def 535

z R subtract def 535
z R times def 535

z R ub def 535
z R ≤ def 535
z R ≥ def 535

z R Z exp def 535
z ⊕

⊕ def 498
z o

9 def 507
z 6= def 498
z ∪ def 498

z 7³ def 509
z

⋃
def 498

z 7→ def 509
z ½ def 509
z −C def 507
z F def 518

z F1 def 518
z a def 522
z » def 522

z 7→ def 507
z N def 518

z N1 def 518
z ³ def 509
z P1 def 498
z C def 507
z ¹ def 522
z Z def 518
z Z def 521

z 7½ def 509
z ′guillemets def 498

z ′if def 498
z ′int def 463
z ′int def 518

z ′underlining
brackets def 498

z ′Π def 498
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Z z def 521
restore defaults 128

get defn dict 140
get defn 140

NewType Defn 131
new type defn 145

z defn simp rule 424
SimpleNew Defn 131

simple new defn 147
TT Defn 151
get defns 140
LS Defns 75

delete all conjectures 150
DeleteAxiom 131
delete axiom 134
delete conjecture 150
DeleteConst 131
delete const 134

e delete 33
e key delete 33

oe delete 40
oe key delete 40

delete pc 318
delete pc fields 318

s delete 32
DeleteTheory 131
delete theory 135

force delete theory 322
DeleteThm 131
delete thm 135
delete to level 135
DeleteType 131
delete type 136

TS Deleted 119
z R less dense thm 474
z R less dense thm 531

pp format depth 73
pp top level depth 73

DerivedRules1 153
DerivedRules2 153

get descendants 140
dest app 81
dest bin op 82
dest binder 81
dest char 82
dest const 82

key dest const 95
dest ctype 82

key dest ctype 95
dest dollar quoted

string 363
dest empty list 82
dest enum set 82
dest eq 83
dest f 83
dest float 83
dest if 83
dest let 84

dest list 84
dest mon op 84
dest multi ¬ 84
dest pair 84
dest set comp 85
dest simple binder 85
DEST SIMPLE

TERM 79
dest simple term 85
DEST SIMPLE

TYPE 79
dest simple type 85
dest simple ∀ 85
dest simple ∃ 86
dest simple ∃1 85
dest simple λ 86
dest string 86
dest t 86
DEST TERM 80
dest term 86
dest thm 136
dest u 363
dest var 87
dest vartype 87
dest z abs 513
dest z app 363
dest z binding 364
dest z dec 365
dest z decl 364
dest z decor s 364
dest z div 513
dest z eq 365
dest z float 365
dest z given type 366
dest z greater 513
dest z gvar 366
dest z h schema 366
dest z hides 366
dest z if 496
dest z int 366
dest z less 513
dest z let 367
dest z lvar 367
dest z minus 513
dest z mod 513
dest z name 361
dest z name1 361
dest z name2 361
dest z plus 513
dest z power type 367
dest z pres 367
dest z real 530
dest z renames 368
dest z schema dec 368
dest z schema pred 368
dest z schema type 368
dest z sel s 369
dest z sel t 369
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dest z seta 369
dest z setd 369
dest z signed int 513
dest z string 370
dest z subtract 513
dest z term 362

basic dest z term 361
dest z term1 382
dest z times 513
dest z tuple 370
dest z tuple type 370
dest z type 362
dest z var type 370
dest z ⊆ 497
dest z ∆s 371
dest z ∈ 371
dest z Ξ s 371
dest z ⇔ 372
dest z ⇔s 371
dest z 〈〉 372
dest z R abs 530
dest z R frac 530
dest z R greater 530
dest z R less 530
dest z R minus 530
dest z R over 530
dest z R plus 530
dest z R subtract 530
dest z R times 530
dest z R ≤ 530
dest z R ≥ 530
dest z R Z exp 530
dest z ∧ 372
dest z ∧s 372
dest z ∨ 373
dest z ∨s 373
dest z ¬ 373
dest z ¬s 373
dest z ⇒ 374
dest z ⇒s 373
dest z ∀ 374
dest z ∀s 374
dest z ∃ 375
dest z ∃1 375
dest z ∃1 s 374
dest z ∃s 375
dest z × 375
dest z o

9s 376
dest z ≤ 513
dest z ≥ 513
dest z θ 376
dest z λ 376
dest z µ 376
dest z P 377
dest z ¹s 377
dest ∅ 87
dest ⇔ 87
dest → type 87

dest ∧ 87
dest ∨ 88
dest ¬ 88
dest ⇒ 88
dest ∀ 88
dest ∃ 89
dest ∃1 88
dest × type 89
dest ε 89
dest λ 89
dest N 89
DF 80
diag line 60

raw diag line 67
diag string 60

list diag string 64
list raw diag string 67

raw diag string 68
kernel interface diagnostics 142

RW diagnostics 56
E DICT 33

e dict of oe dict 40
get axiom dict 138

get defn dict 140
get thm dict 141
initial e dict 34

initial oe dict 40
initial s dict 32

OE DICT 40
e dict of oe dict 40
S DICT 19

Efficient Dictionary 33
Simple Dictionary 32
z set dif clauses 492
z set dif clauses 499
z set dif thm 491
z set dif thm 499

diff 21
z ³½ diff singleton thm 458
z ³½ diff singleton thm 526
z → diff singleton thm 457
z → diff singleton thm 526
term diff 113

z dot dot diff thm 469
z dot dot diff thm 523

z size diff thm 470
z size diff thm 523

z F diff thm 470
z F diff thm 523
all different 20

discard tac 240
disch rule 162
disjoint 484

disjoint 484
z disjoint def 522

all distinct 20
z times plus distrib thm 466
z times plus distrib thm 516
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z R times plus distrib thm 476
z R times plus distrib thm 533

div 464
div 464

div 464
( div ) 462
z div conv 518

dest z div 513
is z div 513

mk z div 514
z div mod unique thm 468
z div mod unique thm 516
z div thm 470
z div thm 523

divert 16
list divert 16

dnf conv 299
do in theory 137
docdvi 12
docpr 12
docsml 13
doctex 13

dest dollar quoted string 363
is dollar quoted string 363

mk dollar quoted string 363
dom 479

z dom clauses 481
z fun dom clauses 454
z fun dom clauses 510

z dom def 507
z dom f ³½ f thm 457
z dom f ³½ f thm 526
z dom f ↔ f thm 456
z dom f ↔ f thm 526
z dom f → f thm 457
z dom f → f thm 526
z dom f ½ f thm 457
z dom f ½ f thm 526
z dom f ³ f thm 457
z dom f ³ f thm 526
z dom seq thm 487
z dom seq thm 525
z dom seqd thm 488
z dom seqd thm 525
z dom thm 481

z → dom thm 456
z → dom thm 526

z dom ⊕ 7→ thm 455
z dom ⊕ 7→ thm 526
z dom a thm 487
z dom a thm 525

dom[X ,Y ] 478
z dot dot clauses 469
z dot dot clauses 523
z dot dot conv 523

z simple dot dot conv 515
z size dot dot conv 525

z ∈ dot dot conv 515

z dot dot def 518
z R dot dot def 535

z dot dot diff thm 469
z dot dot diff thm 523

z dot dot clauses 469
z dot dot clauses 523
z dot dot conv 523

z simple dot dot conv 515
z size dot dot conv 525

z ∈ dot dot conv 515
z dot dot def 518

z R dot dot def 535
z dot dot diff thm 469
z dot dot diff thm 523
z dot dot plus thm 469
z dot dot plus thm 523

z size dot dot thm 470
z size dot dot thm 523
z size dot dot thm1 470
z size dot dot thm1 523

z dot dot ∩ thm 469
z dot dot ∩ thm 523
z dot dot ∪ thm 469
z dot dot ∪ thm 523

z dot dot plus thm 469
z dot dot plus thm 523

z size dot dot thm 470
z size dot dot thm 523
z size dot dot thm1 470
z size dot dot thm1 523

z dot dot ∩ thm 469
z dot dot ∩ thm 523
z dot dot ∪ thm 469
z dot dot ∪ thm 523

Sym DoublePercent 57
drop 21
DROP ASM T 240

LIST DROP ASM T 254
DROP ASMS T 240
DROP FILTER

ASMS T 241
drop main goal 223
DROP NTH ASM T 241

LIST DROP NTH ASM T 254
DT 80
DuplicateTheory 131
duplicate theory 138
DynamicArray 38
DYNAMIC ARRAY 38
D∅ 80
D⇔ 80
D∧ 80
D∨ 80
D¬ 80
D⇒ 80
D∀ 80
D∃ 80
D∃1 80
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Dε 80
Dλ 80
DN 80
e delete 33
E DICT 33

initial e dict 34
e dict of oe dict 40
e enter 33

list e enter 34
e extend 33
e flatten 34
e get key 33
E KEY 33
e key delete 33
e key enter 33
e key extend 33
e key lookup 33

string of e key 33
e lookup 34
e merge 34

list e merge 34
e stats 34
EfficientDictionary 33
elaborate 16

′z elementwise eq 503
all simple ∀ elim 154

all ∀ elim 155
all ∀ arb elim 155

asm elim 159
ALL VAR ELIM ASM T 232

VAR ELIM ASM T 281
ALL VAR ELIM ASM T1 232

all var elim asm tac 232
var elim asm tac 281

all var elim asm tac1 232
Z ∈ ELIM C 427

z bindingd elim conv 422
z ∀ elim conv 405
z ∃ elim conv 412
z ∀ elim conv1 404
z ∃ elim conv1 410
z ∀ elim conv2 405
z ∃ elim conv2 411

if else elim 171
if then elim 171

list simple ∀ elim 174
list ∀ elim 175
VAR ELIM NTH ASM T 281
var elim nth asm tac 281

simple ε elim rule 192
ε elim rule 218

simple ∀ elim 188
simple ∃ elim 189

simple ∃1 elim 191
z quantifiers elim tac 397

¬ elim tac 285
z gen pred elim 391

z gen pred u elim 392

z ∀ elim 406
⇔ elim 200

⇔ t elim 202
∧ left elim 202
∧ right elim 203

∨ elim 204
¬ elim 205

¬ ¬ elim 207
⇒ elim 208
∀ elim 211

∀ arb elim 210
∃ elim 213
∃1 elim 216

z gen pred elim1 391
if ?then ! else ! 490

(if ?then ! else !)[X ] 489
if else elim 171
HT Else 70

TooManyRead Empties 57
D EmptyList 80

dest empty list 82
is empty list 91

mk empty list 101
empty net 117

z size empty thm 469
z size empty thm 523
z → empty thm 458
z → empty thm 526

z ¬ a empty thm 487
z ¬ a empty thm 525

z F empty thm 468
z F empty thm 516

z empty F thm 469
z empty F thm 523
z empty ³ thm 458
z empty ³ thm 526

Sym EndOfInput 57
end of stream 41
Ending 56

e enter 33
e key enter 33
list e enter 34

list net enter 117
net enter 117
oe enter 40

oe key enter 40
s enter 32

get nd entry 336
set nd entry 336

D EnumSet 80
dest enum set 82

is enum set 91
mk enum set 101
get env 41

READER ENV 58
HT Eos 70

′prop eq 293
′z elementwise eq 503
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z abs eq 0 thm 468
z abs eq 0 thm 516

z times eq 0 thm 466
z times eq 0 thm 516

pair eq conv 294
z binding eq conv 423

z seqd eq conv 524
z tuple eq conv 506

z tuple lang eq conv 427
z R eq conv 534
z θ eq conv 444
z Z eq conv 518

z binding eq conv1 423
z tuple eq conv1 507

z binding eq conv2 423
z binding eq conv3 506

D Eq 80
dest eq 83

dest z eq 365
is eq 91

is z eq 365
eq match conv 163

simple eq match conv 185
simple ho eq match conv 186

eq match conv1 162
simple eq match conv1 186

simple ho eq match conv1 187
mk eq 101

mk z eq 365
′prop eq pair 293
prop eq pair 293
prop eq 293
prop eq prove tac 295

eq rewrite thm 164
prop eq rule 296

simple λ eq rule 193
λ eq rule 219

eq sym asm tac 242
eq sym conv 164
eq sym nth asm tac 242
eq sym rule 165

KI EqSymRule 129
¬ eq sym rule 205

ASM PROP EQ T 294
PROP EQ T 294
z app eq tac 422
z seqd eq thm 488
z seqd eq thm 525
z size eq thm 470
z size eq thm 523

z ∈ seq app eq thm 488
z ∈ seq app eq thm 525

z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525

z → ∈ rel ⇔ app eq thm 453
z → ∈ rel ⇔ app eq thm 510

z R eq thm 475
z R eq thm 532

z R less ¬ eq thm 474
z R less ¬ eq thm 532
z R minus eq thm 475
z R minus eq thm 533

z ≤ less eq thm 468
z ≤ less eq thm 516

z Z eq thm 465
z Z eq thm 516

eq trans rule 165
KI EqTransRule 129
Z Eq 360

z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526
z → app eq ⇔ ∈ rel thm 453
z → app eq ⇔ ∈ rel thm 510

z R eq ≤ thm 474
z R eq ≤ thm 532

z → ran eq ³ thm 455
z → ran eq ³ thm 526

current ad rw eqm rule 317
get rw eqm rule 338
set rw eqm rule 338

EQN CXT 315
eqn cxt conv 318

cthm eqn cxt 161
get rw eqn cxt 338
get sc eqn cxt 338
get st eqn cxt 339

get u simp eqn cxt 383
set rw eqn cxt 338
set sc eqn cxt 338
set st eqn cxt 339

set u simp eqn cxt 383
simple ho thm eqn cxt 340
theory u simp eqn cxt 383

thm eqn cxt 341
u simp eqn cxt 384

equality 89
Propositional Equality 293

std err 41
Error 16
error 17
Error 70

Basic Error 16
add error code 59
add error codes 59

pp′ error init 19
local error 64
get error message 17

new error message 18
pp′change error message 19

get error messages 17
pending reset error messages 18

set error messages 17
pp′set eval ad cs ∃ convs 330
pp′set eval ad nd net 330
pp′set eval ad rw canon 329
pp′set eval ad rw net 328
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pp′set eval ad sc conv 329
pp′set eval ad st conv 329
pp′set eval ad ∃ cd thms 330
pp′set eval ad ∃ vs thms 331
Z R EVAL C 532
z R eval conv 532

pending reset pc evaluators 328
EVERY 243
EVERY C 165
EVERY CAN 165

MAP EVERY 257
EVERY T 243

MAP EVERY T 257
EVERY TTCL 242
exit 50

save and exit 51
z R Z exp conv 534
z R Z exp def 535

dest z R Z exp 530
is z R Z exp 530

mk z R Z exp 531
expand symbol 60
expand type abbrev 124

Z Expressions 418
′fun ext 344
′sets ext 353

z sets ext clauses 492
z sets ext clauses 499
z sets ext conv 426
′z sets ext lang 419
′z sets ext lib 496

ext rule 166
sets ext 353
sets ext 354

z sets ext thm 460
z fun ext 509

z language ext 504
z library ext 527

z library1 ext 528
z rel ext 505

z sets ext 504
′sets ext1 354
sets ext1 354

e extend 33
e key extend 33

oe extend 40
oe key extend 40

EXTEND PC C 319
EXTEND PC C1 319

pending push extend pc 327
push extend pc 333

extend pc rule 320
extend pc rule1 320

set extend pc 333
EXTEND PC T 321
EXTEND PC T1 321
EXTEND PCS C 319
EXTEND PCS C1 319

pending push extend pcs 327
push extend pcs 333

extend pcs rule 320
extend pcs rule1 320

set extend pcs 333
EXTEND PCS T 321
EXTEND PCS T1 321

s extend 32
get use extended chars flag 63

use extended chars 56
conv extended 12

ExtendedIO 41
basic res extract 307

Bdz FArgc 359
Bdz FCode 359
Bdz FCompc 359

dest f 83
is f 92

mk f 101
f rewrite canon 203
f thm 170
f thm tac 247

z dom f ³½ f thm 457
z dom f ³½ f thm 526
z dom f ↔ f thm 456
z dom f ↔ f thm 526
z dom f → f thm 457
z dom f → f thm 526
z dom f ½ f thm 457
z dom f ½ f thm 526
z dom f ³ f thm 457
z dom f ³ f thm 526

¬ f thm 289
z dom f ³½ f thm 457
z dom f ³½ f thm 526
z dom f ↔ f thm 456
z dom f ↔ f thm 526
z dom f → f thm 457
z dom f → f thm 526
z dom f ½ f thm 457
z dom f ½ f thm 526
z dom f ³ f thm 457
z dom f ³ f thm 526

Fail 16
fail 17

Bdz Fail 359
fail canon 166
fail conv 166
fail tac 243

term fail 113
FAIL THEN 243

thm fail 147
type fail 115

fail with canon 166
fail with conv 166
fail with tac 243
FAIL WITH THEN 243

z seta false conv 497
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fun false 28
is z false 365

mk z false 365
Z False 360
′z fc 380

FC CAN 167
fc canon 168
fc canon1 168

z fc prove conv 389
z fc prove tac 390

fc rule 169
FC T 246

ALL FC T 246
ALL ASM FC T 246

ASM FC T 246
FC T1 247

ALL FC T1 247
ALL ASM FC T1 247

ASM FC T1 247
fc tac 245

all fc tac 245
all asm fc tac 245

asm fc tac 245
FC ⇔ CAN 169
fc ⇔ canon 170

delete pc fields 318
merge pc fields 324

use file non stop mode 56
use file 66
use file1 66

load files 49
filter 21

DROP FILTER ASMS T 241
GET FILTER ASMS T 250

find 21
find char 61
find name 61
find thm 151

gen find thm 152
gen find thm in theories 152

FIRST 244
first 490
FIRST C 167
FIRST CAN 166

z first def 498
MAP FIRST 257

FIRST T 244
MAP FIRST T 257

z first thm 491
z first thm 499

z ∈ first thm 453
z ∈ first thm 510

FIRST TTCL 244
first [X ,Y ] 489
FIXITY 69

get fixity 125
LS Fixity 75

z print fixity 78

get flag 46
get use extended

chars flag 63
new flag 46
reset flag 47

set flag 47
get flags 46

reset flags 47
set flags 47

flat 21
e flatten 34

oe flatten 40
oe key flatten 40

z float conv 531
D Float 80

dest float 83
dest z float 365

is float 91
is z float 365
mk float 101

mk z float 365
string of float 39

z float thm 477
z float thm 533
Z Float 360
Z ′ Float 472
Z ′ Float 474

flush out 41
fold 21

term fold 113
translate for output 66

force delete theory 322
force value 21

pp format depth 73
format list 67
format term 73
format term1 73
format thm 73
format thm1 73
format type 74
format type1 74
FORWARD CHAIN

CAN 167
forward chain canon 168
forward chain canon1 168
forward chain rule 169
FORWARD CHAIN

T 246
ALL FORWARD CHAIN

T 246
ALL ASM FORWARD CHAIN

T 246
ASM FORWARD CHAIN

T 246
FORWARD CHAIN

T1 247
ALL FORWARD CHAIN

T1 247
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ALL ASM FORWARD CHAIN
T1 247

ASM FORWARD CHAIN
T1 247

forward chain tac 245
all forward chain tac 245

all asm forward chain tac 245
asm forward chain tac 245

FORWARD CHAIN
⇔ CAN 169

forward chain ⇔
canon 170

z R frac def 535
dest z R frac 530

is z R frac 530
mk z R frac 531

is free in 92
is free var in 92

frees 90
from 22
front 484

z front def 522
front [X ] 483
fst 28

′z ∈ fun 508
fun0rightassoc 450
fun0rightassoc 489
fun10leftassoc 478
fun20leftassoc 462
fun20leftassoc 472
fun25leftassoc 489
fun30leftassoc 450
fun30leftassoc 462
fun30leftassoc 472
fun30leftassoc 483
fun30leftassoc 489
fun40leftassoc 462
fun40leftassoc 472
fun40leftassoc 478
fun40leftassoc 483
fun40leftassoc 490
fun45rightassoc 483
fun50leftassoc 478
fun50rightassoc 463
fun50rightassoc 472
fun60leftassoc 479
fun60rightassoc 472
fun65rightassoc 479
fun70rightassoc 463
fun70rightassoc 479

′z fun alg 509
fun and 28

z fun app clauses 454
z fun app clauses 510
z fun dom clauses 454
z fun dom clauses 510
′ fun ext 344

z fun ext 509

fun false 28
new init fun 49
new save fun 49

fun not 28
fun or 28
fun pow 28

z fun ran clauses 454
z fun ran clauses 510

app fun rule 158
T Fun 151

fun true 28
z fun ∈ clauses 454
z fun ∈ clauses 510

READER FUNCTION 58
READER FUNCTION 59

FunctionUtilities 28
Z Functions 507
Z Functions1 522

get init funs 48
get save funs 48

gc messages 48
gen5rightassoc 452
gen5rightassoc 463
gen5rightassoc 490
gen70rightassoc 450
gen70rightassoc 463
gen70rightassoc 479
gen70rightassoc 483
gen70rightassoc 490
GEN ASYM C 297
gen find thm 152
gen find thm in

theories 152
GEN INDUCTION

T 248
GEN INDUCTION

T1 249
gen induction tac 248
gen induction tac1 249

z ¬ gen pred conv 402
z gen pred elim 391
z gen pred elim1 391
z gen pred intro 391
z gen pred tac 391

z intro gen pred tac 394
z gen pred u elim 392

gen term order 300
gen theory lister 76
gen theory lister1 76
gen vars 90
general quotation 61

add general reader 59
look up general reader 64

get alias 125
get alias info 125
get aliases 124
get ancestors 138
get asm 223
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GET ASM T 249
LIST GET ASM T 255

GET ASMS T 249
get axiom 138
get axiom dict 138
get axioms 138
get binders 125
get box braces 62
get children 139
get compactification

cache 130
get conjecture 150
get conjectures 150
get const info 125
get const keys 139
get const language 125
get const theory 139
get const type 139
get consts 139
get controls 46
get cs ∃ convs 335
get curly braces 62
get current language 125
get current pc 322
get current

terminators 125
get current theory

name 139
get current theory

status 139
get defn 140
get defn dict 140
get defns 140
get descendants 140
get env 41
get error message 17
get error messages 17
GET FILTER ASMS

T 250
get fixity 125
get flag 46
get flags 46
get HOL any 62
get init funs 48
get int control 46
get int controls 46

e get key 33
get language 126
get left infixes 126
get line length 67
get message 18
get message text 18
get ML any 62
get ML string 63
get mmp rule 335
get nd entry 336
get nonfixes 126
GET NTH ASM T 250

LIST GET NTH ASM T 255
get parents 140
get pcs 322
get percent name 63
get postfixes 126
get pr conv 336
get pr conv1 336
get pr tac 337
get pr tac1 337
get prefixes 126
get primed string 63
get proved conjectures 149
get right infixes 126
get round braces 62
get rw canons 337
get rw eqm rule 338
get rw eqn cxt 338
get save funs 48
get sc eqn cxt 338
get shell var 48

z get spec 393
get st eqn cxt 339
get stack pcs 323
get stats 53
get string control 46
get string controls 46
get terminators 126
get theory 141
get theory info 141
get theory names 140
get theory status 140
get thm 141
get thm dict 141
get thms 141
get type abbrev 126
get type abbrevs 127
get type arity 141
get type info 127
get type keys 141
get type theory 142
get types 141
get u simp eqn cxt 383
get undeclared aliases 127
get undeclared

terminators 127
get undeclared type

abbrevs 127
get unproved

conjectures 149
get use extended

chars flag 63
get user datum 142
get variant suffix 90
get ∃ cd thms 339
get ∃ vs thms 340

dest z given type 366
is z given type 366

mk z given type 366
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Z GivenType 360
z R glb def 535

glbR 472
glbR 473
GOAL 231

check is z goal 381
drop main goal 223

print goal 225
print current goal 225

push goal 226
set goal 227

set labelled goal 227
GOAL STATE 222

print goal state 225
push goal state 226

modify goal state thm 224
push goal state thm 226

simplify goal state thm 228
top goal state thm 228
top goal state 229
top goal 229

top labelled goal 229
top main goal 229

z push consistency goal 397
top goals 228

grab 22
term grab 113
z R greater conv 534
z R greater def 535

dest z greater 513
dest z R greater 530

is z greater 513
is z R greater 530

z greater less conv 518
mk z greater 514

mk z R greater 531
z R greater thm 532

z plus cyclic group thm 465
z plus cyclic group thm 516

z ′ guillemets def 498
z guillemets thm 491
z guillemets thm 499

dest z gvar 366
is z gvar 366

mk z gvar 366
gvar subst 362

z h schema conv 434
z norm h schema conv 435

z ∈ h schema conv 438
z ∈ h schema conv1 438

dest z h schema 366
is z h schema 366

mk z h schema 366
z h schema pred conv 434
z hash def 518

hd 22
head 484

z head def 522

head [X ] 483
z hides conv 434

z ∈ hides conv 434
dest z hides 366

is z hides 366
mk z hides 366

Z Hides 360
pp′theory hierarchy 50

simple ho eq match conv 186
simple ho eq match conv1 187
simple ho thm eqn cxt 340

hol 7
hol 354

get HOL any 62
basic hol 349

HOL lab prod reader 63
hol list 7
HOL reader 64
HOLReaderWriter 55
HOLSystem 48
HOL TOKEN 70
hol1 355

basic hol1 349
hol2 355

z pigeon hole thm 470
z pigeon hole thm 523

z int homomorphism thm 465
z int homomorphism thm 516

HTAnd 70
HTAqTm 70
HTAqTy 70
HTBinder 70
HTBlob 70
HTChar 70
HTColon 70
HTElse 70
HTEos 70
HTIf 70
HTIn 70
HTInOp 70
HTLbrace 70
HTLbrack 70
HTLet 70
HTLsqbrack 70
HTName 70
HTNumLit 70
HTPostOp 70
HTPreOp 70
HTRbrace 70
HTRbrack 70
HTRsqbrack 70
HTSemi 70
HTString 70
HTThen 70
HTVert 70
I 30
i contr tac 253
iabs 39
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ICL′DATABASE
INFO TYPE 48

id 480
id 480

id canon 170
z id clauses 481

id conv 170
z id def 507

id tac 250
k id tac 240

ID THEN 250
z id thm 481
z id thm1 456
z id thm1 526

idX 478
z id ³½ thm 456
z id ³½ thm 526

idiv 39
if ?then !else ! 490
if app conv 170

app if conv 158
D If 80
z ′ if def 498

dest if 83
dest z if 496

if else elim 171
HT If 70

if intro 171
is if 92

is z if 496
mk if 102

mk z if 496
if rewrite thm 164
IF T 252
IF T2 251
if tac 251
IF THEN 251
if then elim 171
IF THEN2 251
if thm 289

z if thm 491
z if thm 499
¬ if thm 289

Ignore 56
illformed rewrite

warning 153
z rel image clauses 482
z rel image def 507
z rel image thm 481

imod 39
in 450
in 450

in 450
( in )[X ] 450

concl in asms tac 238
close in 41

simple ¬ in conv 265
z ¬ in conv 402

¬ in conv 285
z in def 528

HT In 70
is free in 92

is free var in 92
is term in 41

HT InOp 70
open in 41

std in 41
simple ¬ in tac 266

¬ in tac 286
SIMPLE ¬ IN THEN 266

¬ IN THEN 286
gen find thm in theories 152

do in theory 137
listing indent 75
GEN INDUCTION T 248
GEN INDUCTION T1 249

gen induction tac 248
z cov induction tac 514
z seq induction tac 524
z ≤ induction tac 517
z F induction tac 526
z N induction tac 517
z Z induction tac 519
gen induction tac1 249

z seq induction tac1 524
z cov induction thm 468
z cov induction thm 516

z prim seq induction thm 486
z prim seq induction thm 525

z seq induction thm 487
z seq induction thm 525
z ≤ induction thm 468
z ≤ induction thm 516
z F induction thm 469
z F induction thm 523
z N induction thm 465
z N induction thm 516
z Z induction thm 465
z Z induction thm 516

z seq induction thm1 487
z seq induction thm1 525

z inequality def 518
KERNEL INFERENCE 129
on kernel inference 129

Infix 69
declare infix 123

declare left infix 123
declare right infix 123

get left infixes 126
get right infixes 126
get alias info 125
get const info 125

get theory info 141
get type info 127

pp′database info 48
pp′reset database info 49
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pp′set database info 49
THM INFO TEST 151

THEORY INFO 120
THM INFO 151

ICL′DATABASE INFO TYPE 48
init 48

new init fun 49
get init funs 48
pp init 74

pp′error init 19
init stats 53
initial 315
initial e dict 34
initial oe dict 40
initial rw canon 172
initial s dict 32
Initialisation 48
input 41
INPUT 70

can input 41
input line 41

SymEndOf Input 57
insert 22
inst 90
inst term rule 172

asm inst term rule 159
KI InstTermRule 129

inst type 90
inst type rule 173

asm inst type rule 159
KI InstTypeRule 129

is type instance 93
instream 41

get int control 46
new int control 46
reset int control 47

set int control 47
get int controls 46

reset int controls 47
set int controls 47

z ′ int def 463
z ′ int def 518

dest z int 366
dest z signed int 513

z int homomorphism
thm 465

z int homomorphism
thm 516

integer of int 39
is z int 366

is z signed int 513
mk z int 366

mk z signed int 514
int of integer 39

string of int 31
UD Int 119

Z Int 360
Z ′ Int 463

string of int3 65
INTEGER 39
Integer 39

int of integer 39
integer of int 39
integer of string 39
integer order 39

string of integer 39
kernel interface diagnostics 142
Kernel Interface 129

pending reset kernel interface 146
interval 22

all z ∀ intro 381
all ⇒ intro 155
all ∀ intro 156
asm intro 159

Z DECL INTRO C 387
z bindingd intro conv 423

z schema pred intro conv 436
z sel t intro conv 425

z tuple intro conv 507
z tuple lang intro conv 427

z ∀ intro conv 407
z ∃ intro conv 412

z ∃1 intro conv 415
z θ ∈ schema intro conv 436

z ∀ intro conv1 405
z ∃ intro conv1 411

z intro gen pred tac 394
if intro 171

list simple ∀ intro 174
list simple ∃ intro 174

list ∧ intro 174
list ∀ intro 175

ε intro rule 218
simple ∀ intro 189
simple ∃ intro 190

simple ∃1 intro 191
∃ intro thm 213

v ∃ intro 200
z gen pred intro 391

z ∀ intro 408
⇔ intro 200

⇔ t intro 202
∧ intro 202

∨ left intro 204
∨ right intro 205

¬ intro 205
¬ ¬ intro 207
⇒ intro 208
∀ intro 211

intro ∀ tac 252
z intro ∀ tac 394

intro ∀ tac1 252
∃ intro 214
∃1 intro 216

z ∀ intro1 407
z rel inv clauses 482
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z ∀ inv conv 408
z ∃ inv conv 413

z rel inv def 507
z rel inv thm 481
z rel inv ³½ thm 456
z rel inv ³½ thm 526

Invalid 56
Io 41

Basic IO 41
Extended IO 41

z less irrefl thm 467
z less irrefl thm 516

z R less irrefl thm 474
z R less irrefl thm 531

is all decimal 31
is all z type 382
is app 90
is bin op 91
is binder 91
is char 91
is const 91
is ctype 91
is dollar quoted

string 363
is empty list 91
is enum set 91
is eq 91
is f 92
is float 91
is free in 92
is free var in 92
is if 92
is let 92
is list 92
is mon op 92
is Nil 22
is nil 22
is pair 92
is proved conjecture 149
is same symbol 64
is set comp 92
is simple binder 93
is simple ∀ 93
is simple ∃ 93
is simple ∃1 93
is simple λ 93
is special char 64
is string 93
is t 93
is term in 41
is term out 41
is theory ancestor 142
is type abbrev 127
is type instance 93
is u 363
is var 94
is vartype 93
is white 64

is z 382
is z abs 513
is z app 363
is z binding 364

check is z 381
check is z conv result 381

is z dec 365
is z decl 364
is z decor s 364
is z div 513
is z eq 365
is z false 365
is z float 365
is z given type 366

check is z goal 381
is z greater 513
is z gvar 366
is z h schema 366
is z hides 366
is z if 496
is z int 366
is z less 513
is z let 367
is z lvar 367
is z minus 513
is z mod 513
is z plus 513
is z power type 367
is z pres 367
is z real 530
is z renames 368
is z schema dec 368
is z schema pred 368
is z schema type 368
is z sel s 369
is z sel t 369

set check is z 381
is z seta 369
is z setd 369
is z signed int 513
is z string 370
is z subtract 513

CHECK IS Z T 381
is z term 362

check is z term 381
is z term1 382

check is z thm 381
is z times 513
is z true 370
is z tuple 370
is z tuple type 370
is z type 363
is z var type 370
is z ⊆ 497
is z ∆s 371
is z ∈ 371
is z Ξ s 371
is z ⇔ 372
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is z ⇔s 371
is z 〈〉 372
is z R abs 530
is z R frac 530
is z R greater 530
is z R less 530
is z R minus 530
is z R over 530
is z R plus 530
is z R subtract 530
is z R times 530
is z R ≤ 530
is z R ≥ 530
is z R Z exp 530
is z ∧ 372
is z ∧s 372
is z ∨ 373
is z ∨s 373
is z ¬ 373
is z ¬s 373
is z ⇒ 374
is z ⇒s 373
is z ∀ 374
is z ∀s 374
is z ∃ 375
is z ∃1 375
is z ∃1 s 374
is z ∃s 375
is z × 375
is z o

9s 376
is z ≤ 513
is z ≥ 513
is z θ 376
is z λ 376
is z µ 376
is z P 377
is z ¹s 377
is ∅ 94
is ⇔ 94
is → type 94
is ∧ 94
is ∨ 94
is ¬ 94
is ⇒ 94
is ∀ 94
is ∃ 95
is ∃1 94
is × type 95
is ε 95
is λ 95
is N 95
iseq 485

iseq 485
z iseq def 522

iseqX 483
items 450

z items def 528
items[X ] 450

iter 464
z iter def 518

iterate 29
iter [X ] 462
K 30
k id tac 240
KERNEL

INFERENCE 129
on kernel inference 129

KernelInterface 129
kernel interface

diagnostics 142
pending reset kernel interface 146

KERNEL STATE
CHANGE 131

before kernel state change 133
on kernel state change 146
e key delete 33

oe key delete 40
key dest const 95
key dest ctype 95

E KEY 33
e get key 33

e key enter 33
oe key enter 40
e key extend 33

oe key extend 40
oe key flatten 40
e key lookup 33

oe key lookup 40
key mk const 95
key mk ctype 95

string of e key 33
get const keys 139
get type keys 141

KIAsmRule 129
KICharConv 129
KIEqSymRule 129
KIEqTransRule 129
KIInstTermRule 129
KIInstTypeRule 129
KIListSimple∀Elim 129
KIMkAppRule 129
KIPlusConv 129
KIReflConv 129
KISimple∀Intro 129
KISimpleβConv 129
KISimpleλEqRule 129
KIStringConv 129
KISubstRule 129
KISucConv 129
KI⇔MPRule 129
KI⇒Elim 129
KI⇒Intro 129

Sym Known 57
SymUnknown Kw 57

HOL lab prod reader 63
top current label 228
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set labelled goal 227
top labelled goal 229

′z sets ext lang 419
′z tuples lang 420
′z ∈ set lang 418

z sel t lang conv 425
z tuple lang eq conv 427
z tuple lang intro conv 427

declare const language 122
z language ext 504

get language 126
get const language 125

get current language 125
set current language 128

z language 503
lassoc1 23
lassoc2 23
lassoc3 23
lassoc4 23
lassoc5 23
last 484

z last def 522
last [X ] 483

z R lb def 535
HT Lbrace 70
HT Lbrack 70

lbR 473
lbR 473

lbR 473
( lbR ) 472

strip leaves 110
LeftAssoc 69
LEFT C 173

Z LEFT C 424
∧ left elim 202

declare left infix 123
get left infixes 126
∨ left intro 204

strip spine left 111
∨ left tac 284

fun10 leftassoc 478
fun20 leftassoc 462
fun20 leftassoc 472
fun25 leftassoc 489
fun30 leftassoc 450
fun30 leftassoc 462
fun30 leftassoc 472
fun30 leftassoc 483
fun30 leftassoc 489
fun40 leftassoc 462
fun40 leftassoc 472
fun40 leftassoc 478
fun40 leftassoc 483
fun40 leftassoc 490
fun50 leftassoc 478
fun60 leftassoc 479

LEMMA T 253
lemma tac 253

length 23
get line length 67

line length 67
set line length 68

z size seqd length thm 488
z size seqd length thm 525
undo buffer length 222

less 23
z R 0 less 0 less times thm 476
z R 0 less 0 less times thm 532

z times less 0 thm 471
z times less 0 thm 523

z R less antisym thm 474
z R less antisym thm 531

z less cases thm 469
z less cases thm 523

z R less cases thm 474
z R less cases thm 531

z R ≤ less cases thm 474
z R ≤ less cases thm 532

z less clauses 467
z less clauses 516

z R less clauses 476
z R less clauses 531

z less conv 518
z greater less conv 518

z R less conv 534
z R less def 535
z R less dense thm 474
z R less dense thm 531

dest z less 513
dest z R less 530

z ≤ less eq thm 468
z ≤ less eq thm 516

z less irrefl thm 467
z less irrefl thm 516

z R less irrefl thm 474
z R less irrefl thm 531
is z less 513

is z R less 530
mk z less 514

mk z R less 531
z less plus1 thm 468

term less 114
z abs 0 less thm 471
z abs 0 less thm 523
z less Z less thm 449
z less Z less thm 521

z R less thm 531
z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532
z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532

z ¬ less thm 467
z ¬ less thm 516
z 0 less times thm 471
z 0 less times thm 523

z R 0 less 0 less times thm 476
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z R 0 less 0 less times thm 532
z less trans thm 467
z less trans thm 516

z R less trans thm 474
z R less trans thm 531

z R ≤ less trans thm 474
z R ≤ less trans thm 532

z ≤ less trans thm 467
z ≤ less trans thm 516
z R less ¬ eq thm 474
z R less ¬ eq thm 532

z R ¬ less ≤ thm 532
z less ≤ trans thm 467
z less ≤ trans thm 516

z R less ≤ trans thm 474
z R less ≤ trans thm 532

z less Z less thm 449
z less Z less thm 521

let conv 173
z let conv 424
z let conv1 424
D Let 80

dest let 84
dest z let 367

HT Let 70
is let 92

is z let 367
list mk let 96

mk let 102
mk z let 367
strip let 110

Z Let 360
delete to level 135

pp top level depth 73
thm level 135

lex 71
′z sets ext lib 496
′z ∈ set lib 493

z library ext 527
SML97Basis Library 43

Z Library 527
z library 527
z library1 ext 528
z library1 528
′z lin arith 520

z R lin arith prove conv 532
z R lin arith prove tac 532

z lin arith 519
z R lin arith 529
′z lin arith1 520
z lin arith1 519

lindex 36
diag line 60

input line 41
line length 67

get line length 67
set line length 68

raw diag line 67

′ list 348
list asm ante tac 254

THEN LIST CAN 198
list cup 24

D List 80
DEmpty List 80

dest list 84
dest empty list 82

list diag string 64
list divert 16
LIST DROP ASM T 254
LIST DROP NTH

ASM T 254
list e enter 34
list e merge 34

format list 67
LIST GET ASM T 255
LIST GET NTH

ASM T 255
hol list 7
is list 92

is empty list 91
mk list 102

list mk app 95
list mk bin op 96
list mk binder 96

mk empty list 101
list mk let 96
list mk simple ∀ 97
list mk simple ∃ 97
list mk simple λ 96
list mk → type 97
list mk ∧ 97
list mk ∨ 97
list mk ⇒ 98
list mk ∀ 98
list mk ∃ 98
list mk ε 98
list mk λ 98
list net enter 117
list oe merge 40
list overwrite 24

pp list 8
list raw diag string 67
list roverwrite 24
ListSaveThm 131
list save thm 142
list simple ∀ elim 174
list simple ∀ intro 174
list simple ∃ intro 174
list simple ∃ tac 255

KI ListSimple∀Elim 129
LIST SPEC ASM T 271
list spec asm tac 270
LIST SPEC NTH

ASM T 271
list spec nth asm tac 270
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LIST SWAP ASM
CONCL T 256

list swap asm concl
tac 256

LIST SWAP NTH
ASM CONCL T 256

list swap nth asm
concl tac 256

THEN LIST T 278
THEN TRY LIST T 279

list term union 99
THEN LIST 278

THEN TRY LIST 279
z num list thm 488

list union 24
ListUtilities 20
list variant 99

zed list 11
list ∧ intro 174
list ∀ elim 175
list ∀ intro 175

gen theory lister 76
LISTER SECTION 75
ListerSupport 75

gen theory lister1 76
listing indent 75

sorted listings 75
′N lit 347

z R lit conv 534
z R lit conv1 534

HTNum Lit 70
z R lit norm conv 534
num lit of string 72

load files 49
local error 64
local warn 64
LockTheory 131
lock theory 143

TS Locked 119
look at next 58

skip and look at next 58
look up general

reader 64
look up named reader 64
look up specific

reader 64
lookahead 41

e lookup 34
e key lookup 33

net lookup 117
oe lookup 40

oe key lookup 40
s lookup 32

LSAliases 75
LSAxioms 75
LSBanner 75
LSChildren 75
LSConsts 75

LSDefns 75
LSFixity 75
LSParents 75
LSTerminators 75
LSThms 75
LSTrailer 75
LSTypeAbbrevs 75
LSTypes 75
LSUndeclaredAliases 75
LSUndeclaredTerminators 75
LSUndeclaredTypeAbbrevs 75
LSADNestedStructure 75
LSADSection 75
LSADString 75
LSADStrings 75
LSADTables 75
LSADTerms 75
LSADThms 75
LSADTypes 75

HT Lsqbrack 70
z R lub def 535

lubR 472
lubR 474

dest z lvar 367
is z lvar 367

mk z lvar 367
drop main goal 223
top main goal 229
pp make database 9

make net 117
make term order 300

Too ManyReadEmpties 57
MAP C 175

ONCE MAP C 176
REPEAT MAP C 182

REWRITE MAP C 183
TOP MAP C 199

MAP EVERY 257
MAP EVERY T 257
MAP FIRST 257
MAP FIRST T 257
map shape 257

term map 114
type map 115

ONCE MAP WARN C 177
mapfilter 24

compactification mask 130
eq match conv 163

simple eq match conv 185
simple ho eq match conv 186

eq match conv1 162
simple eq match conv1 186

simple ho eq match conv1 187
simple ⇔ match mp rule 187
simple ⇒ match mp rule 188

⇔ match mp rule 201
⇒ match mp rule 209

simple ⇔ match mp rule1 187
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simple ⇒ match mp rule1 188
⇔ match mp rule1 201
⇒ match mp rule1 209

simple ⇒ match mp rule2 188
⇒ match mp rule2 209

term match 114
type match 115
type match1 115

max 462
max 464

z max def 518
mem 24

term mem 114
merge 35

e merge 34
list e merge 34

list oe merge 40
oe merge 40

merge pc fields 324
merge pcs 323
MERGE PCS C 325
MERGE PCS C1 325

pending push merge pcs 327
push merge pcs 334

merge pcs rule 326
merge pcs rule1 325

set merge pcs 334
MERGE PCS T 326
MERGE PCS T1 326

s merge 32
MESSAGE 16

get message 18
get error message 17

new error message 18
pp′change error message 19

get message text 18
gc messages 48

get error messages 17
pending reset error messages 18

set error messages 17
Microseconds 54
Middle 56
Milliseconds 54
min 462
min 464

z min def 518
z minus clauses 465
z minus clauses 516

z R minus clauses 475
z R minus clauses 533

z subtract minus conv 518
z R minus conv 534
z R minus def 535

dest z minus 513
dest z R minus 530

z R minus eq thm 475
z R minus eq thm 533
is z minus 513

is z R minus 530
mk z minus 514

mk z R minus 531
z minus thm 465
z minus thm 516

z abs minus thm 468
z abs minus thm 516
z plus minus thm 465
z plus minus thm 516

z R minus thm 533
z R plus minus thm 475
z R plus minus thm 533
z N abs minus thm 468
z N abs minus thm 516

z N ¬ minus thm 466
z N ¬ minus thm 516

z Z minus thm 449
z Z minus thm 521
Z z minus thm 449
Z z minus thm 521

z minus times thm 466
z minus times thm 516
z minus N ≤ thm 467
z minus N ≤ thm 516

mk app 99
list mk app 95

mk app rule 176
KI MkAppRule 129

mk bin op 100
list mk bin op 96

mk binder 99
list mk binder 96

mk char 100
mk const 100

key mk const 95
mk ctype 100

key mk ctype 95
mk dollar quoted

string 363
mk empty list 101
mk enum set 101
mk eq 101
mk f 101
mk float 101
mk if 102
mk let 102

list mk let 96
mk list 102
mk mon op 103
mk multi ¬ 103
mk pair 103
mk set comp 103
mk simple binder 103
mk simple term 104
mk simple type 104
mk simple ∀ 104

list mk simple ∀ 97
mk simple ∃ 105
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list mk simple ∃ 97
mk simple ∃1 104
mk simple λ 105

list mk simple λ 96
mk string 105
mk t 105
mk term 105
mk u 363
mk var 106
mk vartype 105
mk z abs 514
mk z app 363
mk z binding 364
mk z dec 365
mk z decl 364
mk z decor s 364
mk z div 514
mk z eq 365
mk z false 365
mk z float 365
mk z given type 366
mk z greater 514
mk z gvar 366
mk z h schema 366
mk z hides 366
mk z if 496
mk z int 366
mk z less 514
mk z let 367
mk z lvar 367
mk z minus 514
mk z mod 514
mk z plus 514
mk z power type 367
mk z pres 367
mk z real 531
mk z renames 368
mk z schema dec 368
mk z schema pred 368
mk z schema type 368
mk z sel s 369
mk z sel t 369
mk z seta 369
mk z setd 369
mk z signed int 514
mk z string 370
mk z subtract 514
mk z term 370
mk z times 514
mk z true 370
mk z tuple 370
mk z tuple type 370
mk z type 370
mk z var type 370
mk z ⊆ 497
mk z ∆s 371
mk z ∈ 371
mk z Ξ s 371

mk z ⇔ 372
mk z ⇔s 371
mk z 〈〉 372
mk z R abs 531
mk z R frac 531
mk z R greater 531
mk z R less 531
mk z R minus 531
mk z R over 531
mk z R plus 531
mk z R subtract 531
mk z R times 531
mk z R ≤ 531
mk z R ≥ 531
mk z R Z exp 531
mk z ∧ 372
mk z ∧s 372
mk z ∨ 373
mk z ∨s 373
mk z ¬ 373
mk z ¬s 373
mk z ⇒ 374
mk z ⇒s 373
mk z ∀ 374
mk z ∀s 374
mk z ∃ 375
mk z ∃1 375
mk z ∃1 s 374
mk z ∃s 375
mk z × 375
mk z o

9s 376
mk z ≤ 514
mk z ≥ 514
mk z θ 376
mk z λ 376
mk z µ 376
mk z P 377
mk z ¹s 377
mk ∅ 106
mk ⇔ 106
mk → type 106

list mk → type 97
mk ∧ 106

list mk ∧ 97
mk ∨ 106

list mk ∨ 97
mk ¬ 107
mk ⇒ 107

list mk ⇒ 98
mk ∀ 107

list mk ∀ 98
mk ∃ 108

list mk ∃ 98
mk ∃1 107
mk × type 108
mk ε 108

list mk ε 98
mk λ 108
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list mk λ 98
mk N 108

get ML any 62
get ML string 63
to ML string 66

current ad mmp rule 317
get mmp rule 335
set mmp rule 335

′ mmp1 349
′ mmp2 349

mod 464
mod 464

mod 464
( mod ) 462
z mod conv 518

dest z mod 513
is z mod 513

mk z mod 514
z mod thm 471
z mod thm 523

z div mod unique thm 468
z div mod unique thm 516

use file non stop mode 56
modify goal state thm 224
modus tollens rule 176

dest mon op 84
is mon op 92

mk mon op 103
z ran mono thm 455
z ran mono thm 526
z size mono thm 470
z size mono thm 523

z R plus mono thm 475
z R plus mono thm 533
z R plus mono thm1 475
z R plus mono thm1 533
z R plus mono thm2 475
z R plus mono thm2 533

simple ⇔ match mp rule 187
simple ⇒ match mp rule 188

⇔ mp rule 201
⇔ match mp rule 201

⇒ mp rule 208
⇒ match mp rule 209

simple ⇔ match mp rule1 187
simple ⇒ match mp rule1 188

⇔ match mp rule1 201
⇒ match mp rule1 209

simple ⇒ match mp rule2 188
⇒ match mp rule2 209

dest multi ¬ 84
mk multi ¬ 103

REPEAT N 261
REPEAT N T 261

NAME CLASS 56
dest z name 361

find name 61
get current theory name 139

get percent name 63
HT Name 70

PRETTY NAME 58
dest z name1 361
dest z name2 361

named quotation 61
add named reader 59

look up named reader 64
get theory names 140

Pretty Names 57
theory names 140

nat of string 31
natural of string 39

get nd entry 336
set nd entry 336

current ad nd net 330
pp′set eval ad nd net 330

z abs neg thm 471
z abs neg thm 523
LSAD NestedStructure 75

NET 117
current ad nd net 330
current ad rw net 328

empty net 117
net enter 117

list net enter 117
net lookup 117

make net 117
pp′set eval ad nd net 330
pp′set eval ad rw net 328

NetTools 117
NewAxiom 131
new axiom 143
new conjecture 150
NewConst 131
new const 143

Simple NewDefn 131
simple new defn 147

new error message 18
new flag 46
new init fun 49
new int control 46
NewParent 131
new parent 143
new pc 324
new save fun 49
NewSpec 131
new spec 144
new string control 46

add new symbols 60
NewTheory 131
new theory 144
NewType 131
new type 145
NewTypeDefn 131
new type defn 145

look at next 58
skip and look at next 58
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basic res next to process 308
Nil 19

is Nil 22
is nil 22

no submatch tt 152
no substring tt 152
no subterm tt 152

use file non stop mode 56
T None 151

Nonfix 69
declare nonfix 123

get nonfixes 126
simple β η norm conv 192

z R lit norm conv 534
z norm h schema conv 435
′z normal 494
TS Normal 119

Normalisation 297
fun not 28
Bdz NotZ 359

not z subterms 382
nth 25

LIST SWAP NTH ASM CONCL
T 256

SWAP NTH ASM CONCL
T 276

list swap nth asm concl tac 256
swap nth asm concl tac 275

DROP NTH ASM T 241
GET NTH ASM T 250

LIST DROP NTH ASM T 254
LIST GET NTH ASM T 255

LIST SPEC NTH ASM T 271
SPEC NTH ASM T 271

VAR ELIM NTH ASM T 281
eq sym nth asm tac 242

list spec nth asm tac 270
spec nth asm tac 270

var elim nth asm tac 281
z spec nth asm tac 399

z num list thm 488
HT NumLit 70

num lit of string 72
′z numbers 511
Z Numbers 510
′z numbers1 512
Z Numbers1 522

z succ↗minus nl thm 471
z succ↗minus nl thm 523

oe delete 40
OE DICT 40

e dict of oe dict 40
initial oe dict 40

oe enter 40
oe extend 40
oe flatten 40
oe key delete 40
oe key enter 40

oe key extend 40
oe key flatten 40
oe key lookup 40
oe lookup 40
oe merge 40

list oe merge 40
area of 16

string of e key 33
string of float 39

SymEnd OfInput 57
integer of int 39
string of int 31
string of int3 65

int of integer 39
string of integer 39
e dict of oe dict 40

end of stream 41
integer of string 39

nat of string 31
natural of string 39
num lit of string 72

string of term 109
string of thm 147

type of 115
string of type 109

z term of type 399
z type of 399

Bdz Ok 359
on kernel inference 129
on kernel state

change 146
pass on 18

once asm rewrite rule 184
pure once asm rewrite rule 184

once asm rewrite tac 263
pure once asm rewrite tac 263

once asm rewrite thm
tac 263

pure once asm rewrite thm
tac 263

ONCE MAP C 176
ONCE MAP WARN

C 177
once rewrite conv 183

pure once rewrite conv 183
once rewrite rule 184

pure once rewrite rule 184
once rewrite tac 263

pure once rewrite tac 263
once rewrite thm tac 263

pure once rewrite thm tac 263
one 39

′ one 351
z a one one thm 487
z a one one thm 525
z Z one one thm 449
z Z one one thm 521
Z z one one thm 449
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Z z one one thm 521
z a one one thm 487
z a one one thm 525
z Z one one thm 449
z Z one one thm 521
Z z one one thm 449
Z z one one thm 521
bin bool op 81
dest bin op 82

dest mon op 84
HTIn Op 70

HTPost Op 70
HTPre Op 70
is bin op 91

is mon op 92
list mk bin op 96

mk bin op 100
mk mon op 103
strip bin op 110

open append 41
open in 41
open out 41
OpenTheory 131
open theory 146
OPT 19

sub opt 36
sub opt 38

AND OR C 157
fun or 28

gen term order 300
integer order 39

make term order 300
term order 302

z plus order thm 465
z plus order thm 516

z times order thm 466
z times order thm 516

z R plus order thm 475
z R plus order thm 533

z R times order thm 477
z R times order thm 533

type order 303
ORELSE 257
ORELSE C 177
ORELSE CAN 177
ORELSE T 257
ORELSE TTCL 257

close out 41
flush out 41

is term out 41
open out 41
std out 41

output 41
Simple Output 67

output theory 77
z output theory 78

output theory1 76
z output theory1 78

translate for output 66
outstream 41

z R over clauses 477
z R over clauses 533
z R over conv 534
z R over def 535

dest z R over 530
is z R over 530

mk z R over 531
z R over thm 533

overwrite 25
list overwrite 24

pending reset subgoal package 224
subgoal package quiet 221
subgoal package size 228
Subgoal Package 221
subgoal package ti context 222

′ pair 345
′prop eq pair 293

λ pair conv 219
D Pair 80

dest pair 84
pair eq conv 294

is pair 92
mk pair 103

prop eq pair 293
pair rw canon 258

z size pair thm 470
z size pair thm 523

′ pair1 346
′ paired abstractions 342

z para pred canon 395
z para pred conv 395

New Parent 131
new parent 143
get parents 140
LS Parents 75

partition 484
partition 484

partition 484
( partition )[I ,X ] 483
z partition def 522

pass on 18
PC C 325

EXTEND PC C 319
PC C1 325

EXTEND PC C1 319
commit pc 316

pending reset pc database 328
delete pc 318

pending reset pc evaluators 328
delete pc fields 318
merge pc fields 324

get current pc 322
new pc 324

pending push pc 327
pending push extend pc 327

pop pc 328
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push pc 334
push extend pc 333

pc rule 326
extend pc rule 320

pc rule1 325
extend pc rule1 320

set pc 334
set extend pc 333

pending reset pc stack 328
PC T 326

EXTEND PC T 321
PC T1 326

EXTEND PC T1 321
EXTEND PCS C 319
MERGE PCS C 325

EXTEND PCS C1 319
MERGE PCS C1 325

get pcs 322
get stack pcs 323

merge pcs 323
pending push extend pcs 327
pending push merge pcs 327

push extend pcs 333
push merge pcs 334

extend pcs rule 320
merge pcs rule 326
extend pcs rule1 320
merge pcs rule1 325

set extend pcs 333
set merge pcs 334
EXTEND PCS T 321
MERGE PCS T 326

EXTEND PCS T1 321
MERGE PCS T1 326

pending push extend
pc 327

pending push extend
pcs 327

pending push merge
pcs 327

pending push pc 327
pending reset control

state 47
pending reset error

messages 18
pending reset kernel

interface 146
pending reset pc

database 328
pending reset pc

evaluators 328
pending reset pc

stack 328
pending reset subgoal

package 224
get percent name 63

SymDouble Percent 57
z pigeon hole thm 470

z pigeon hole thm 523
z R plus 0 thm 475
z R plus 0 thm 533

z plus assoc thm 464
z plus assoc thm 516

z R plus assoc thm 475
z R plus assoc thm 533

z plus assoc thm1 465
z plus assoc thm1 516

z R plus assoc thm1 475
z R plus assoc thm1 533

z plus clauses 466
z plus clauses 516

z R plus clauses 475
z R plus clauses 533

z plus comm thm 464
z plus comm thm 516

z R plus comm thm 475
z R plus comm thm 533

plus conv 178
KI PlusConv 129
z plus conv 518

z R plus conv 534
z N plus conv 518

z plus cyclic group thm 465
z plus cyclic group thm 516

z R plus def 535
dest z plus 513

dest z R plus 530
z times plus distrib thm 466
z times plus distrib thm 516

z R times plus distrib thm 476
z R times plus distrib thm 533

is z plus 513
is z R plus 530

z plus minus thm 465
z plus minus thm 516

z R plus minus thm 475
z R plus minus thm 533

mk z plus 514
mk z R plus 531

z R plus mono thm 475
z R plus mono thm 533
z R plus mono thm1 475
z R plus mono thm1 533
z R plus mono thm2 475
z R plus mono thm2 533

z plus order thm 465
z plus order thm 516

z R plus order thm 475
z R plus order thm 533

z abs plus thm 468
z abs plus thm 516

z dot dot plus thm 469
z dot dot plus thm 523

z R plus thm 533
z N plus thm 465
z N plus thm 516
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z Z plus thm 448
z Z plus thm 521
Z z plus thm 449
Z z plus thm 521
z R plus unit thm 475
z R plus unit thm 533
z ≤ plus N thm 467
z ≤ plus N thm 516

z plus0 thm 465
z plus0 thm 516

z less plus1 thm 468
z ≤ ≤ plus1 thm 469
z ≤ ≤ plus1 thm 523

z N plus1 thm 465
z N plus1 thm 516

z N ¬ plus1 thm 465
z N ¬ plus1 thm 516

poly conv 301
POP ASM T 258
pop pc 328
pop thm 225

save pop thm 227
z abs pos thm 471
z abs pos thm 523

basic res post 308
HT PostOp 70

Postfix 69
declare postfix 123

get postfixes 126
fun pow 28

dest z power type 367
is z power type 367

mk z power type 367
Z PowerType 360

pp 10
PPArray 42
pp format depth 73
pp init 74
pp list 8
pp make database 9
pp print assumptions 73
PPString 42
pp top level depth 73
PPVector 42
pp′change error

message 19
pp′database info 48
pp′error init 19
pp′reset database info 49
pp′set banner 49
pp′set database info 49
pp′set eval ad cs ∃

convs 330
pp′set eval ad nd net 330
pp′set eval ad rw

canon 329
pp′set eval ad rw net 328

pp′set eval ad sc
conv 329

pp′set eval ad st
conv 329

pp′set eval ad ∃ cd
thms 330

pp′set eval ad ∃ vs
thms 331

pp′theory hierarchy 50
pp′TS 221
pp′TypesAndTerms 79

current ad pr conv 317
get pr conv 336
set pr conv 336
get pr conv1 336

current ad pr tac 317
get pr tac 337
set pr tac 337
get pr tac1 337

basic res pre 308
HT PreOp 70

z para pred canon 395
z dec pred conv 389
z decl pred conv 388

z h schema pred conv 434
z para pred conv 395

z schema pred conv 436
z ¬ gen pred conv 402

z schema pred conv1 398
z pred dec conv 396
z pred decl conv 396

dest z schema pred 368
z gen pred elim 391
z gen pred elim1 391

z schema pred intro conv 436
z gen pred intro 391

is z schema pred 368
mk z schema pred 368

z gen pred tac 391
z intro gen pred tac 394

z gen pred u elim 392
ZSchema Pred 360

Z PredicateCalculus 378
predicates 344

′z predicates 379
z predicates 378

predicates1 344
Prefix 69

declare prefix 124
get prefixes 126

present 25
PRETTY NAME 58
PrettyNames 57
PrettyPrinter 73

z pres conv 435
z ∈ pres conv 435

dest z pres 367
is z pres 367
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mk z pres 367
Z Pres 360

prim res rule 313
prim rewrite conv 179
prim rewrite rule 180
prim rewrite tac 259

z prim seq induction
thm 486

z prim seq induction
thm 525

prim suc conv 180
get primed string 63
pp print assumptions 73

print banner 50
print current goal 225

z print fixity 78
print goal 225
print goal state 225
print stats 53
print status 50
print theory 77

z print theory 78
Pretty Printer 73

basic res next to process 308
HOL lab prod reader 63

prof 53
Profiling 53
profiling 53
prompt1 55
prompt2 55
PROOF 231

bad proof 236
ProofContext 315
ProofContexts1 341

simple tac proof 264
tac proof 277

prop eq 293
′ prop eq 293

prop eq pair 293
′ prop eq pair 293

prop eq prove tac 295
prop eq rule 296
PROP EQ T 294

ASM PROP EQ T 294
PropositionalEquality 293

′ propositions 343
prove asm rule 180
prove conv 331

basic prove conv 356
z basic prove conv 385

z fc prove conv 389
z R lin arith prove conv 532

prove rule 331
prove tac 259

asm prove tac 316
basic prove tac 357

prop eq prove tac 295
z basic prove tac 386

z fc prove tac 390
z R lin arith prove tac 532

prove thm 260
prove ∃ conv 332

′basic prove ∃ conv 341
prove ∃ rule 332
prove ∃ tac 260

asm prove ∃ tac 316
is proved conjecture 149

get proved conjectures 149
pure asm rewrite rule 184
pure asm rewrite tac 263
pure asm rewrite thm

tac 263
pure once asm

rewrite rule 184
pure once asm

rewrite tac 263
pure once asm

rewrite thm tac 263
pure once rewrite

conv 183
pure once rewrite

rule 184
pure once rewrite tac 263
pure once rewrite

thm tac 263
pure rewrite conv 183
pure rewrite rule 184
pure rewrite tac 263
pure rewrite thm tac 263
push back 58

z push consistency goal 397
push extend pc 333

pending push extend pc 327
push extend pcs 333

pending push extend pcs 327
push goal 226
push goal state 226
push goal state thm 226
push merge pcs 334

pending push merge pcs 327
push pc 334

pending push pc 327
quantifier 108

z quantifiers elim tac 397
subgoal package quiet 221

quit 50
save and quit 51

general quotation 61
named quotation 61
specific quotation 61

dest dollar quoted string 363
is dollar quoted string 363

mk dollar quoted string 363
ran 479

z ran clauses 481
z fun ran clauses 454
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z fun ran clauses 510
z ran def 507

z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526
z → ran eq ³ thm 455
z → ran eq ³ thm 526

z ran mono thm 455
z ran mono thm 526
z ran seqd thm 488
z ran seqd thm 525
z ran thm 481

z ↔ ran thm 457
z ↔ ran thm 526
z → ran thm 457
z → ran thm 526
z ³ ran thm 457
z ³ ran thm 526

z ran ∪ thm 456
z ran ∪ thm 526
z ran C thm 455
z ran C thm 526

RAND C 181
Z RAND C 424

RANDS C 181
Z RANDS C 424

ran[X ,Y ] 478
rassoc1 25
rassoc2 25
rassoc3 25
rassoc4 25
rassoc5 26
RATOR C 181
raw diag line 67
raw diag string 68

list raw diag string 67
HT Rbrace 70
HT Rbrack 70

TooMany ReadEmpties 57
read stopwatch 54
read symbol 65

add general reader 59
add named reader 59
add specific reader 59

READER ENV 58
READER

FUNCTION 58
READER

FUNCTION 59
HOL reader 64

HOL lab prod reader 63
look up general reader 64
look up named reader 64
look up specific reader 64

ReaderWriter 55
abandon reader writer 59

HOL ReaderWriter 55
ReaderWriterSupport 55
real 472

real 473
z R real 0 thm 533
z R real def 535

dest z real 530
is z real 530

mk z real 531
z R real NR thm 533
′z reals 529

SML recogniser 65
redo 226
refl conv 181

KI ReflConv 129
z R ≤ refl thm 474
z R ≤ refl thm 532

z ≤ refl thm 467
z ≤ refl thm 516

z reflex closure clauses 482
z reflex trans closure

thm 481
rel 450
rel 463
rel 472
rel 483
rel 490

′z ∈ rel 500
′z rel alg 501
z rel ext 505
z rel image clauses 482
z rel image def 507
z rel image thm 481
z rel inv clauses 482
z rel inv def 507
z rel inv thm 481
z rel inv ³½ thm 456
z rel inv ³½ thm 526

z → app eq ⇔ ∈ rel thm 453
z → app eq ⇔ ∈ rel thm 510

z → app ∈ rel thm 453
z → app ∈ rel thm 510

z → ∈ rel ⇔ app eq thm 453
z → ∈ rel ⇔ app eq thm 510

Z Relations 499
rename 109
rename tac 261

z renames conv 436
z dec renames conv 433

z ∈ renames conv 436
dest z renames 368

is z renames 368
mk z renames 368

Z Renames 360
∀ reorder conv 212
∃ reorder conv 214

repeat 29
REPEAT 262
REPEAT C 182
REPEAT C1 182
REPEAT CAN 182
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REPEAT MAP C 182
REPEAT N 261
REPEAT N T 261
REPEAT T 262
REPEAT TTCL 262
REPEAT UNTIL 262
REPEAT UNTIL T 262
REPEAT UNTIL T1 262
REPEAT UNTIL1 262
reraise 19
RES DB TYPE 305

basic res extract 307
basic res next to process 308
basic res post 308
basic res pre 308
basic res resolver 308
basic res rule 309
prim res rule 313
basic res subsumption 309
basic res tac 312
basic res tac1 310
basic res tac2 310
basic res tac3 311
basic res tac4 311

BASIC RES TYPE 305
pending reset control state 47

reset controls 47
pp′ reset database info 49

pending reset error messages 18
reset flag 47
reset flags 47
reset int control 47
reset int controls 47

pending reset kernel interface 146
pending reset pc database 328
pending reset pc evaluators 328
pending reset pc stack 328

reset stopwatch 54
reset string control 47
reset string controls 47

pending reset subgoal package 224
reset use terminal 65
Resolution 304

BASIC RESOLUTION T 306
BASIC RESOLUTION T1 307

resolve alias 127
basic resolve rule 307

basic res resolver 308
restore defaults 128

check is z conv result 381
rev 484

z rev def 522
revfold 26
rev [X ] 483
REWRITE CAN 182

f rewrite canon 203
simple ¬ rewrite canon 203
simple ∀ rewrite canon 203

z ¬ rewrite canon 402
z ⇒ rewrite canon 403
z ∀ rewrite canon 409
⇔ t rewrite canon 203
∧ rewrite canon 203
¬ rewrite canon 287
∀ rewrite canon 287

rewrite conv 183
once rewrite conv 183
prim rewrite conv 179
pure rewrite conv 183

pure once rewrite conv 183
REWRITE MAP C 183
rewrite rule 184

asm rewrite rule 184
once rewrite rule 184

once asm rewrite rule 184
prim rewrite rule 180
pure rewrite rule 184

pure asm rewrite rule 184
pure once rewrite rule 184

pure once asm rewrite rule 184
rewrite tac 263

asm rewrite tac 263
once rewrite tac 263

once asm rewrite tac 263
prim rewrite tac 259
pure rewrite tac 263

pure asm rewrite tac 263
pure once rewrite tac 263

pure once asm rewrite tac 263
eq rewrite thm 164
if rewrite thm 164

rewrite thm tac 263
asm rewrite thm tac 263
once rewrite thm tac 263

once asm rewrite thm tac 263
pure rewrite thm tac 263

pure asm rewrite thm tac 263
pure once rewrite thm tac 263

pure once asm rewrite thm tac 263
⇔ rewrite thm 164
∧ rewrite thm 164
∨ rewrite thm 164
¬ rewrite thm 164
⇒ rewrite thm 164
∀ rewrite thm 164
∃ rewrite thm 164
β rewrite thm 164

illformed rewrite warning 153
Rewriting 153
RightAssoc 69
RIGHT C 184

Z RIGHT C 424
∧ right elim 203

declare right infix 123
get right infixes 126
∨ right intro 205
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strip spine right 111
∨ right tac 284

fun0 rightassoc 450
fun0 rightassoc 489

fun45 rightassoc 483
fun50 rightassoc 463
fun50 rightassoc 472
fun60 rightassoc 472
fun65 rightassoc 479
fun70 rightassoc 463
fun70 rightassoc 479
gen5 rightassoc 452
gen5 rightassoc 463
gen5 rightassoc 490

gen70 rightassoc 450
gen70 rightassoc 463
gen70 rightassoc 479
gen70 rightassoc 483
gen70 rightassoc 490

rollback 132
ROTATE T 264

get round braces 62
roverwrite 26

list roverwrite 24
HT Rsqbrack 70
z rtc def 507

all simple β rule 154
all β rule 157

app arg rule 158
app fun rule 158

asm rule 160
asm inst term rule 159
asm inst type rule 159

asm rewrite rule 184
basic res rule 309

basic resolve rule 307
c contr rule 162

contr rule 161
conv rule 161

current ad mmp rule 317
current ad rw eqm rule 317

disch rule 162
eq sym rule 165

eq trans rule 165
ext rule 166

extend pc rule 320
extend pcs rule 320

fc rule 169
forward chain rule 169

get mmp rule 335
get rw eqm rule 338

inst term rule 172
inst type rule 173

KIAsm Rule 129
KIEqSym Rule 129

KIEqTrans Rule 129
KIInstTerm Rule 129
KIInstType Rule 129

KIMkApp Rule 129
KISimpleλEq Rule 129

KISubst Rule 129
KI⇔MP Rule 129

merge pcs rule 326
mk app rule 176

modus tollens rule 176
once asm rewrite rule 184

once rewrite rule 184
pc rule 326

prim res rule 313
prim rewrite rule 180

prop eq rule 296
prove rule 331

prove asm rule 180
prove ∃ rule 332

pure asm rewrite rule 184
pure once asm

rewrite rule 184
pure once rewrite rule 184

pure rewrite rule 184
rewrite rule 184

set mmp rule 335
set rw eqm rule 338

simple ⇔ match mp rule 187
simple ⇒ match mp rule 188

simple ∃ ε rule 191
simple ε elim rule 192

simple λ eq rule 193
strip ∧ rule 194
strip ⇒ rule 194

subst rule 196
taut rule 278

undisch rule 199
z app λ rule 422

z defn simp rule 424
z µ rule 431

⇔ match mp rule 201
⇔ mp rule 201
∧ ⇒ rule 203

∨ cancel rule 204
¬ eq sym rule 205

⇒ match mp rule 209
⇒ mp rule 208

⇒ trans rule 209
⇒ ∧ rule 210

∀ asm rule 210
∀ ⇔ rule 212

∃ asm rule 213
∃ ε rule 215

β rule 217
ε elim rule 218
ε intro rule 218

λ rule 220
λ eq rule 219

extend pc rule1 320
extend pcs rule1 320
merge pcs rule1 325
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pc rule1 325
simple ⇔ match mp rule1 187
simple ⇒ match mp rule1 188

⇔ match mp rule1 201
⇒ match mp rule1 209

simple ⇒ match mp rule2 188
⇒ match mp rule2 209

Derived Rules1 153
Derived Rules2 153

′sho rw 349
current ad rw canon 329

initial rw canon 172
pair rw canon 258

pp′set eval ad rw canon 329
get rw canons 337
set rw canons 337

RW diagnostics 56
current ad rw eqm rule 317

get rw eqm rule 338
set rw eqm rule 338
get rw eqn cxt 338
set rw eqn cxt 338

current ad rw net 328
pp′set eval ad rw net 328

z seqd a rw thm 488
z seqd a rw thm 525

add rw thms 338
S 30
s delete 32
S DICT 19

initial s dict 32
s enter 32
s extend 32
s lookup 32
s merge 32

is same symbol 64
save 51
save and exit 51
save and quit 51
save as 51

new save fun 49
get save funs 48

save pop thm 227
SaveThm 131
save thm 146

List SaveThm 131
list save thm 142
TT Saved 151

current ad sc conv 329
pp′set eval ad sc conv 329

get sc eqn cxt 338
set sc eqn cxt 338
add sc thms 338

Z SchemaCalculus 432
z h schema conv 434

z norm h schema conv 435
z ∈ h schema conv 438
z θ ∈ schema conv 444

z ∈ h schema conv1 438
dest z schema dec 368

is z schema dec 368
mk z schema dec 368

Z SchemaDec 360
dest z h schema 366

z θ ∈ schema intro conv 436
is z h schema 366

mk z h schema 366
z schema pred conv 436

z h schema pred conv 434
z schema pred conv1 398

dest z schema pred 368
z schema pred intro

conv 436
is z schema pred 368

mk z schema pred 368
Z SchemaPred 360

dest z schema type 368
is z schema type 368

mk z schema type 368
Z SchemaType 360

ZH Schema 360
′z schemas 432

scratch 36
scratch 38
second 490

z second def 498
z second thm 491
z second thm 499

z ∈ second thm 453
z ∈ second thm 510

Seconds 54
second [X ,Y ] 489

LISTER SECTION 75
LSAD Section 75

z sel s conv 425
dest z sel s 369

is z sel s 369
mk z sel s 369

Z Sel s 360
z sel t conv 506

dest z sel t 369
z sel t intro conv 425

is z sel t 369
z sel t lang conv 425

mk z sel t 369
Z Sel t 360

HT Semi 70
Separator 70
SEQ 119
seq 484

seq 484
z ∈ seq app eq thm 488
z ∈ seq app eq thm 525

z seq cases thm 487
z seq cases thm 525
z seq def 522
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z seq induction tac 524
z seq induction tac1 524
z seq induction thm 487
z seq induction thm 525

z prim seq induction thm 486
z prim seq induction thm 525

z seq induction thm1 487
z seq induction thm1 525
z seq seq x thm 487
z seq seq x thm 525
z seq thm 486
z seq thm 525

z dom seq thm 487
z dom seq thm 525

z seqd ∈ seq thm 488
z seqd ∈ seq thm 525

z singleton seq thm 486
z singleton seq thm 525

z size seq thm 470
z size seq thm 523

z size singleton seq thm 487
z size singleton seq thm 525

z 〈〉 seq thm 487
z 〈〉 seq thm 525

z a ∈ seq thm 486
z a ∈ seq thm 525

z seq thm1 486
z seq thm1 525

z size seq thm1 486
z size seq thm1 525
z a ∈ seq thm1 486
z a ∈ seq thm1 525
z size seq thm2 486
z size seq thm2 525

z seq u thm 486
z seq u thm 525

seqX 483
z seq seq x thm 487
z seq seq x thm 525

z singleton seq x thm 487
z singleton seq x thm 525

z a seq x thm 487
z a seq x thm 525

z size seq N thm 486
z size seq N thm 525

z seqd app conv 524
z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525

z size seqd conv 524
z seqd eq conv 524
z seqd eq thm 488
z seqd eq thm 525

z size seqd length thm 488
z size seqd length thm 525
z dom seqd thm 488
z dom seqd thm 525
z ran seqd thm 488

z ran seqd thm 525
z size seqd thm 488
z size seqd thm 525

z seqd ∈ seq thm 488
z seqd ∈ seq thm 525
z seqd a rw thm 488
z seqd a rw thm 525
z seqd a thm 488
z seqd a thm 525
z seqd a 〈〉 clauses 488
z seqd a 〈〉 clauses 525
Z Sequences 522
Z Sequences1 522

seq1 484
seq1 484

z seq1 def 522
seq1X 483

pp′ set banner 49
set check is z 381

D SetComp 80
dest set comp 85

is set comp 92
mk set comp 103

set compactification
cache 130

set controls 47
set cs ∃ convs 335
set current language 128

DEnum Set 80
pp′ set database info 49

dest enum set 82
z set dif clauses 492
z set dif clauses 499
z set dif thm 491
z set dif thm 499

set error messages 17
pp′ set eval ad cs ∃

convs 330
pp′ set eval ad nd net 330
pp′ set eval ad rw canon 329
pp′ set eval ad rw net 328
pp′ set eval ad sc conv 329
pp′ set eval ad st conv 329
pp′ set eval ad ∃ cd

thms 330
pp′ set eval ad ∃ vs

thms 331
set extend pc 333
set extend pcs 333
set flag 47
set flags 47
set goal 227
set int control 47
set int controls 47

is enum set 91
set labelled goal 227

′z ∈ set lang 418
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′z ∈ set lib 493
set line length 68
set merge pcs 334

mk enum set 101
set mmp rule 335
set nd entry 336
set pc 334
set pr conv 336
set pr tac 337
set rw canons 337
set rw eqm rule 338
set rw eqn cxt 338
set sc eqn cxt 338
set st eqn cxt 339
set stats 53
set string control 47
set string controls 47
set u simp eqn cxt 383
SetUserDatum 131
set user datum 147
set variant suffix 109
set ∃ cd thms 339
set ∃ vs thms 340

z ∈ seta conv 428
z ∈ seta conv1 428

dest z seta 369
z seta false conv 497

is z seta 369
mk z seta 369

Z Seta 360
z ∈ setd conv 400
z ∈ setd conv1 428

dest z setd 369
is z setd 369

mk z setd 369
Z Setd 360
z setd ⊆ conv 398
z setd ∈ P conv 425
z setdif def 498
′ sets alg 352

′z sets alg 495
z sets alg 504

sets ext 353
sets ext 354

′ sets ext 353
z sets ext clauses 492
z sets ext clauses 499
z sets ext conv 426
′z sets ext lang 419
′z sets ext lib 496
z sets ext thm 460
z sets ext 504

sets ext1 354
′ sets ext1 354

Z Sets 493
map shape 257

Utility SharedTypes 19
get shell var 48

′ sho rw 349
show term 74
show thm 74
show type 74

dest z signed int 513
is z signed int 513

mk z signed int 514
get u simp eqn cxt 383
set u simp eqn cxt 383

theory u simp eqn cxt 383
u simp eqn cxt 384

z defn simp rule 424
Simple 56

′ simple abstractions 342
SIMPLE BINDER C 185

dest simple binder 85
is simple binder 93

mk simple binder 103
strip simple binder 110

SimpleDictionary 32
z simple dot dot conv 515

simple eq match conv 185
simple eq match

conv1 186
simple ho eq match

conv 186
simple ho eq match

conv1 187
simple ho thm eqn

cxt 340
SimpleNewDefn 131
simple new defn 147
SimpleOutput 67

z simple swap ³½ thm 456
z simple swap ³½ thm 526

simple tac proof 264
simple taut tac 265

DEST SIMPLE TERM 79
dest simple term 85
mk simple term 104

DEST SIMPLE TYPE 79
dest simple type 85
mk simple type 104

simple ⇔ match mp
rule 187

simple ⇔ match mp
rule1 187

simple ¬ in conv 265
simple ¬ in tac 266
SIMPLE ¬ IN

THEN 266
simple ¬ rewrite

canon 203
simple ⇒ match mp

rule 188
simple ⇒ match mp

rule1 188
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simple ⇒ match mp
rule2 188

ALL SIMPLE ∀ C 153
¬ simple ∀ conv 206

dest simple ∀ 85
simple ∀ elim 188

all simple ∀ elim 154
list simple ∀ elim 174

simple ∀ intro 189
list simple ∀ intro 174
is simple ∀ 93

list mk simple ∀ 97
mk simple ∀ 104

simple ∀ rewrite
canon 203

strip simple ∀ 111
simple ∀ tac 267
simple ∀ ∃ conv 189

ALL SIMPLE ∃ C 154
¬ simple ∃ conv 206

dest simple ∃ 86
simple ∃ elim 189
simple ∃ intro 190

list simple ∃ intro 174
is simple ∃ 93

list mk simple ∃ 97
mk simple ∃ 105

strip simple ∃ 111
simple ∃ tac 267

list simple ∃ tac 255
SIMPLE ∃ THEN 268
simple ∃ ∀ conv 190
simple ∃ ∀ conv1 190
simple ∃ ε conv 190
simple ∃ ε rule 191
simple ∃1 conv 268

dest simple ∃1 85
simple ∃1 elim 191
simple ∃1 intro 191

is simple ∃1 93
mk simple ∃1 104

simple ∃1 tac 269
SIMPLE ∃1 THEN 269
simple α conv 191
simple β conv 192

all simple β conv 154
all simple β rule 154

simple β η conv 192
simple β η norm

conv 192
simple ε elim rule 192
SIMPLE λ C 193

dest simple λ 86
simple λ eq rule 193

is simple λ 93
list mk simple λ 96

mk simple λ 105
KIList Simple∀Elim 129

KI Simple∀Intro 129
KI SimpleβConv 129

Simpleλ 79
KI SimpleλEqRule 129

simplify goal state
thm 228

z singleton app thm 458
z singleton app thm 526
z singleton seq thm 486
z singleton seq thm 525

z size singleton seq thm 487
z size singleton seq thm 525

z singleton seq x thm 487
z singleton seq x thm 525

z size singleton thm 470
z size singleton thm 523

z size ∪ singleton thm 470
z size ∪ singleton thm 523

z ³½ diff singleton thm 458
z ³½ diff singleton thm 526
z → diff singleton thm 457
z → diff singleton thm 526

z F ∪ singleton thm 469
z F ∪ singleton thm 523

z a singleton thm 486
z a singleton thm 525
z a singleton thm1 487
z a singleton thm1 525

z size 0 thm 470
z size 0 thm 523
z size 1 thm 470
z size 1 thm 523
z size 2 thm 470
z size 2 thm 523
z size diff thm 470
z size diff thm 523
z size dot dot conv 525
z size dot dot thm 470
z size dot dot thm 523
z size dot dot thm1 470
z size dot dot thm1 523
z size empty thm 469
z size empty thm 523
z size eq thm 470
z size eq thm 523
z size mono thm 470
z size mono thm 523
z size pair thm 470
z size pair thm 523
z size seq thm 470
z size seq thm 523
z size seq thm1 486
z size seq thm1 525
z size seq thm2 486
z size seq thm2 525
z size seq N thm 486
z size seq N thm 525
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z size seqd conv 524
z size seqd length thm 488
z size seqd length thm 525
z size seqd thm 488
z size seqd thm 525
z size singleton seq thm 487
z size singleton seq thm 525
z size singleton thm 470
z size singleton thm 523

subgoal package size 228
z F size thm 469
z F size thm 523
z F size thm1 470
z F size thm1 523

z size 7 7→ thm 470
z size 7 7→ thm 523
z size × thm 470
z size × thm 523
z size ≤ 1 thm 470
z size ≤ 1 thm 523
z size ∪ singleton thm 470
z size ∪ singleton thm 523
z size ∪ thm 470
z size ∪ thm 523
z size ∪ ≤ thm 470
z size ∪ ≤ thm 523
z size a thm 487
z size a thm 525
z size N thm 470
z size N thm 523

skip and look at next 58
skip comment 65
SML recogniser 65
SML97BasisLibrary 43
snd 29
SOLVED T 269
Sort 35
sort 35
sort conv 302
sorted listings 75
SparseArray 36
SPARSE ARRAY 36
SPEC ASM T 271

LIST SPEC ASM T 271
spec asm tac 270

list spec asm tac 270
z spec asm tac 399

New Spec 131
new spec 144

SPEC NTH ASM T 271
LIST SPEC NTH ASM T 271

spec nth asm tac 270
list spec nth asm tac 270

z spec nth asm tac 399
z get spec 393

is special char 64
specific quotation 61

add specific reader 59

look up specific reader 64
strip spine left 111
strip spine right 111

split 26
split3 26
squash 484

z squash def 522
squash[X ] 483

current ad st conv 329
pp′set eval ad st conv 329

get st eqn cxt 339
set st eqn cxt 339
add st thms 339
get stack pcs 323

pending reset pc stack 328
Starting 56

before kernel state change 133
KERNEL STATE CHANGE 131
on kernel state change 146

GOAL STATE 222
pending reset control state 47

print goal state 225
push goal state 226

modify goal state thm 224
push goal state thm 226

simplify goal state thm 228
top goal state thm 228
top goal state 229

e stats 34
get stats 53
init stats 53

print stats 53
set stats 53

get current theory status 139
get theory status 140

print status 50
THEORY STATUS 119

std err 41
std in 41
std out 41
step strip asm tac 272
step strip tac 272

use file non stop mode 56
read stopwatch 54
reset stopwatch 54

end of stream 41
String 70
STRING 109

get string control 46
new string control 46
reset string control 47

set string control 47
get string controls 46

reset string controls 47
set string controls 47

string conv 194
KI StringConv 129
z string conv 426
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z ∈ string conv 426
D String 80

dest string 86
dest dollar quoted string 363

dest z string 370
diag string 60

get ML string 63
get primed string 63

HT String 70
integer of string 39

is string 93
is dollar quoted string 363

is z string 370
list diag string 64

list raw diag string 67
LSAD String 75

mk string 105
mk dollar quoted string 363

mk z string 370
nat of string 31

natural of string 39
num lit of string 72

string of e key 33
string of float 39
string of int 31
string of int3 65
string of integer 39
string of term 109
string of thm 147
string of type 109

PP String 42
raw diag string 68

to ML string 66
UD String 119
use string 66

string variant 109
Z String 360

LSAD Strings 75
strip app 109
strip asm conv 273
strip asm tac 273

step strip asm tac 272
strip bin op 110
strip binder 110
strip concl conv 273
STRIP CONCL T 274
strip concl tac 274
strip leaves 110
strip let 110
strip simple binder 110
strip simple ∀ 111
strip simple ∃ 111
strip spine left 111
strip spine right 111
STRIP T 274
strip tac 274

step strip tac 272
z strip tac 437

STRIP THM THEN 275
strip → type 111
strip ∧ 111
strip ∧ rule 194
strip ∨ 112
strip ⇒ 112
strip ⇒ rule 194
strip ∀ 112
strip ∃ 112
strip ε 112
strip λ 112

LSADNested Structure 75
sub 36
sub 38
SUB C 197
SUB C1 197
sub opt 36
sub opt 38
SubgoalPackage 221

pending reset subgoal package 224
subgoal package quiet 221
subgoal package size 228
subgoal package ti

context 222
tactic subgoal warning 222

all submatch tt 152
any submatch tt 152
no submatch tt 152

subset 26
subst 113
subst conv 195

gvar subst 362
subst rule 196

KI SubstRule 129
var subst 116
all substring tt 152

any substring tt 152
no substring tt 152

basic res subsumption 309
all subterm tt 152

any subterm tt 152
no subterm tt 152

not z subterms 382
z R subtract conv 534
z R subtract def 535

dest z subtract 513
dest z R subtract 530

is z subtract 513
is z R subtract 530

z subtract minus conv 518
mk z subtract 514

mk z R subtract 531
z R subtract thm 533
z Z subtract thm 449
z Z subtract thm 521
Z z subtract thm 449
Z z subtract thm 521

suc conv 198
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KI SucConv 129
prim suc conv 180

succ 462
succ 464

z succ def 518
z ∈ succ thm 471
z ∈ succ thm 523

z succ↗0l thm 471
z succ↗0l thm 523
z succ↗minus nl thm 471
z succ↗minus nl thm 523
z succ↗nl thm 471
z succ↗nl thm 523

get variant suffix 90
set variant suffix 109

′ sum 350
Lister Support 75

ReaderWriter Support 55
swap 29
SWAP ASM CONCL

T 276
LIST SWAP ASM CONCL

T 256
swap asm concl tac 275

list swap asm concl tac 256
SWAP NTH ASM

CONCL T 276
LIST SWAP NTH ASM

CONCL T 256
swap nth asm concl

tac 275
list swap nth asm concl

tac 256
z swap ³½ thm 456
z swap ³½ thm 526

z simple swap ³½ thm 456
z simple swap ³½ thm 526

swap ∨ tac 276
switch 29

eq sym asm tac 242
SymCharacter 57

eq sym conv 164
SymDoublePercent 57
SymEndOfInput 57
SymKnown 57

eq sym nth asm tac 242
eq sym rule 165

KIEq SymRule 129
¬ eq sym rule 205

SymUnknownChar 57
SymUnknownKw 57
SymWhite 57
SYMBOL 57

expand symbol 60
is same symbol 64

read symbol 65
SymbolTable 122

add new symbols 60

system 41
system banner 49
SystemControl 46

HOL System 48
TAll 151

ALL ASM FC T 246
ALL ASM

FORWARD CHAIN T 246
ALL FC T 246

ALL FORWARD
CHAIN T 246

ALL VAR ELIM
ASM T 232

ALL ε T 233
TAny 151

ASM FC T 246
ASM FORWARD

CHAIN T 246
ASM PROP EQ T 294

BASIC
RESOLUTION T 306

CASES T 237
CHANGED T 237

CHECK IS Z T 381
COND T 238

CONTR T 239
dest t 86

DROP ASM T 240
DROP ASMS T 240

DROP FILTER
ASMS T 241

DROP NTH ASM T 241
⇔ t elim 202

EVERY T 243
EXTEND PC T 321

EXTEND PCS T 321
FC T 246

FIRST T 244
FORWARD CHAIN T 246

TFun 151
GEN INDUCTION T 248

GET ASM T 249
GET ASMS T 249

GET FILTER
ASMS T 250

GET NTH ASM T 250
IF T 252
⇔ t intro 202
is t 93

LEMMA T 253
LIST DROP ASM T 254

LIST DROP NTH
ASM T 254

LIST GET ASM T 255
LIST GET NTH

ASM T 255
LIST SPEC ASM T 271
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LIST SPEC NTH
ASM T 271

LIST SWAP ASM
CONCL T 256

LIST SWAP NTH
ASM CONCL T 256
MAP EVERY T 257
MAP FIRST T 257
MERGE PCS T 326

mk t 105
TNone 151

ORELSE T 257
PC T 326

POP ASM T 258
PROP EQ T 294
REPEAT T 262

REPEAT N T 261
REPEAT UNTIL T 262

⇔ t rewrite canon 203
ROTATE T 264
SOLVED T 269

SPEC ASM T 271
SPEC NTH ASM T 271

STRIP T 274
STRIP CONCL T 274

SWAP ASM
CONCL T 276

SWAP NTH ASM
CONCL T 276

t tac 280
⇔ t tac 282

THEN T 280
THEN LIST T 278
THEN TRY T 279

THEN TRY LIST T 279
t thm 199

¬ t thm 206
TOP ASM T 280

TRY T 280
VAR ELIM ASM T 281

VAR ELIM NTH
ASM T 281
⇔ T 283
¬ T 288
⇒ T 290
ε T 292

ALL ASM FC T1 247
ALL ASM

FORWARD CHAIN T1 247
ALL FC T1 247

ALL FORWARD
CHAIN T1 247

ALL VAR ELIM
ASM T1 232

ASM FC T1 247
ASM FORWARD

CHAIN T1 247

BASIC
RESOLUTION T1 307
EXTEND PC T1 321

EXTEND PCS T1 321
FC T1 247

FORWARD CHAIN T1 247
GEN INDUCTION T1 249

MERGE PCS T1 326
PC T1 326

REPEAT UNTIL T1 262
THEN T1 279
CASES T2 237

IF T2 251
⇔ T2 281
¬ T2 287

Symbol Table 122
LSAD Tables 75

accept tac 231
all asm ante tac 231

all asm fc tac 245
all asm forward

chain tac 245
all fc tac 245

all forward chain tac 245
all var elim asm tac 232

all β tac 233
all ε tac 233
ante tac 233
asm tac 234

asm ante tac 234
asm fc tac 245

asm forward chain tac 245
asm prove tac 316

asm prove ∃ tac 316
asm rewrite tac 263

asm rewrite thm tac 263
back chain tac 235

back chain thm tac 236
basic prove tac 357

basic res tac 312
bc tac 235

bc thm tac 236
cases tac 237

check asm tac 238
concl in asms tac 238

contr tac 239
conv tac 239

current ad pr tac 317
discard tac 240

eq sym asm tac 242
eq sym nth asm tac 242

f thm tac 247
fail tac 243

fail with tac 243
fc tac 245

forward chain tac 245
gen induction tac 248

get pr tac 337
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i contr tac 253
id tac 250
if tac 251

intro ∀ tac 252
k id tac 240

lemma tac 253
list asm ante tac 254
list simple ∃ tac 255
list spec asm tac 270

list spec nth asm tac 270
list swap asm concl tac 256
list swap nth asm

concl tac 256
once asm rewrite tac 263

once asm rewrite
thm tac 263

once rewrite tac 263
once rewrite thm tac 263

prim rewrite tac 259
tac proof 277

simple tac proof 264
prop eq prove tac 295

prove tac 259
prove ∃ tac 260

pure asm rewrite tac 263
pure asm rewrite

thm tac 263
pure once asm

rewrite tac 263
pure once asm

rewrite thm tac 263
pure once rewrite tac 263

pure once rewrite
thm tac 263

pure rewrite tac 263
pure rewrite thm tac 263

rename tac 261
rewrite tac 263

rewrite thm tac 263
set pr tac 337

simple taut tac 265
simple ¬ in tac 266

simple ∀ tac 267
simple ∃ tac 267

simple ∃1 tac 269
spec asm tac 270

spec nth asm tac 270
step strip tac 272

step strip asm tac 272
strip tac 274

strip asm tac 273
strip concl tac 274

swap asm concl tac 275
swap nth asm concl tac 275

swap ∨ tac 276
t tac 280

taut tac 278
var elim asm tac 281

var elim nth asm tac 281
z app eq tac 422

z basic prove tac 386
z cov induction tac 514

z fc prove tac 390
z gen pred tac 391

z intro gen pred tac 394
z intro ∀ tac 394

z quantifiers elim tac 397
z seq induction tac 524

z spec asm tac 399
z spec nth asm tac 399

z strip tac 437
z R lin arith prove tac 532

z ∀ tac 409
z ∃ tac 414

z ∃1 tac 416
z ≤ induction tac 517
z F induction tac 526
z N induction tac 517
z Z induction tac 519

⇔ tac 282
⇔ t tac 282
∧ tac 283

∨ left tac 284
∨ right tac 284

¬ tac 288
¬ elim tac 285
¬ in tac 286
⇒ tac 289

⇒ thm tac 290
∀ tac 290
∃ tac 291
∃1 tac 291

ε tac 292
all var elim asm tac1 232

basic res tac1 310
gen induction tac1 249

get pr tac1 337
intro ∀ tac1 252

z seq induction tac1 524
basic res tac2 310
basic res tac3 311
basic res tac4 311

TACTIC 231
apply tactic 223

tactic subgoal warning 222
THM TACTIC 231
THM TACTICAL 231

Tactics1 231
Tactics2 231
Tactics3 231
tail 484

z tail def 522
tail [X ] 483
taut conv 277
taut rule 278
taut tac 278
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simple taut tac 265
z tc def 507

Term 70
TERM 80
term any 113

basic dest z term 361
check is z term 381

compact term 133
term consts 113

DEST TERM 80
dest term 86

DEST SIMPLE TERM 79
dest simple term 85

dest z term 362
term diff 113
term fail 113
term fold 113

format term 73
term grab 113

is term in 41
is z term 362

term less 114
term map 114
term match 114
term mem 114

mk term 105
mk simple term 104

mk z term 370
z term of type 399

term order 302
gen term order 300

make term order 300
is term out 41

asm inst term rule 159
inst term rule 172

KIInst TermRule 129
show term 74

string of term 109
term tycons 114
term types 114
term tyvars 114

UD Term 119
term unify 314
term union 114

list term union 99
term vars 114

Z TERM 360
dest z term1 382
format term1 73

is z term1 382
ask at terminal 60

reset use terminal 65
use terminal 66

declare terminator 124
undeclare terminator 128

get terminators 126
get current terminators 125

get undeclared terminators 127

LS Terminators 75
LSUndeclared Terminators 75

LSAD Terms 75
pp′TypesAnd Terms 79

TypesAnd Terms 79
ZTypesAnd Terms 359

TEST 151
THM INFO TEST 151

texdvi 13
Text 70

get message text 18
THEN 280

if ? then !else ! 490
(if ? then !else !)[X ] 489

THEN C 198
THEN CAN 198

CONV THEN 240
if then elim 171

FAIL THEN 243
FAIL WITH THEN 243

HT Then 70
ID THEN 250
IF THEN 251

THEN LIST 278
THEN LIST CAN 198
THEN LIST T 278

SIMPLE ¬ IN THEN 266
SIMPLE ∃ THEN 268

SIMPLE ∃1 THEN 269
STRIP THM THEN 275

THEN T 280
THEN T1 279
THEN TRY 279
THEN TRY C 199
THEN TRY LIST 279
THEN TRY LIST T 279
THEN TRY T 279
THEN TRY TTCL 279
THEN TTCL 279

⇔ THEN 282
∧ THEN 283
∨ THEN 284

¬ IN THEN 286
⇒ THEN 290
∃ THEN 291
∃1 THEN 292

THEN1 279
IF THEN2 251
⇔ THEN2 282
∧ THEN2 283
∨ THEN2 284

gen find thm in theories 152
THEORY 120

is theory ancestor 142
Delete Theory 131
delete theory 135
do in theory 137

Duplicate Theory 131
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duplicate theory 138
force delete theory 322

get theory 141
get const theory 139
get type theory 142

pp′ theory hierarchy 50
THEORY INFO 120

get theory info 141
gen theory lister 76
gen theory lister1 76
Lock Theory 131
lock theory 143

get current theory name 139
theory names 140

get theory names 140
New Theory 131
new theory 144
Open Theory 131
open theory 146

output theory 77
print theory 77

THEORY STATUS 119
get theory status 140

get current theory status 139
thm theory 147

theory u simp eqn
cxt 383

Unlock Theory 131
unlock theory 148

z output theory 78
z print theory 78
output theory1 76

z output theory1 78
THM 120

check is z thm 381
compact thm 133

cond thm 161
Delete Thm 131
delete thm 135

dest thm 136
get thm dict 141

eq rewrite thm 164
thm eqn cxt 341

simple ho thm eqn cxt 340
f thm 170

thm fail 147
find thm 151

format thm 73
gen find thm 152

get thm 141
if thm 289

if rewrite thm 164
gen find thm in theories 152

THM INFO 151
THM INFO TEST 151
thm level 135

ListSave Thm 131
list save thm 142

modify goal state thm 224
pop thm 225

prove thm 260
push goal state thm 226

Save Thm 131
save thm 146

save pop thm 227
show thm 74

simplify goal state thm 228
string of thm 147

t thm 199
asm rewrite thm tac 263
back chain thm tac 236

bc thm tac 236
f thm tac 247

once asm rewrite thm tac 263
once rewrite thm tac 263

pure asm rewrite thm tac 263
pure once asm

rewrite thm tac 263
pure once rewrite thm tac 263

pure rewrite thm tac 263
rewrite thm tac 263

⇒ thm tac 290
THM TACTIC 231
THM TACTICAL 231

STRIP THM THEN 275
thm theory 147

top thm 229
top goal state thm 228

THM TYPE 151
valid thm 148

z 0 less times thm 471
z 0 less times thm 523

z 0 N thm 465
z 0 N thm 516
z abs thm 468
z abs thm 516

z abs 0 less thm 471
z abs 0 less thm 523
z abs eq 0 thm 468
z abs eq 0 thm 516

z abs minus thm 468
z abs minus thm 516

z abs neg thm 471
z abs neg thm 523
z abs plus thm 468
z abs plus thm 516
z abs pos thm 471
z abs pos thm 523

z abs times thm 468
z abs times thm 516

z abs ≤ times thm 471
z abs ≤ times thm 523

z abs N thm 468
z abs N thm 516

z app thm 460
z app ∈ thm 460
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z cov induction thm 468
z cov induction thm 516

z div thm 470
z div thm 523

z div mod unique thm 468
z div mod unique thm 516

z dom thm 481
z dom f ³½ f thm 457
z dom f ³½ f thm 526
z dom f ↔ f thm 456
z dom f ↔ f thm 526
z dom f → f thm 457
z dom f → f thm 526
z dom f ½ f thm 457
z dom f ½ f thm 526
z dom f ³ f thm 457
z dom f ³ f thm 526

z dom seq thm 487
z dom seq thm 525

z dom seqd thm 488
z dom seqd thm 525
z dom ⊕ 7→ thm 455
z dom ⊕ 7→ thm 526

z dom a thm 487
z dom a thm 525

z dot dot diff thm 469
z dot dot diff thm 523
z dot dot plus thm 469
z dot dot plus thm 523

z dot dot ∩ thm 469
z dot dot ∩ thm 523
z dot dot ∪ thm 469
z dot dot ∪ thm 523
z empty F thm 469
z empty F thm 523

z empty ³ thm 458
z empty ³ thm 526

z first thm 491
z first thm 499
z float thm 477
z float thm 533

z guillemets thm 491
z guillemets thm 499

z id thm 481
z id ³½ thm 456
z id ³½ thm 526

z if thm 491
z if thm 499

z int homomorphism thm 465
z int homomorphism thm 516

z less cases thm 469
z less cases thm 523
z less irrefl thm 467
z less irrefl thm 516
z less plus1 thm 468
z less trans thm 467
z less trans thm 516

z less ≤ trans thm 467

z less ≤ trans thm 516
z less Z less thm 449
z less Z less thm 521

z minus thm 465
z minus thm 516

z minus times thm 466
z minus times thm 516
z minus N ≤ thm 467
z minus N ≤ thm 516

z mod thm 471
z mod thm 523

z num list thm 488
z pigeon hole thm 470
z pigeon hole thm 523
z plus assoc thm 464
z plus assoc thm 516
z plus comm thm 464
z plus comm thm 516

z plus cyclic group thm 465
z plus cyclic group thm 516

z plus minus thm 465
z plus minus thm 516
z plus order thm 465
z plus order thm 516

z plus0 thm 465
z plus0 thm 516

z prim seq induction thm 486
z prim seq induction thm 525

z ran thm 481
z ran mono thm 455
z ran mono thm 526
z ran seqd thm 488
z ran seqd thm 525

z ran ∪ thm 456
z ran ∪ thm 526
z ran C thm 455
z ran C thm 526

z reflex trans
closure thm 481

z rel image thm 481
z rel inv thm 481

z rel inv ³½ thm 456
z rel inv ³½ thm 526

z second thm 491
z second thm 499

z seq thm 486
z seq thm 525

z seq cases thm 487
z seq cases thm 525

z seq induction thm 487
z seq induction thm 525

z seq seq x thm 487
z seq seq x thm 525

z seq u thm 486
z seq u thm 525

z seqd eq thm 488
z seqd eq thm 525

z seqd ∈ seq thm 488
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z seqd ∈ seq thm 525
z seqd a thm 488
z seqd a thm 525

z seqd a rw thm 488
z seqd a rw thm 525

z set dif thm 491
z set dif thm 499

z sets ext thm 460
z simple swap ³½ thm 456
z simple swap ³½ thm 526

z singleton app thm 458
z singleton app thm 526
z singleton seq thm 486
z singleton seq thm 525

z singleton seq x thm 487
z singleton seq x thm 525

z size 0 thm 470
z size 0 thm 523
z size 1 thm 470
z size 1 thm 523
z size 2 thm 470
z size 2 thm 523

z size diff thm 470
z size diff thm 523

z size dot dot thm 470
z size dot dot thm 523
z size empty thm 469
z size empty thm 523

z size eq thm 470
z size eq thm 523

z size mono thm 470
z size mono thm 523
z size pair thm 470
z size pair thm 523
z size seq thm 470
z size seq thm 523

z size seq N thm 486
z size seq N thm 525

z size seqd thm 488
z size seqd thm 525

z size seqd length thm 488
z size seqd length thm 525

z size singleton thm 470
z size singleton thm 523

z size singleton seq thm 487
z size singleton seq thm 525

z size 7 7→ thm 470
z size 7 7→ thm 523
z size × thm 470
z size × thm 523

z size ≤ 1 thm 470
z size ≤ 1 thm 523

z size ∪ thm 470
z size ∪ thm 523

z size ∪ singleton thm 470
z size ∪ singleton thm 523

z size ∪ ≤ thm 470

z size ∪ ≤ thm 523
z size a thm 487
z size a thm 525
z size N thm 470
z size N thm 523

z succ↗0l thm 471
z succ↗0l thm 523

z succ↗minus nl thm 471
z succ↗minus nl thm 523

z succ↗nl thm 471
z succ↗nl thm 523
z swap ³½ thm 456
z swap ³½ thm 526

z times assoc thm 466
z times assoc thm 516
z times comm thm 466
z times comm thm 516
z times eq 0 thm 466
z times eq 0 thm 516

z times less 0 thm 471
z times less 0 thm 523
z times order thm 466
z times order thm 516

z times plus distrib thm 466
z times plus distrib thm 516

z times0 thm 466
z times0 thm 516
z times1 thm 466
z times1 thm 516

z trans closure thm 481
z underlining

brackets thm 492
z underlining

brackets thm 499
z ⊆ thm 491
z ⊆ thm 499

z ⊆ F thm 470
z ⊆ F thm 523

z −B thm 481
z ◦ thm 481

z ◦ ³½ thm 456
z ◦ ³½ thm 526
z ◦ → thm 456
z ◦ → thm 526
z ◦ ½ thm 456
z ◦ ½ thm 526
z ◦ ³ thm 456
z ◦ ³ thm 526

z ∈ app thm 460
z ∈ first thm 453
z ∈ first thm 510

z ∈ second thm 453
z ∈ second thm 510

z ∈ seq app eq thm 488
z ∈ seq app eq thm 525

z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525

z ∈ succ thm 471
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z ∈ succ thm 523
z ∈ → thm 455
z ∈ → thm 526
z ∈ N thm 467
z ∈ N thm 516

z ∈ N1 thm 468
z ∈ N1 thm 516
z ∈ P thm 491
z ∈ P thm 499

z 6∈ thm 491
z 6∈ thm 499

z ³½ thm 453
z ³½ thm 510

z ³½ diff singleton thm 458
z ³½ diff singleton thm 526

z ³½ trans thm 456
z ³½ trans thm 526

z B thm 481
z ∅ thm 491
z ∅ thm 499
z ⊂ thm 491
z ⊂ thm 499
z ∩ thm 491
z ∩ thm 499

z ∩ ³½ thm 457
z ∩ ³½ thm 526
z ∩ ↔ thm 457
z ∩ ↔ thm 526
z ∩ → thm 457
z ∩ → thm 526
z ∩ ½ thm 457
z ∩ ½ thm 526
z ∩ ³ thm 457
z ∩ ³ thm 526

z ª thm 491
z ª thm 499
z

⋂
thm 491

z
⋂

thm 499
z 〈〉 thm 487
z 〈〉 thm 525

z 〈〉 seq thm 487
z 〈〉 seq thm 525
z 〈〉 a thm 487
z 〈〉 a thm 525

z ↔ thm 481
z ↔ ran thm 457
z ↔ ran thm 526

z ⊕ thm 481
z ⊕ 7→ app thm 455
z ⊕ 7→ app thm 526

z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526

z → thm 453
z → thm 510

z → app thm 453
z → app thm 510

z → app eq ⇔ ∈
rel thm 453

z → app eq ⇔ ∈
rel thm 510

z → app ∈ rel thm 453
z → app ∈ rel thm 510

z → diff singleton thm 457
z → diff singleton thm 526

z → dom thm 456
z → dom thm 526

z → empty thm 458
z → empty thm 526

z → ran thm 457
z → ran thm 526

z → ran eq ³ thm 455
z → ran eq ³ thm 526

z → ∈ rel ⇔ app
eq thm 453

z → ∈ rel ⇔ app
eq thm 510

z R 0 less 0 less
times thm 476

z R 0 less 0 less
times thm 532

z R complete thm 475
z R complete thm 531

z R eq thm 475
z R eq thm 532

z R eq ≤ thm 474
z R eq ≤ thm 532

z R greater thm 532
z R less thm 531

z R less antisym thm 474
z R less antisym thm 531

z R less cases thm 474
z R less cases thm 531
z R less dense thm 474
z R less dense thm 531
z R less irrefl thm 474
z R less irrefl thm 531
z R less trans thm 474
z R less trans thm 531
z R less ¬ eq thm 474
z R less ¬ eq thm 532

z R less ≤ trans thm 474
z R less ≤ trans thm 532

z R minus thm 533
z R minus eq thm 475
z R minus eq thm 533

z R over thm 533
z R plus thm 533

z R plus 0 thm 475
z R plus 0 thm 533

z R plus assoc thm 475
z R plus assoc thm 533
z R plus comm thm 475
z R plus comm thm 533
z R plus minus thm 475
z R plus minus thm 533
z R plus mono thm 475
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z R plus mono thm 533
z R plus order thm 475
z R plus order thm 533
z R plus unit thm 475
z R plus unit thm 533

z R real 0 thm 533
z R real NR thm 533
z R subtract thm 533

z R times thm 533
z R times assoc thm 476
z R times assoc thm 533
z R times comm thm 476
z R times comm thm 533
z R times order thm 477
z R times order thm 533
z R times plus

distrib thm 476
z R times plus

distrib thm 533
z R times unit thm 476
z R times unit thm 533

z R unbounded
above thm 474

z R unbounded
above thm 531

z R unbounded
below thm 474

z R unbounded
below thm 531

z R ¬ less ≤ thm 532
z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532

z R ≤ thm 532
z R ≤ antisym thm 474
z R ≤ antisym thm 532

z R ≤ cases thm 474
z R ≤ cases thm 532

z R ≤ less cases thm 474
z R ≤ less cases thm 532
z R ≤ less trans thm 474
z R ≤ less trans thm 532

z R ≤ refl thm 474
z R ≤ refl thm 532

z R ≤ trans thm 474
z R ≤ trans thm 532

z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532

z R ≥ thm 532
z ¬ less thm 467
z ¬ less thm 516

z ¬ ≤ thm 467
z ¬ ≤ thm 516

z ¬ a empty thm 487
z ¬ a empty thm 525

z ¬ N thm 465
z ¬ N thm 516

z o
9 thm 481

z ≤ antisym thm 467

z ≤ antisym thm 516
z ≤ cases thm 467
z ≤ cases thm 516

z ≤ induction thm 468
z ≤ induction thm 516

z ≤ less eq thm 468
z ≤ less eq thm 516

z ≤ less trans thm 467
z ≤ less trans thm 516

z ≤ plus N thm 467
z ≤ plus N thm 516

z ≤ refl thm 467
z ≤ refl thm 516

z ≤ trans thm 467
z ≤ trans thm 516
z ≤ ≤ 0 thm 467
z ≤ ≤ 0 thm 516

z ≤ ≤ plus1 thm 469
z ≤ ≤ plus1 thm 523

z ≤ Z ≤ thm 449
z ≤ Z ≤ thm 521

z 6= thm 491
z 6= thm 499
z ∪ thm 491
z ∪ thm 499

z ∪ ³½ thm 456
z ∪ ³½ thm 526
z ∪ ↔ thm 456
z ∪ ↔ thm 526
z ∪ → thm 456
z ∪ → thm 526
z ∪ ½ thm 456
z ∪ ½ thm 526
z ∪ ³ thm 456
z ∪ ³ thm 526

z 7³ thm 453
z 7³ thm 510
z

⋃
thm 491

z
⋃

thm 499
z

⋃
F thm 470

z
⋃
F thm 523

z 7→ thm 453
z 7→ thm 510
z ½ thm 453
z ½ thm 510

z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526

z −C thm 481
z F thm 468
z F thm 516

z F diff thm 470
z F diff thm 523

z F empty thm 468
z F empty thm 516

z F induction thm 469
z F induction thm 523

z F size thm 469
z F size thm 523
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z F ∩ thm 470
z F ∩ thm 523

z F ∪ singleton thm 469
z F ∪ singleton thm 523

z F P thm 469
z F P thm 523
z F1 thm 468
z F1 thm 516
z a thm 486
z a thm 525

z a assoc thm 487
z a assoc thm 525

z a def thm 486
z a def thm 525

z a one one thm 487
z a one one thm 525

z a seq x thm 487
z a seq x thm 525

z a singleton thm 486
z a singleton thm 525

z a ∈ seq thm 486
z a ∈ seq thm 525

z a 〈〉 thm 487
z a 〈〉 thm 525

z 7→ thm 481
z N thm 465
z N thm 516

z N abs minus thm 468
z N abs minus thm 516

z N cases thm 465
z N cases thm 516

z N induction thm 465
z N induction thm 516

z N plus thm 465
z N plus thm 516

z N plus1 thm 465
z N plus1 thm 516
z N times thm 466
z N times thm 516

z N ¬ minus thm 466
z N ¬ minus thm 516
z N ¬ plus1 thm 465
z N ¬ plus1 thm 516

z ³ thm 453
z ³ thm 510

z ³ ran thm 457
z ³ ran thm 526

z P1 thm 491
z P1 thm 499
z C thm 481

z C → thm 455
z C → thm 526

z Z cases thm 465
z Z cases thm 516

z Z eq thm 465

z Z eq thm 516
z Z induction thm 465
z Z induction thm 516

z Z minus thm 449
z Z minus thm 521

z Z one one thm 449
z Z one one thm 521

z Z plus thm 448
z Z plus thm 521

z Z subtract thm 449
z Z subtract thm 521

z Z times thm 448
z Z times thm 521

z 7½ thm 453
z 7½ thm 510
⇔ thm 289

⇔ rewrite thm 164
∧ thm 203

∧ rewrite thm 164
∨ thm 205

∨ rewrite thm 164
¬ thm 206

¬ f thm 289
¬ if thm 289

¬ rewrite thm 164
¬ t thm 206
¬ ⇔ thm 289
¬ ∧ thm 289
¬ ∨ thm 289
¬ ¬ thm 289
¬ ⇒ thm 289
¬ ∀ thm 207
¬ ∃ thm 208
⇒ thm 289

⇒ rewrite thm 164
∀ rewrite thm 164
∃ intro thm 213

∃ rewrite thm 164
∃1 thm 216

β rewrite thm 164
Z z minus thm 449
Z z minus thm 521

Z z one one thm 449
Z z one one thm 521

Z z plus thm 449
Z z plus thm 521

Z z subtract thm 449
Z z subtract thm 521
Z z times thm 449
Z z times thm 521

format thm1 73
z id thm1 456
z id thm1 526

z plus assoc thm1 465
z plus assoc thm1 516

z seq thm1 486
z seq thm1 525

z seq induction thm1 487
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z seq induction thm1 525
z size dot dot thm1 470
z size dot dot thm1 523

z size seq thm1 486
z size seq thm1 525

z times assoc thm1 466
z times assoc thm1 516

z ⊆ thm1 491
z ⊆ thm1 499

z ∈ P thm1 460
z ∅ thm1 491

z ⊕ 7→ app thm1 455
z ⊕ 7→ app thm1 526

z R plus assoc thm1 475
z R plus assoc thm1 533
z R plus mono thm1 475
z R plus mono thm1 533

z R times assoc thm1 476
z R times assoc thm1 533

z 7→ thm1 453
z 7→ thm1 510
z ½ thm1 456
z ½ thm1 526
z F thm1 469
z F thm1 523

z F size thm1 470
z F size thm1 523

z a assoc thm1 487
z a assoc thm1 525

z a singleton thm1 487
z a singleton thm1 525

z a ∈ seq thm1 486
z a ∈ seq thm1 525

z ³ thm1 456
z ³ thm1 526

z Z cases thm1 466
z Z cases thm1 516

z 7½ thm1 456
z 7½ thm1 526

¬ thm1 206
z size seq thm2 486
z size seq thm2 525

z R plus mono thm2 475
z R plus mono thm2 533

z 7→ thm2 455
z 7→ thm2 526

add rw thms 338
add sc thms 338
add st thms 339

add ∃ cd thms 339
current ad ∃ cd thms 330
current ad ∃ vs thms 331

get thms 141
get ∃ cd thms 339
get ∃ vs thms 340

LS Thms 75
LSAD Thms 75

pp′set eval ad ∃ cd thms 330
pp′set eval ad ∃ vs thms 331

set ∃ cd thms 339
set ∃ vs thms 340

subgoal package ti context 222
time app 54
TIMED 54
TIMER UNITS 54

z times assoc thm 466
z times assoc thm 516

z R times assoc thm 476
z R times assoc thm 533

z times assoc thm1 466
z times assoc thm1 516

z R times assoc thm1 476
z R times assoc thm1 533

z times clauses 466
z times clauses 516

z R times clauses 477
z R times clauses 533

z times comm thm 466
z times comm thm 516

z R times comm thm 476
z R times comm thm 533

z times conv 518
z R times conv 534
z N times conv 518
z R times def 535

dest z times 513
dest z R times 530

z times eq 0 thm 466
z times eq 0 thm 516

is z times 513
is z R times 530

z times less 0 thm 471
z times less 0 thm 523

mk z times 514
mk z R times 531

z times order thm 466
z times order thm 516

z R times order thm 477
z R times order thm 533

z times plus distrib
thm 466

z times plus distrib
thm 516

z R times plus distrib
thm 476

z R times plus distrib
thm 533

z 0 less times thm 471
z 0 less times thm 523

z abs times thm 468
z abs times thm 516

z abs ≤ times thm 471
z abs ≤ times thm 523
z minus times thm 466
z minus times thm 516
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z R times thm 533
z R 0 less 0 less times thm 476
z R 0 less 0 less times thm 532

z N times thm 466
z N times thm 516
z Z times thm 448
z Z times thm 521
Z z times thm 449
Z z times thm 521
z R times unit thm 476
z R times unit thm 533

z times0 thm 466
z times0 thm 516
z times1 thm 466
z times1 thm 516

Timing 54
tl 22

HTAq Tm 70
to 26

delete to level 135
to ML string 66

basic res next to process 308
α to z conv 416
α to z 417

HOL TOKEN 70
modus tollens rule 176

TooManyReadEmpties 57
Net Tools 117

ZArithmetic Tools 519
TOP ASM T 280
top current label 228
top goal 229
top goal state 229
top goal state thm 228
top goals 228
top labelled goal 229

pp top level depth 73
top main goal 229
TOP MAP C 199
top thm 229

LS Trailer 75
z trans closure clauses 482
z trans closure thm 481

z reflex trans closure thm 481
eq trans rule 165

KIEq TransRule 129
⇒ trans rule 209

z less trans thm 467
z less trans thm 516

z less ≤ trans thm 467
z less ≤ trans thm 516

z ³½ trans thm 456
z ³½ trans thm 526

z R less trans thm 474
z R less trans thm 531

z R less ≤ trans thm 474
z R less ≤ trans thm 532

z R ≤ trans thm 474

z R ≤ trans thm 532
z R ≤ less trans thm 474
z R ≤ less trans thm 532

z ≤ trans thm 467
z ≤ trans thm 516

z ≤ less trans thm 467
z ≤ less trans thm 516

translate for output 66
fun true 28
is z true 370

mk z true 370
Z True 360

TRY 280
TRY C 199

THEN TRY C 199
THEN TRY LIST T 279
THEN TRY LIST 279

TRY T 280
THEN TRY T 279
THEN TRY 279

TRY TTCL 280
THEN TRY TTCL 279

TSAncestor 119
TSDeleted 119
TSLocked 119
TSNormal 119

pp′ TS 221
all submatch tt 152
all substring tt 152
all subterm tt 152

any submatch tt 152
any substring tt 152
any subterm tt 152

TTAxiom 151
TTDefn 151

no submatch tt 152
no substring tt 152
no subterm tt 152

TTSaved 151
EVERY TTCL 242
FIRST TTCL 244

ORELSE TTCL 257
REPEAT TTCL 262

THEN TTCL 279
THEN TRY TTCL 279

TRY TTCL 280
dest z tuple 370

z tuple eq conv 506
z tuple eq conv1 507
z tuple intro conv 507

is z tuple 370
z tuple lang eq conv 427
z tuple lang intro conv 427

mk z tuple 370
dest z tuple type 370

is z tuple type 370
mk z tuple type 370

Z TupleType 360
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Z Tuple 360
′z tuples 502
′z tuples lang 420

HTAq Ty 70
term tycons 114
type tycons 116

Type 70
TYPE 80

declare type abbrev 124
expand type abbrev 124

get type abbrev 126
is type abbrev 127

undeclare type abbrev 128
get type abbrevs 127

get undeclared type abbrevs 127
LS TypeAbbrevs 75

LSUndeclared TypeAbbrevs 75
type any 115

get type arity 141
BASIC RES TYPE 305

compact type 133
New TypeDefn 131
new type defn 145

Delete Type 131
delete type 136

DEST SIMPLE TYPE 79
dest simple type 85

dest z type 362
dest z given type 366
dest z power type 367

dest z schema type 368
dest z tuple type 370
dest z var type 370

dest → type 87
dest × type 89

type fail 115
format type 74

get const type 139
ICL′DATABASE

INFO TYPE 48
get type info 127

inst type 90
is type instance 93

is all z type 382
is z type 363

is z given type 366
is z power type 367

is z schema type 368
is z tuple type 370
is z var type 370

is → type 94
is × type 95
get type keys 141

list mk → type 97
type map 115
type match 115
type match1 115

mk simple type 104

mk z type 370
mk z given type 366
mk z power type 367

mk z schema type 368
mk z tuple type 370
mk z var type 370

mk → type 106
mk × type 108

New Type 131
new type 145

type of 115
z type of 399

type order 303
RES DB TYPE 305
asm inst type rule 159

inst type rule 173
KIInst TypeRule 129
show type 74

string of type 109
strip → type 111

get type theory 142
THM TYPE 151

type tycons 116
type tyvars 116

UD Type 119
Z TYPE 360

ZGiven Type 360
ZPower Type 360

ZSchema Type 360
z term of type 399

ZTuple Type 360
ZVar Type 360

format type1 74
TypesAndTerms 79

pp′ TypesAndTerms 79
Z TypesAndTerms 359

get types 141
LS Types 75

LSAD Types 75
term types 114

UtilityShared Types 19
term tyvars 114
type tyvars 116
z ∈ u conv 401
dest u 363

z gen pred u elim 392
is u 363

mk u 363
u simp eqn cxt 384

get u simp eqn cxt 383
set u simp eqn cxt 383

theory u simp eqn cxt 383
z seq u thm 486
z seq u thm 525
z R ub def 535

ubR 473
ubR 473

ubR 473
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( ubR ) 472
UD Int 119
UD String 119
UD Term 119
UD Type 119
uindex 36
uindex 38

z R unbounded above thm 474
z R unbounded above thm 531
z R unbounded below thm 474
z R unbounded below thm 531

uncurry 29
all ∀ uncurry conv 156
all ∃ uncurry conv 156

∀ uncurry conv 212
∃ uncurry conv 214

undeclare alias 128
undeclare terminator 128
undeclare type abbrev 128

get undeclared aliases 127
LS UndeclaredAliases 75

get undeclared
terminators 127

LS UndeclaredTerminators 75
get undeclared type

abbrevs 127
LS UndeclaredTypeAbbrevs 75
z ′ underlining brackets

def 498
z underlining brackets

thm 492
z underlining brackets

thm 499
undisch rule 199
undo 230
undo buffer length 222

term unify 314
union 27

list union 24
list term union 99

term union 114
z div mod unique thm 468
z div mod unique thm 516
z R plus unit thm 475
z R plus unit thm 533

z R times unit thm 476
z R times unit thm 533

TIMER UNITS 54
Sym UnknownChar 57
Sym UnknownKw 57

UnlockTheory 131
unlock theory 148

get unproved conjectures 149
REPEAT UNTIL 262
REPEAT UNTIL T 262
REPEAT UNTIL T1 262
REPEAT UNTIL1 262

look up general reader 64

look up named reader 64
look up specific reader 64

update 37
update 38
use extended chars 56

get use extended chars
flag 63

use file 66
use file non stop

mode 56
use file1 66
use string 66
use terminal 66

reset use terminal 65
user banner 49
USER DATA 121
USER DATUM 119

get user datum 142
Set UserDatum 131
set user datum 147

Character Utilities 31
Function Utilities 28

List Utilities 20
UtilitySharedTypes 19
v ∃ intro 200
valid thm 148
Value 19

force value 21
Var 79

D Var 80
dest var 87

VAR ELIM ASM T 281
ALL VAR ELIM ASM T 232
ALL VAR ELIM ASM T1 232

var elim asm tac 281
all var elim asm tac 232
all var elim asm tac1 232

VAR ELIM NTH
ASM T 281

var elim nth asm tac 281
get shell var 48

is free var in 92
is var 94

mk var 106
var subst 116

dest z var type 370
is z var type 370

mk z var type 370
Z VarType 360

ZG Var 360
ZL Var 360

variant 116
list variant 99

string variant 109
get variant suffix 90
set variant suffix 109

varstruct variant 200
gen vars 90
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term vars 114
λ varstruct conv 220

varstruct variant 200
Vartype 79

dest vartype 87
is vartype 93

mk vartype 105
PP Vector 42
HT Vert 70

current ad ∃ vs thms 331
get ∃ vs thms 340

pp′set eval ad ∃ vs thms 331
set ∃ vs thms 340

warn 52
ONCE MAP WARN C 177

local warn 64
Warning 52

illformed rewrite warning 153
tactic subgoal warning 222

which 27
is white 64

Sym White 57
fail with canon 166
fail with conv 166
fail with tac 243

FAIL WITH THEN 243
abandon reader writer 59

HOLReader Writer 55
Reader Writer 55
Reader WriterSupport 55

bag X 450
id X 478

iseq X 483
seq X 483

seq1 X 483
z seq seq x thm 487
z seq seq x thm 525

z singleton seq x thm 487
z singleton seq x thm 525

z a seq x thm 487
z a seq x thm 525

X³½Y 452
X 7 7½Y 462
X 7 7→Y 462
X↔Y 489
X→Y 489
X 7³Y 452
X 7→Y 452
X½Y 452

F X 462
F1 X 462

X³Y 452
P1 X 489

X 7½Y 452
xpp 11

( partition )[I , X ] 483
(disjoint )[I , X ] 483

X³½ Y 452

X 7 7½ Y 462
X 7 7→ Y 462
X↔ Y 489
X→ Y 489
X 7³ Y 452
X 7→ Y 452
X½ Y 452
X³ Y 452
X 7½ Y 452

( ◦ )[X , Y ,Z ] 478
( o

9 )[X , Y ,Z ] 478
( −B )[X , Y ] 478
( B )[X , Y ] 478
( (| |))[X , Y ] 478
( ⊕ )[X , Y ] 478
( −C )[X , Y ] 478

( ↗∼l)[X , Y ] 478
( 7→ )[X , Y ] 478
( C )[X , Y ] 478

( ( ) )[X , Y ] 489
dom[X , Y ] 478
first [X , Y ] 489
ran[X , Y ] 478

second [X , Y ] 489
z 0 less times thm 471
z 0 less times thm 523
z 0 N thm 465
z 0 N thm 516
z abs 0 less thm 471
z abs 0 less thm 523
z abs conv 518

dest z abs 513
z abs eq 0 thm 468
z abs eq 0 thm 516

is z abs 513
z abs minus thm 468
z abs minus thm 516

mk z abs 514
z abs neg thm 471
z abs neg thm 523
z abs plus thm 468
z abs plus thm 516
z abs pos thm 471
z abs pos thm 523
z abs thm 468
z abs thm 516
z abs times thm 468
z abs times thm 516
z abs ≤ times thm 471
z abs ≤ times thm 523
z abs N thm 468
z abs N thm 516
z anf conv 520
ZApp 360
z app conv 421

dest z app 363
z app eq tac 422

is z app 363
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mk z app 363
z app thm 460
z app ∈ thm 460
z app λ rule 422
z arith def 518
ZArithmeticTools 519
z bag def 528
ZBags 526
z basic prove conv 385
z basic prove tac 386

BdzNot Z 359
ZBinding 360

dest z binding 364
z binding eq conv 423
z binding eq conv1 423
z binding eq conv2 423
z binding eq conv3 506

is z binding 364
mk z binding 364

z bindingd elim conv 422
z bindingd intro conv 423

′ z bindings 421
check is z 381

Z z consistent 448
check is z conv result 381

α to z conv 416
Z z conv 521

z count def 528
z cov induction tac 514
z cov induction thm 468
z cov induction thm 516
ZDec 360

dest z dec 365
is z dec 365

mk z dec 365
z dec pred conv 389
z dec renames conv 433
ZDecl 360

′ z decl 380
Z DECL C 387

dest z decl 364
Z DECL INTRO C 387

is z decl 364
mk z decl 364

z decl pred conv 388
ZDecor s 360
z decor s conv 433

dest z decor s 364
is z decor s 364

mk z decor s 364
Z z def 521

z defn simp rule 424
z disjoint def 522
z div conv 518

dest z div 513
is z div 513

mk z div 514

z div mod unique
thm 468

z div mod unique
thm 516

z div thm 470
z div thm 523
z dom clauses 481
z dom def 507
z dom f ³½ f thm 457
z dom f ³½ f thm 526
z dom f ↔ f thm 456
z dom f ↔ f thm 526
z dom f → f thm 457
z dom f → f thm 526
z dom f ½ f thm 457
z dom f ½ f thm 526
z dom f ³ f thm 457
z dom f ³ f thm 526
z dom seq thm 487
z dom seq thm 525
z dom seqd thm 488
z dom seqd thm 525
z dom thm 481
z dom ⊕ 7→ thm 455
z dom ⊕ 7→ thm 526
z dom a thm 487
z dom a thm 525
z dot dot clauses 469
z dot dot clauses 523
z dot dot conv 523
z dot dot def 518
z dot dot diff thm 469
z dot dot diff thm 523
z dot dot plus thm 469
z dot dot plus thm 523
z dot dot ∩ thm 469
z dot dot ∩ thm 523
z dot dot ∪ thm 469
z dot dot ∪ thm 523

′ z elementwise eq 503
z empty F thm 469
z empty F thm 523
z empty ³ thm 458
z empty ³ thm 526
ZEq 360

dest z eq 365
is z eq 365

mk z eq 365
ZExpressions 418
ZFalse 360

is z false 365
mk z false 365

′ z fc 380
z fc prove conv 389
z fc prove tac 390
z first def 498
z first thm 491
z first thm 499
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ZFloat 360
z float conv 531

dest z float 365
is z float 365

mk z float 365
z float thm 477
z float thm 533
z front def 522

′ z fun alg 509
z fun app clauses 454
z fun app clauses 510
z fun dom clauses 454
z fun dom clauses 510
z fun ext 509
z fun ran clauses 454
z fun ran clauses 510
z fun ∈ clauses 454
z fun ∈ clauses 510
ZFunctions 507
ZFunctions1 522
z gen pred elim 391
z gen pred elim1 391
z gen pred intro 391
z gen pred tac 391
z gen pred u elim 392
z get spec 393
ZGivenType 360

dest z given type 366
is z given type 366

mk z given type 366
check is z goal 381

dest z greater 513
is z greater 513

z greater less conv 518
mk z greater 514

z guillemets thm 491
z guillemets thm 499

dest z gvar 366
is z gvar 366

mk z gvar 366
z h schema conv 434

dest z h schema 366
is z h schema 366

mk z h schema 366
z h schema pred

conv 434
z hash def 518
z head def 522
ZHides 360
z hides conv 434

dest z hides 366
is z hides 366

mk z hides 366
z id clauses 481
z id def 507
z id thm 481
z id thm1 456
z id thm1 526

z id ³½ thm 456
z id ³½ thm 526

dest z if 496
is z if 496

mk z if 496
z if thm 491
z if thm 499
z in def 528
z inequality def 518
ZInt 360

dest z int 366
z int homomorphism

thm 465
z int homomorphism

thm 516
is z int 366

mk z int 366
z intro gen pred tac 394
z intro ∀ tac 394

is z 382
z iseq def 522
z items def 528
z iter def 518
z language 503
z language ext 504
z last def 522
Z LEFT C 424
z less cases thm 469
z less cases thm 523
z less clauses 467
z less clauses 516
z less conv 518

dest z less 513
z less irrefl thm 467
z less irrefl thm 516

is z less 513
mk z less 514

z less plus1 thm 468
z less trans thm 467
z less trans thm 516
z less ≤ trans thm 467
z less ≤ trans thm 516
z less Z less thm 449
z less Z less thm 521
ZLet 360
z let conv 424
z let conv1 424

dest z let 367
is z let 367

mk z let 367
ZLibrary 527
z library 527
z library ext 527
z library1 528
z library1 ext 528
z lin arith 519

′ z lin arith 520
z lin arith1 519
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′ z lin arith1 520
dest z lvar 367

is z lvar 367
mk z lvar 367

z max def 518
z min def 518
z minus clauses 465
z minus clauses 516

dest z minus 513
is z minus 513

mk z minus 514
z minus thm 465
z minus thm 516

Z z minus thm 449
Z z minus thm 521

z minus times thm 466
z minus times thm 516
z minus N ≤ thm 467
z minus N ≤ thm 516
z mod conv 518

dest z mod 513
is z mod 513

mk z mod 514
z mod thm 471
z mod thm 523

dest z name 361
dest z name1 361
dest z name2 361

z norm h schema
conv 435

′ z normal 494
z num list thm 488
ZNumbers 510

′ z numbers 511
ZNumbers1 522

′ z numbers1 512
Z z one one thm 449
Z z one one thm 521

z output theory 78
z output theory1 78
z para pred canon 395
z para pred conv 395
z partition def 522
z pigeon hole thm 470
z pigeon hole thm 523
z plus assoc thm 464
z plus assoc thm 516
z plus assoc thm1 465
z plus assoc thm1 516
z plus clauses 466
z plus clauses 516
z plus comm thm 464
z plus comm thm 516
z plus conv 518
z plus cyclic group

thm 465
z plus cyclic group

thm 516

dest z plus 513
is z plus 513

z plus minus thm 465
z plus minus thm 516

mk z plus 514
z plus order thm 465
z plus order thm 516

Z z plus thm 449
Z z plus thm 521

z plus0 thm 465
z plus0 thm 516
ZPowerType 360

dest z power type 367
is z power type 367

mk z power type 367
z pred dec conv 396
z pred decl conv 396
ZPredicateCalculus 378
z predicates 378

′ z predicates 379
ZPres 360
z pres conv 435

dest z pres 367
is z pres 367

mk z pres 367
z prim seq induction

thm 486
z prim seq induction

thm 525
z print fixity 78
z print theory 78
z push consistency

goal 397
z quantifiers elim tac 397
z ran clauses 481
z ran def 507
z ran mono thm 455
z ran mono thm 526
z ran seqd thm 488
z ran seqd thm 525
z ran thm 481
z ran ∪ thm 456
z ran ∪ thm 526
z ran C thm 455
z ran C thm 526
Z RAND C 424
Z RANDS C 424

dest z real 530
is z real 530

mk z real 531
′ z reals 529

z reflex closure
clauses 482

z reflex trans closure
thm 481

′ z rel alg 501
z rel ext 505
z rel image clauses 482
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z rel image def 507
z rel image thm 481
z rel inv clauses 482
z rel inv def 507
z rel inv thm 481
z rel inv ³½ thm 456
z rel inv ³½ thm 526
ZRelations 499
ZRenames 360
z renames conv 436

dest z renames 368
is z renames 368

mk z renames 368
z rev def 522
Z RIGHT C 424
z rtc def 507
ZSchemaCalculus 432
ZSchemaDec 360

dest z schema dec 368
is z schema dec 368

mk z schema dec 368
ZSchemaPred 360
z schema pred conv 436
z schema pred conv1 398

dest z schema pred 368
z schema pred intro

conv 436
is z schema pred 368

mk z schema pred 368
ZSchemaType 360

dest z schema type 368
is z schema type 368

mk z schema type 368
′ z schemas 432

z second def 498
z second thm 491
z second thm 499
ZSel s 360
z sel s conv 425

dest z sel s 369
is z sel s 369

mk z sel s 369
ZSel t 360
z sel t conv 506

dest z sel t 369
z sel t intro conv 425

is z sel t 369
z sel t lang conv 425

mk z sel t 369
z seq cases thm 487
z seq cases thm 525
z seq def 522
z seq induction tac 524
z seq induction tac1 524
z seq induction thm 487
z seq induction thm 525
z seq induction thm1 487
z seq induction thm1 525

z seq seq x thm 487
z seq seq x thm 525
z seq thm 486
z seq thm 525
z seq thm1 486
z seq thm1 525
z seq u thm 486
z seq u thm 525
z seqd app conv 524
z seqd eq conv 524
z seqd eq thm 488
z seqd eq thm 525
z seqd ∈ seq thm 488
z seqd ∈ seq thm 525
z seqd a rw thm 488
z seqd a rw thm 525
z seqd a thm 488
z seqd a thm 525
z seqd a 〈〉 clauses 488
z seqd a 〈〉 clauses 525
ZSequences 522
ZSequences1 522
z seq1 def 522

set check is z 381
z set dif clauses 492
z set dif clauses 499
z set dif thm 491
z set dif thm 499
ZSeta 360

dest z seta 369
z seta false conv 497

is z seta 369
mk z seta 369

ZSetd 360
dest z setd 369

is z setd 369
mk z setd 369

z setd ⊆ conv 398
z setd ∈ P conv 425
z setdif def 498
ZSets 493
z sets alg 504

′ z sets alg 495
z sets ext 504
z sets ext clauses 492
z sets ext clauses 499
z sets ext conv 426

′ z sets ext lang 419
′ z sets ext lib 496

z sets ext thm 460
dest z signed int 513

is z signed int 513
mk z signed int 514

z simple dot dot
conv 515

z simple swap ³½
thm 456
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z simple swap ³½
thm 526

z singleton app thm 458
z singleton app thm 526
z singleton seq thm 486
z singleton seq thm 525
z singleton seq x thm 487
z singleton seq x thm 525
z size 0 thm 470
z size 0 thm 523
z size 1 thm 470
z size 1 thm 523
z size 2 thm 470
z size 2 thm 523
z size diff thm 470
z size diff thm 523
z size dot dot conv 525
z size dot dot thm 470
z size dot dot thm 523
z size dot dot thm1 470
z size dot dot thm1 523
z size empty thm 469
z size empty thm 523
z size eq thm 470
z size eq thm 523
z size mono thm 470
z size mono thm 523
z size pair thm 470
z size pair thm 523
z size seq thm 470
z size seq thm 523
z size seq thm1 486
z size seq thm1 525
z size seq thm2 486
z size seq thm2 525
z size seq N thm 486
z size seq N thm 525
z size seqd conv 524
z size seqd length

thm 488
z size seqd length

thm 525
z size seqd thm 488
z size seqd thm 525
z size singleton seq

thm 487
z size singleton seq

thm 525
z size singleton thm 470
z size singleton thm 523
z size 7 7→ thm 470
z size 7 7→ thm 523
z size × thm 470
z size × thm 523
z size ≤ 1 thm 470
z size ≤ 1 thm 523
z size ∪ singleton

thm 470

z size ∪ singleton
thm 523

z size ∪ thm 470
z size ∪ thm 523
z size ∪ ≤ thm 470
z size ∪ ≤ thm 523
z size a thm 487
z size a thm 525
z size N thm 470
z size N thm 523
z spec asm tac 399
z spec nth asm tac 399
z squash def 522
ZString 360
z string conv 426

dest z string 370
is z string 370

mk z string 370
z strip tac 437

not z subterms 382
dest z subtract 513

is z subtract 513
z subtract minus

conv 518
mk z subtract 514
Z z subtract thm 449
Z z subtract thm 521

z succ def 518
z succ↗0l thm 471
z succ↗0l thm 523
z succ↗minus nl

thm 471
z succ↗minus nl

thm 523
z succ↗nl thm 471
z succ↗nl thm 523
z swap ³½ thm 456
z swap ³½ thm 526

CHECK IS Z T 381
z tail def 522
z tc def 507
Z TERM 360

basic dest z term 361
check is z term 381

dest z term 362
is z term 362

mk z term 370
z term of type 399

dest z term1 382
is z term1 382

check is z thm 381
z times assoc thm 466
z times assoc thm 516
z times assoc thm1 466
z times assoc thm1 516
z times clauses 466
z times clauses 516
z times comm thm 466
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z times comm thm 516
z times conv 518

dest z times 513
z times eq 0 thm 466
z times eq 0 thm 516

is z times 513
z times less 0 thm 471
z times less 0 thm 523

mk z times 514
z times order thm 466
z times order thm 516
z times plus distrib

thm 466
z times plus distrib

thm 516
Z z times thm 449
Z z times thm 521

z times0 thm 466
z times0 thm 516
z times1 thm 466
z times1 thm 516
z trans closure

clauses 482
z trans closure thm 481
ZTrue 360

is z true 370
mk z true 370

ZTuple 360
dest z tuple 370

z tuple eq conv 506
z tuple eq conv1 507
z tuple intro conv 507

is z tuple 370
z tuple lang eq conv 427
z tuple lang intro

conv 427
mk z tuple 370

ZTupleType 360
dest z tuple type 370

is z tuple type 370
mk z tuple type 370

′ z tuples 502
′ z tuples lang 420

Z TYPE 360
dest z type 362

is z type 363
is all z type 382

mk z type 370
z type of 399
ZTypesAndTerms 359
z underlining brackets

thm 492
z underlining brackets

thm 499
ZVarType 360

dest z var type 370
is z var type 370

mk z var type 370

z ⊆ clauses 492
z ⊆ clauses 499
z ⊆ conv 497

dest z ⊆ 497
is z ⊆ 497

mk z ⊆ 497
z ⊆ thm 491
z ⊆ thm 499
z ⊆ thm1 491
z ⊆ thm1 499
z ⊆ F thm 470
z ⊆ F thm 523
z −B clauses 482
z −B def 507
z −B thm 481
z ] def 528
z ∆s conv 437

dest z ∆s 371
is z ∆s 371

mk z ∆s 371
z ◦ clauses 481
z ◦ def 507
z ◦ thm 481
z ◦ ³½ thm 456
z ◦ ³½ thm 526
z ◦ → thm 456
z ◦ → thm 526
z ◦ ½ thm 456
z ◦ ½ thm 526
z ◦ ³ thm 456
z ◦ ³ thm 526
z a/ def 522
z ∈ app thm 460
z ∈ decor s conv 433

dest z ∈ 371
z ∈ dot dot conv 515
Z ∈ ELIM C 427
z ∈ first thm 453
z ∈ first thm 510

′ z ∈ fun 508
z ∈ h schema conv 438
z ∈ h schema conv1 438
z ∈ hides conv 434

is z ∈ 371
mk z ∈ 371

z ∈ pres conv 435
′ z ∈ rel 500

z ∈ renames conv 436
z ∈ second thm 453
z ∈ second thm 510
z ∈ seq app eq thm 488
z ∈ seq app eq thm 525
z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525

′ z ∈ set lang 418
′ z ∈ set lib 493

z ∈ seta conv 428
z ∈ seta conv1 428
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z ∈ setd conv 400
z ∈ setd conv1 428
z ∈ string conv 426
z ∈ succ thm 471
z ∈ succ thm 523
z ∈ u conv 401
z ∈ ∆s conv 437
z ∈ Ξ s conv 439
z ∈ ⇔s conv 439
z ∈ 〈〉 conv 429
z ∈ → thm 455
z ∈ → thm 526
z ∈ ∧s conv 440
z ∈ ∨s conv 440
z ∈ ¬s conv 441
z ∈ ⇒s conv 441
z ∈ ∀s conv 442
z ∈ ∃1 s conv 442
z ∈ ∃s conv 443
z ∈ × conv 428
z ∈ o

9s conv 443
z ∈ λ conv 430
z ∈ N conv 518
z ∈ N thm 467
z ∈ N thm 516
z ∈ N1 thm 468
z ∈ N1 thm 516
z ∈ P conv 429
z ∈ P thm 491
z ∈ P thm 499
z ∈ P thm1 460
z ∈ ¹s conv 445
z 6∈ def 498
z 6∈ thm 491
z 6∈ thm 499
z ³½ clauses 454
z ³½ clauses 510
z ³½ def 509
z ³½ diff singleton

thm 458
z ³½ diff singleton

thm 526
z ³½ thm 453
z ³½ thm 510
z ³½ trans thm 456
z ³½ trans thm 526
z B clauses 481
z B def 507
z B thm 481
z Ξ s conv 439

dest z Ξ s 371
is z Ξ s 371

mk z Ξ s 371
z ∅ def 498
z ∅ thm 491
z ∅ thm 499
z ∅ thm1 491
z 7 7½ def 518

z 7 7→ def 518
z ⊂ clauses 492
z ⊂ clauses 499
z ⊂ def 498
z ⊂ thm 491
z ⊂ thm 499
z ∩ clauses 492
z ∩ clauses 499
z ∩ def 498
z ∩ thm 491
z ∩ thm 499
z ∩ ³½ thm 457
z ∩ ³½ thm 526
z ∩ ↔ thm 457
z ∩ ↔ thm 526
z ∩ → thm 457
z ∩ → thm 526
z ∩ ½ thm 457
z ∩ ½ thm 526
z ∩ ³ thm 457
z ∩ ³ thm 526
z ª clauses 492
z ª clauses 499
z ª def 498
z ª thm 491
z ª thm 499

dest z ⇔ 372
is z ⇔ 372

mk z ⇔ 372
z ⇔s conv 439

dest z ⇔s 371
is z ⇔s 371

mk z ⇔s 371
z

⋂
clauses 492

z
⋂

clauses 499
z

⋂
def 498

z
⋂

thm 491
z

⋂
thm 499

z 〈〉 conv 429
dest z 〈〉 372

is z 〈〉 372
mk z 〈〉 372

z 〈〉 seq thm 487
z 〈〉 seq thm 525
z 〈〉 thm 487
z 〈〉 thm 525
z 〈〉 a thm 487
z 〈〉 a thm 525
z ↔ clauses 481
z ↔ def 498
z ↔ ran thm 457
z ↔ ran thm 526
z ↔ thm 481
z ⊕ clauses 482
z ⊕ def 507
z ⊕ thm 481
z ⊕ 7→ app thm 455
z ⊕ 7→ app thm 526
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z ⊕ 7→ app thm1 455
z ⊕ 7→ app thm1 526
z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526
z → app eq ⇔ ∈ rel

thm 453
z → app eq ⇔ ∈ rel

thm 510
z → app thm 453
z → app thm 510
z → app ∈ rel thm 453
z → app ∈ rel thm 510
z → clauses 454
z → clauses 510
z → def 498
z → diff singleton

thm 457
z → diff singleton

thm 526
z → dom thm 456
z → dom thm 526
z → empty thm 458
z → empty thm 526
z → ran eq ³ thm 455
z → ran eq ³ thm 526
z → ran thm 457
z → ran thm 526
z → thm 453
z → thm 510
z → ∈ rel ⇔ app eq

thm 453
z → ∈ rel ⇔ app eq

thm 510
z R 0 less 0 less

times thm 476
z R 0 less 0 less

times thm 532
z R abs conv 534
z R abs def 535

dest z R abs 530
is z R abs 530

mk z R abs 531
z R complete thm 475
z R complete thm 531
z R def 535
z R dot dot def 535
z R eq conv 534
z R eq thm 475
z R eq thm 532
z R eq ≤ thm 474
z R eq ≤ thm 532
Z R EVAL C 532
z R eval conv 532
z R frac def 535

dest z R frac 530
is z R frac 530

mk z R frac 531
z R glb def 535

z R greater conv 534
z R greater def 535

dest z R greater 530
is z R greater 530

mk z R greater 531
z R greater thm 532
z R lb def 535
z R less antisym thm 474
z R less antisym thm 531
z R less cases thm 474
z R less cases thm 531
z R less clauses 476
z R less clauses 531
z R less conv 534
z R less def 535
z R less dense thm 474
z R less dense thm 531

dest z R less 530
z R less irrefl thm 474
z R less irrefl thm 531

is z R less 530
mk z R less 531

z R less thm 531
z R less trans thm 474
z R less trans thm 531
z R less ¬ eq thm 474
z R less ¬ eq thm 532
z R less ≤ trans thm 474
z R less ≤ trans thm 532
z R lin arith 529
z R lin arith prove

conv 532
z R lin arith prove

tac 532
z R lit conv 534
z R lit conv1 534
z R lit norm conv 534
z R lub def 535
z R minus clauses 475
z R minus clauses 533
z R minus conv 534
z R minus def 535

dest z R minus 530
z R minus eq thm 475
z R minus eq thm 533

is z R minus 530
mk z R minus 531

z R minus thm 533
z R over clauses 477
z R over clauses 533
z R over conv 534
z R over def 535

dest z R over 530
is z R over 530

mk z R over 531
z R over thm 533
z R plus 0 thm 475
z R plus 0 thm 533
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z R plus assoc thm 475
z R plus assoc thm 533
z R plus assoc thm1 475
z R plus assoc thm1 533
z R plus clauses 475
z R plus clauses 533
z R plus comm thm 475
z R plus comm thm 533
z R plus conv 534
z R plus def 535

dest z R plus 530
is z R plus 530

z R plus minus thm 475
z R plus minus thm 533

mk z R plus 531
z R plus mono thm 475
z R plus mono thm 533
z R plus mono thm1 475
z R plus mono thm1 533
z R plus mono thm2 475
z R plus mono thm2 533
z R plus order thm 475
z R plus order thm 533
z R plus thm 533
z R plus unit thm 475
z R plus unit thm 533
z R real 0 thm 533
z R real def 535
z R real NR thm 533
z R subtract conv 534
z R subtract def 535

dest z R subtract 530
is z R subtract 530

mk z R subtract 531
z R subtract thm 533
z R times assoc thm 476
z R times assoc thm 533
z R times assoc

thm1 476
z R times assoc

thm1 533
z R times clauses 477
z R times clauses 533
z R times comm thm 476
z R times comm thm 533
z R times conv 534
z R times def 535

dest z R times 530
is z R times 530

mk z R times 531
z R times order thm 477
z R times order thm 533
z R times plus

distrib thm 476
z R times plus

distrib thm 533
z R times thm 533
z R times unit thm 476

z R times unit thm 533
z R ub def 535
z R unbounded above

thm 474
z R unbounded above

thm 531
z R unbounded below

thm 474
z R unbounded below

thm 531
z R ¬ less ≤ thm 532
z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532
z R ≤ antisym thm 474
z R ≤ antisym thm 532
z R ≤ cases thm 474
z R ≤ cases thm 532
z R ≤ clauses 476
z R ≤ clauses 532
z R ≤ conv 534
z R ≤ def 535

dest z R ≤ 530
is z R ≤ 530

z R ≤ less cases thm 474
z R ≤ less cases thm 532
z R ≤ less trans thm 474
z R ≤ less trans thm 532

mk z R ≤ 531
z R ≤ refl thm 474
z R ≤ refl thm 532
z R ≤ thm 532
z R ≤ trans thm 474
z R ≤ trans thm 532
z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532
z R ≥ conv 534
z R ≥ def 535

dest z R ≥ 530
is z R ≥ 530

mk z R ≥ 531
z R ≥ thm 532
z R Z exp conv 534
z R Z exp def 535

dest z R Z exp 530
is z R Z exp 530

mk z R Z exp 531
dest z ∧ 372

is z ∧ 372
mk z ∧ 372

z ∧s conv 440
dest z ∧s 372

is z ∧s 372
mk z ∧s 372

dest z ∨ 373
is z ∨ 373

mk z ∨ 373
z ∨s conv 440

dest z ∨s 373
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is z ∨s 373
mk z ∨s 373

dest z ¬ 373
z ¬ gen pred conv 402
z ¬ in conv 402

is z ¬ 373
z ¬ less thm 467
z ¬ less thm 516

mk z ¬ 373
z ¬ rewrite canon 402
z ¬ ∀ conv 403
z ¬ ∃ conv 403
z ¬ ≤ thm 467
z ¬ ≤ thm 516
z ¬ a empty thm 487
z ¬ a empty thm 525
z ¬ N thm 465
z ¬ N thm 516
z ¬s conv 441

dest z ¬s 373
is z ¬s 373

mk z ¬s 373
dest z ⇒ 374

is z ⇒ 374
mk z ⇒ 374

z ⇒ rewrite canon 403
z ⇒s conv 441

dest z ⇒s 373
is z ⇒s 373

mk z ⇒s 373
dest z ∀ 374

z ∀ elim 406
z ∀ elim conv 405
z ∀ elim conv1 404
z ∀ elim conv2 405
z ∀ intro 408

all z ∀ intro 381
z ∀ intro conv 407
z ∀ intro conv1 405
z ∀ intro1 407
z ∀ inv conv 408

is z ∀ 374
mk z ∀ 374

z ∀ rewrite canon 409
z ∀ tac 409
z ∀s conv 442

dest z ∀s 374
is z ∀s 374

mk z ∀s 374
dest z ∃ 375

z ∃ elim conv 412
z ∃ elim conv1 410
z ∃ elim conv2 411
z ∃ intro conv 412
z ∃ intro conv1 411
z ∃ inv conv 413

is z ∃ 375
mk z ∃ 375

z ∃ tac 414
z ∃1 conv 415

dest z ∃1 375
z ∃1 intro conv 415

is z ∃1 375
mk z ∃1 375

z ∃1 tac 416
z ∃1 s conv 442

dest z ∃1 s 374
is z ∃1 s 374

mk z ∃1 s 374
z ∃s conv 443

dest z ∃s 375
is z ∃s 375

mk z ∃s 375
z × clauses 492
z × clauses 499
z × conv 430

dest z × 375
is z × 375

mk z × 375
z ⊕

⊕ def 498
z o

9 clauses 481
z o

9 def 507
z o

9 thm 481
z o

9s conv 443
dest z o

9s 376
is z o

9s 376
mk z o

9s 376
z ≤ antisym thm 467
z ≤ antisym thm 516
z ≤ cases thm 467
z ≤ cases thm 516
z ≤ clauses 467
z ≤ clauses 516
z ≤ conv 518

dest z ≤ 513
z ≤ induction tac 517
z ≤ induction thm 468
z ≤ induction thm 516

is z ≤ 513
z ≤ less eq thm 468
z ≤ less eq thm 516
z ≤ less trans thm 467
z ≤ less trans thm 516

mk z ≤ 514
z ≤ plus N thm 467
z ≤ plus N thm 516
z ≤ refl thm 467
z ≤ refl thm 516
z ≤ trans thm 467
z ≤ trans thm 516
z ≤ ≤ 0 thm 467
z ≤ ≤ 0 thm 516
z ≤ ≤ plus1 thm 469
z ≤ ≤ plus1 thm 523
z ≤ Z ≤ thm 449
z ≤ Z ≤ thm 521
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z 6= def 498
z 6= thm 491
z 6= thm 499

dest z ≥ 513
is z ≥ 513

mk z ≥ 514
z ≥ ≤ conv 518
z ∪ clauses 492
z ∪ clauses 499
z ∪ def 498
z ∪ thm 491
z ∪ thm 499
z ∪ ³½ thm 456
z ∪ ³½ thm 526
z ∪ ↔ thm 456
z ∪ ↔ thm 526
z ∪ → thm 456
z ∪ → thm 526
z ∪ ½ thm 456
z ∪ ½ thm 526
z ∪ ³ thm 456
z ∪ ³ thm 526

α to z 417
z β conv 430
z θ conv 444
z θ conv1 444

dest z θ 376
z θ eq conv 444

is z θ 376
mk z θ 376

z θ ∈ schema conv 444
z θ ∈ schema intro

conv 436
z λ conv 430

dest z λ 376
is z λ 376

mk z λ 376
dest z µ 376

is z µ 376
mk z µ 376

z µ rule 431
z 7³ clauses 454
z 7³ clauses 510
z 7³ def 509
z 7³ thm 453
z 7³ thm 510
z

⋃
clauses 492

z
⋃

clauses 499
z

⋃
def 498

z
⋃

thm 491
z

⋃
thm 499

z
⋃
F thm 470

z
⋃
F thm 523

z 7→ clauses 454
z 7→ clauses 510
z 7→ def 509
z 7→ thm 453
z 7→ thm 510

z 7→ thm1 453
z 7→ thm1 510
z 7→ thm2 455
z 7→ thm2 526
z ½ clauses 454
z ½ clauses 510
z ½ def 509
z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526
z ½ thm 453
z ½ thm 510
z ½ thm1 456
z ½ thm1 526
z −C clauses 482
z −C def 507
z −C thm 481
z F def 518
z F diff thm 470
z F diff thm 523
z F empty thm 468
z F empty thm 516
z F induction tac 526
z F induction thm 469
z F induction thm 523
z F size thm 469
z F size thm 523
z F size thm1 470
z F size thm1 523
z F thm 468
z F thm 516
z F thm1 469
z F thm1 523
z F ∩ thm 470
z F ∩ thm 523
z F ∪ singleton thm 469
z F ∪ singleton thm 523
z F P thm 469
z F P thm 523
z F1 def 518
z F1 thm 468
z F1 thm 516
z a assoc thm 487
z a assoc thm 525
z a assoc thm1 487
z a assoc thm1 525
z a def 522
z a def thm 486
z a def thm 525
z a one one thm 487
z a one one thm 525
z a seq x thm 487
z a seq x thm 525
z a singleton thm 486
z a singleton thm 525
z a singleton thm1 487
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z a singleton thm1 525
z a thm 486
z a thm 525
z a ∈ seq thm 486
z a ∈ seq thm 525
z a ∈ seq thm1 486
z a ∈ seq thm1 525
z a 〈〉 thm 487
z a 〈〉 thm 525
z » def 522
z 7→ def 507
z 7→ thm 481
z N abs minus thm 468
z N abs minus thm 516
z N cases thm 465
z N cases thm 516
z N def 518
z N induction tac 517
z N induction thm 465
z N induction thm 516
z N plus conv 518
z N plus thm 465
z N plus thm 516
z N plus1 thm 465
z N plus1 thm 516
z N thm 465
z N thm 516
z N times conv 518
z N times thm 466
z N times thm 516
z N ¬ minus thm 466
z N ¬ minus thm 516
z N ¬ plus1 thm 465
z N ¬ plus1 thm 516
z N1 def 518
z ³ clauses 454
z ³ clauses 510
z ³ def 509
z ³ ran thm 457
z ³ ran thm 526
z ³ thm 453
z ³ thm 510
z ³ thm1 456
z ³ thm1 526
z P clauses 492
z P clauses 499

dest z P 377
is z P 377

mk z P 377
z P1 clauses 492
z P1 clauses 499
z P1 def 498
z P1 thm 491
z P1 thm 499
z C clauses 481
z C def 507

z C thm 481
z C → thm 455
z C → thm 526
z ¹ def 522
z ¹s conv 445

dest z ¹s 377
is z ¹s 377

mk z ¹s 377
Z z 448

z Z 448
z Z cases thm 465
z Z cases thm 516
z Z cases thm1 466
z Z cases thm1 516
z Z consistent 448
z Z conv 521
z Z def 518
z Z def 521
z Z eq conv 518
z Z eq thm 465
z Z eq thm 516
z Z induction tac 519
z Z induction thm 465
z Z induction thm 516
z Z minus thm 449
z Z minus thm 521
z Z one one thm 449
z Z one one thm 521
z Z plus thm 448
z Z plus thm 521
z Z subtract thm 449
z Z subtract thm 521
z Z times thm 448
z Z times thm 521
z 7½ clauses 454
z 7½ clauses 510
z 7½ def 509
z 7½ thm 453
z 7½ thm 510
z 7½ thm1 456
z 7½ thm1 526
Z ′Float 472
Z ′Float 474
z ′guillemets def 498
z ′if def 498
Z ′Int 463
z ′int def 463
z ′int def 518
z ′underlining brackets

def 498
z ′Π def 498
zed 7
zed list 11
zero 39
ZGVar 360
ZHSchema 360
zip 27
ZLVar 360
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( ◦ )[X ,Y , Z ] 478
( o

9 )[X ,Y , Z ] 478
Z∆s 360
Z∈ 360
ZΞ s 360
Z⇔ 360
Z⇔s 360
Z 〈〉 360
Z∧ 360
Z∧s 360
Z∨ 360
Z∨s 360
Z¬ 360
Z¬s 360
Z⇒ 360
Z⇒s 360
Z∀ 360
Z∀s 360
Z∃ 360
Z∃1 360
Z∃1 s 360
Z∃s 360
Z× 360
Z o

9s 360
Z θ 360
Zλ 360
Zµ 360
ZP 360
Z ¹s 360

490
490
490

( )[X ] 489
# 464
#[X ] 462
% << % !% >> % 491

% << % ! % >> % 491
(% << % ! % >> %)[X ] 489

̂Z 473
̂Z 473

̂Z 473
( ̂Z ) 472

∼ 463
∼ 463

∼ <= 27
∼ = 27
∼ = # 132
∼ = $ 116
∼ = |− 132
∼R 473

∼R 473
z ⊆ clauses 492
z ⊆ clauses 499
z ⊆ conv 497

z setd ⊆ conv 398
dest z ⊆ 497

is z ⊆ 497
mk z ⊆ 497

z ⊆ thm 491
z ⊆ thm 499
z ⊆ thm1 491
z ⊆ thm1 499
z ⊆ F thm 470
z ⊆ F thm 523

−B 480
−B 480

−B 480
( −B )[X ,Y ] 478
z −B clauses 482
z −B def 507
z −B thm 481

] 450
] 450
] 450

( ] )[X ] 450
z ] def 528
z ∆s conv 437

z ∈ ∆s conv 437
dest z ∆s 371

is z ∆s 371
mk z ∆s 371

◦ 479
◦ 479
◦ 479

( ◦ )[X ,Y ,Z ] 478
z ◦ clauses 481
z ◦ def 507
z ◦ thm 481
z ◦ ³½ thm 456
z ◦ ³½ thm 526
z ◦ → thm 456
z ◦ → thm 526
z ◦ ½ thm 456
z ◦ ½ thm 526
z ◦ ³ thm 456
z ◦ ³ thm 526

a/ 484
z a/ def 522

a/[X ] 483
z ∈ app thm 460

∈ C 431
z fun ∈ clauses 454
z fun ∈ clauses 510

z ∈ decor s conv 433
dest z ∈ 371

z ∈ dot dot conv 515
Z ∈ ELIM C 427
z ∈ first thm 453
z ∈ first thm 510
′z ∈ fun 508
z ∈ h schema conv 438
z ∈ h schema conv1 438
z ∈ hides conv 434

is z ∈ 371
mk z ∈ 371
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z ∈ pres conv 435
′z ∈ rel 500

z → app ∈ rel thm 453
z → app ∈ rel thm 510

z → app eq ⇔ ∈ rel thm 453
z → app eq ⇔ ∈ rel thm 510

z → ∈ rel ⇔ app eq thm 453
z → ∈ rel ⇔ app eq thm 510

z ∈ renames conv 436
z θ ∈ schema conv 444
z θ ∈ schema intro conv 436

z ∈ second thm 453
z ∈ second thm 510
z ∈ seq app eq thm 488
z ∈ seq app eq thm 525

z seqd ∈ seq thm 488
z seqd ∈ seq thm 525

z a ∈ seq thm 486
z a ∈ seq thm 525
z a ∈ seq thm1 486
z a ∈ seq thm1 525

z ∈ seqd app eq thm 488
z ∈ seqd app eq thm 525
′z ∈ set lang 418
′z ∈ set lib 493
z ∈ seta conv 428
z ∈ seta conv1 428
z ∈ setd conv 400
z ∈ setd conv1 428
z ∈ string conv 426
z ∈ succ thm 471
z ∈ succ thm 523

z app ∈ thm 460
z ∈ u conv 401
z ∈ ∆s conv 437
z ∈ Ξ s conv 439
z ∈ ⇔s conv 439
z ∈ 〈〉 conv 429
z ∈ → thm 455
z ∈ → thm 526

z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526

z ∈ ∧s conv 440
z ∈ ∨s conv 440
z ∈ ¬s conv 441
z ∈ ⇒s conv 441
z ∈ ∀s conv 442
z ∈ ∃1 s conv 442
z ∈ ∃s conv 443
z ∈ × conv 428
z ∈ o

9s conv 443
z ∈ λ conv 430
z ∈ N conv 518
z ∈ N thm 467
z ∈ N thm 516
z ∈ N1 thm 468
z ∈ N1 thm 516

z ∈ P conv 429
z setd ∈ P conv 425

z ∈ P thm 491
z ∈ P thm 499
z ∈ P thm1 460
z ∈ ¹s conv 445

6∈ 490
6∈ 490
6∈ 490

( 6∈ )[X ] 489
z 6∈ def 498
z 6∈ thm 491
z 6∈ thm 499

³½ 452
³½ 452

³½ 452
z ³½ clauses 454
z ³½ clauses 510
z ³½ def 509
z ³½ diff singleton thm 458
z ³½ diff singleton thm 526

z dom f ³½ f thm 457
z dom f ³½ f thm 526

z ³½ thm 453
z ³½ thm 510

z id ³½ thm 456
z id ³½ thm 526

z rel inv ³½ thm 456
z rel inv ³½ thm 526

z simple swap ³½ thm 456
z simple swap ³½ thm 526

z swap ³½ thm 456
z swap ³½ thm 526

z ◦ ³½ thm 456
z ◦ ³½ thm 526
z ∩ ³½ thm 457
z ∩ ³½ thm 526
z ∪ ³½ thm 456
z ∪ ³½ thm 526

z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526

z ³½ trans thm 456
z ³½ trans thm 526
X ³½Y 452

Π ? 491
z ′ Π def 498

B 479
B 479

B 479
( B )[X ,Y ] 478
z B clauses 481
z B def 507
z B thm 481
z Ξ s conv 439

z ∈ Ξ s conv 439
dest z Ξ s 371

is z Ξ s 371
mk z Ξ s 371
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∅ 491
z ∅ def 498

dest ∅ 87
is ∅ 94

mk ∅ 106
z ∅ thm 491
z ∅ thm 499
z ∅ thm1 491
∅[X ] 489
7 7½ 464

7 7½ 464
7 7½ 464

z 7 7½ def 518
X 7 7½Y 462

7 7→ 464
7 7→ 464

7 7→ 464
z 7 7→ def 518

z size 7 7→ thm 470
z size 7 7→ thm 523

X 7 7→Y 462
⊂ 490

⊂ 490
⊂ 490

( ⊂ )[X ] 489
z ⊂ clauses 492
z ⊂ clauses 499
z ⊂ def 498
z ⊂ thm 491
z ⊂ thm 499

∩ 490
∩ 490
∩ 490

( ∩ )[X ] 489
z ∩ clauses 492
z ∩ clauses 499
z ∩ def 498
z ∩ thm 491
z ∩ thm 499

z dot dot ∩ thm 469
z dot dot ∩ thm 523

z F ∩ thm 470
z F ∩ thm 523

z ∩ ³½ thm 457
z ∩ ³½ thm 526
z ∩ ↔ thm 457
z ∩ ↔ thm 526
z ∩ → thm 457
z ∩ → thm 526
z ∩ ½ thm 457
z ∩ ½ thm 526
z ∩ ³ thm 457
z ∩ ³ thm 526

ª 490
ª 490

ª 490
( ª )[X ] 489
z ª clauses 492

z ª clauses 499
z ª def 498
z ª thm 491
z ª thm 499

z → ∈ rel ⇔ app eq thm 453
z → ∈ rel ⇔ app eq thm 510

FC ⇔ CAN 169
FORWARD CHAIN ⇔ CAN 169

fc ⇔ canon 170
forward chain ⇔ canon 170

dest ⇔ 87
dest z ⇔ 372

⇔ elim 200
⇔ intro 200

is ⇔ 94
is z ⇔ 372

⇔ match mp rule 201
simple ⇔ match mp rule 187

⇔ match mp rule1 201
simple ⇔ match mp rule1 187

mk ⇔ 106
mk z ⇔ 372

⇔ mp rule 201
⇔ rewrite thm 164

∀ ⇔ rule 212
⇔ T 283
⇔ t elim 202
⇔ t intro 202
⇔ t rewrite canon 203
⇔ t tac 282
⇔ T2 281
⇔ tac 282
⇔ THEN 282
⇔ THEN2 282
⇔ thm 289

¬ ⇔ thm 289
z → app eq ⇔ ∈ rel thm 453
z → app eq ⇔ ∈ rel thm 510

z ⇔s conv 439
z ∈ ⇔s conv 439

dest z ⇔s 371
is z ⇔s 371

mk z ⇔s 371⋂
490

z
⋂

clauses 492
z

⋂
clauses 499

z
⋂

def 498
z

⋂
thm 491

z
⋂

thm 499⋂
[X ] 489

z seqd a 〈〉 clauses 488
z seqd a 〈〉 clauses 525

z 〈〉 conv 429
z ∈ 〈〉 conv 429

dest z 〈〉 372
is z 〈〉 372

mk z 〈〉 372
z 〈〉 seq thm 487
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z 〈〉 seq thm 525
z 〈〉 thm 487
z 〈〉 thm 525

z a 〈〉 thm 487
z a 〈〉 thm 525

z 〈〉 a thm 487
z 〈〉 a thm 525

(| |) 480
(| |) 480

( (| |))[X ,Y ] 478
(| |) 480

(| |) 480
( (| |))[X ,Y ] 478

( (| |))[X ,Y ] 478
↔ 491

↔ 491
↔ 491

z ↔ clauses 481
z ↔ def 498

z dom f ↔ f thm 456
z dom f ↔ f thm 526

z ↔ ran thm 457
z ↔ ran thm 526
z ↔ thm 481

z ∩ ↔ thm 457
z ∩ ↔ thm 526
z ∪ ↔ thm 456
z ∪ ↔ thm 526

X ↔Y 489
⊕ 480

⊕ 480
⊕ 480

( ⊕ )[X ,Y ] 478
z ⊕ clauses 482
z ⊕ def 507
z ⊕ thm 481
z ⊕ 7→ app thm 455
z ⊕ 7→ app thm 526
z ⊕ 7→ app thm1 455
z ⊕ 7→ app thm1 526

z dom ⊕ 7→ thm 455
z dom ⊕ 7→ thm 526

z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526

→ 491
→ 491

→ 491
z → app eq ⇔ ∈ rel

thm 453
z → app eq ⇔ ∈ rel

thm 510
z → app thm 453
z → app thm 510
z → app ∈ rel thm 453
z → app ∈ rel thm 510
z → clauses 454
z → clauses 510

z → def 498
z → diff singleton thm 457
z → diff singleton thm 526
z → dom thm 456
z → dom thm 526
z → empty thm 458
z → empty thm 526

z dom f → f thm 457
z dom f → f thm 526

z → ran eq ³ thm 455
z → ran eq ³ thm 526
z → ran thm 457
z → ran thm 526
z → thm 453
z → thm 510

z ◦ → thm 456
z ◦ → thm 526
z ∈ → thm 455
z ∈ → thm 526
z ∩ → thm 457
z ∩ → thm 526

z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526

z ∪ → thm 456
z ∪ → thm 526
z C → thm 455
z C → thm 526
dest → type 87

is → type 94
list mk → type 97

mk → type 106
strip → type 111

X →Y 489
z → ∈ rel ⇔ app eq

thm 453
z → ∈ rel ⇔ app eq

thm 510
R 472
R 474

z R 0 less 0 less times
thm 476

z R 0 less 0 less times
thm 532

z R abs conv 534
z R abs def 535

dest z R abs 530
is z R abs 530

mk z R abs 531
z R complete thm 475
z R complete thm 531
z R def 535
z R dot dot def 535
z R eq conv 534
z R eq thm 475
z R eq thm 532
z R eq ≤ thm 474
z R eq ≤ thm 532
Z R EVAL C 532
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z R eval conv 532
z R frac def 535

dest z R frac 530
is z R frac 530

mk z R frac 531
z R glb def 535
z R greater conv 534
z R greater def 535

dest z R greater 530
is z R greater 530

mk z R greater 531
z R greater thm 532
z R lb def 535
z R less antisym thm 474
z R less antisym thm 531
z R less cases thm 474
z R less cases thm 531
z R less clauses 476
z R less clauses 531
z R less conv 534
z R less def 535
z R less dense thm 474
z R less dense thm 531

dest z R less 530
z R less irrefl thm 474
z R less irrefl thm 531

is z R less 530
mk z R less 531

z R less thm 531
z R less trans thm 474
z R less trans thm 531
z R less ¬ eq thm 474
z R less ¬ eq thm 532
z R less ≤ trans thm 474
z R less ≤ trans thm 532
z R lin arith prove

conv 532
z R lin arith prove tac 532
z R lin arith 529
z R lit conv 534
z R lit conv1 534
z R lit norm conv 534
z R lub def 535
z R minus clauses 475
z R minus clauses 533
z R minus conv 534
z R minus def 535

dest z R minus 530
z R minus eq thm 475
z R minus eq thm 533

is z R minus 530
mk z R minus 531

z R minus thm 533
z R over clauses 477
z R over clauses 533
z R over conv 534
z R over def 535

dest z R over 530

is z R over 530
mk z R over 531

z R over thm 533
z R plus 0 thm 475
z R plus 0 thm 533
z R plus assoc thm 475
z R plus assoc thm 533
z R plus assoc thm1 475
z R plus assoc thm1 533
z R plus clauses 475
z R plus clauses 533
z R plus comm thm 475
z R plus comm thm 533
z R plus conv 534
z R plus def 535

dest z R plus 530
is z R plus 530

z R plus minus thm 475
z R plus minus thm 533

mk z R plus 531
z R plus mono thm 475
z R plus mono thm 533
z R plus mono thm1 475
z R plus mono thm1 533
z R plus mono thm2 475
z R plus mono thm2 533
z R plus order thm 475
z R plus order thm 533
z R plus thm 533
z R plus unit thm 475
z R plus unit thm 533
z R real 0 thm 533
z R real def 535
z R real NR thm 533
z R subtract conv 534
z R subtract def 535

dest z R subtract 530
is z R subtract 530

mk z R subtract 531
z R subtract thm 533
z R times assoc thm 476
z R times assoc thm 533
z R times assoc thm1 476
z R times assoc thm1 533
z R times clauses 477
z R times clauses 533
z R times comm thm 476
z R times comm thm 533
z R times conv 534
z R times def 535

dest z R times 530
is z R times 530

mk z R times 531
z R times order thm 477
z R times order thm 533
z R times plus distrib

thm 476
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z R times plus distrib
thm 533

z R times thm 533
z R times unit thm 476
z R times unit thm 533
z R ub def 535
z R unbounded above

thm 474
z R unbounded above

thm 531
z R unbounded below

thm 474
z R unbounded below

thm 531
z R ¬ less ≤ thm 532
z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532
z R ≤ antisym thm 474
z R ≤ antisym thm 532
z R ≤ cases thm 474
z R ≤ cases thm 532
z R ≤ clauses 476
z R ≤ clauses 532
z R ≤ conv 534
z R ≤ def 535

dest z R ≤ 530
is z R ≤ 530

z R ≤ less cases thm 474
z R ≤ less cases thm 532
z R ≤ less trans thm 474
z R ≤ less trans thm 532

mk z R ≤ 531
z R ≤ refl thm 474
z R ≤ refl thm 532
z R ≤ thm 532
z R ≤ trans thm 474
z R ≤ trans thm 532
z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532
z R ≥ conv 534
z R ≥ def 535

dest z R ≥ 530
is z R ≥ 530

mk z R ≥ 531
z R ≥ thm 532
z R Z exp conv 534
z R Z exp def 535

dest z R Z exp 530
is z R Z exp 530

mk z R Z exp 531
ALL ∧ C 155
dest ∧ 87

dest z ∧ 372
∧ intro 202

list ∧ intro 174
is ∧ 94

is z ∧ 372
∧ left elim 202

list mk ∧ 97
mk ∧ 106

mk z ∧ 372
∧ rewrite canon 203
∧ rewrite thm 164
∧ right elim 203

strip ∧ rule 194
⇒ ∧ rule 210

strip ∧ 111
∧ tac 283
∧ THEN 283
∧ THEN2 283
∧ thm 203

¬ ∧ thm 289
∧ ⇒ rule 203

z ∧s conv 440
z ∈ ∧s conv 440

dest z ∧s 372
is z ∧s 372

mk z ∧s 372
ALL ∨ C 155

∨ cancel rule 204
dest ∨ 88

dest z ∨ 373
∨ elim 204

is ∨ 94
is z ∨ 373

∨ left intro 204
∨ left tac 284

list mk ∨ 97
mk ∨ 106

mk z ∨ 373
∨ rewrite thm 164
∨ right intro 205
∨ right tac 284

strip ∨ 112
swap ∨ tac 276

∨ THEN 284
∨ THEN2 284
∨ thm 205

¬ ∨ thm 289
z ∨s conv 440

z ∈ ∨s conv 440
dest z ∨s 373

is z ∨s 373
mk z ∨s 373

¬ ¬ conv 206
dest ¬ 88

dest multi ¬ 84
dest z ¬ 373

¬ elim 205
¬ elim tac 285

¬ ¬ elim 207
¬ eq sym rule 205

z R less ¬ eq thm 474
z R less ¬ eq thm 532

¬ f thm 289
z ¬ gen pred conv 402
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¬ if thm 289
¬ in conv 285

simple ¬ in conv 265
z ¬ in conv 402

¬ in tac 286
simple ¬ in tac 266

¬ IN THEN 286
SIMPLE ¬ IN THEN 266

¬ intro 205
¬ ¬ intro 207
is ¬ 94

is z ¬ 373
z ¬ less thm 467
z ¬ less thm 516

z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532

z R ¬ less ≤ thm 532
z N ¬ minus thm 466
z N ¬ minus thm 516
mk ¬ 107

mk multi ¬ 103
mk z ¬ 373
z N ¬ plus1 thm 465
z N ¬ plus1 thm 516

¬ rewrite canon 287
simple ¬ rewrite canon 203

z ¬ rewrite canon 402
¬ rewrite thm 164
¬ simple ∀ conv 206
¬ simple ∃ conv 206
¬ T 288
¬ t thm 206
¬ T2 287
¬ tac 288
¬ thm 206

¬ ¬ thm 289
¬ thm1 206
¬ ⇔ thm 289
¬ ∧ thm 289
¬ ∨ thm 289
¬ ¬ conv 206
¬ ¬ elim 207
¬ ¬ intro 207
¬ ¬ thm 289
¬ ⇒ thm 289
¬ ∀ conv 207

z ¬ ∀ conv 403
¬ ∀ thm 207
¬ ∃ conv 207

z ¬ ∃ conv 403
¬ ∃ thm 208

z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532

z ¬ ≤ thm 467
z ¬ ≤ thm 516
z ¬ a empty thm 487
z ¬ a empty thm 525
z ¬ N thm 465

z ¬ N thm 516
z ¬s conv 441

z ∈ ¬s conv 441
dest z ¬s 373

is z ¬s 373
mk z ¬s 373
dest ⇒ 88

dest z ⇒ 374
⇒ elim 208
⇒ intro 208

all ⇒ intro 155
is ⇒ 94

is z ⇒ 374
list mk ⇒ 98

⇒ match mp rule 209
simple ⇒ match mp rule 188

⇒ match mp rule1 209
simple ⇒ match mp rule1 188

⇒ match mp rule2 209
simple ⇒ match mp rule2 188

mk ⇒ 107
mk z ⇒ 374

⇒ mp rule 208
z ⇒ rewrite canon 403

⇒ rewrite thm 164
strip ⇒ rule 194
∧ ⇒ rule 203

strip ⇒ 112
⇒ T 290
⇒ tac 289
⇒ THEN 290
⇒ thm 289
⇒ thm tac 290

¬ ⇒ thm 289
⇒ trans rule 209
⇒ ∧ rule 210

z ⇒s conv 441
z ∈ ⇒s conv 441

dest z ⇒s 373
is z ⇒s 373

mk z ⇒s 373
∀ arb elim 210

all ∀ arb elim 155
∀ asm rule 210

ALL SIMPLE ∀ C 153
simple ∃ ∀ conv 190

z ¬ ∀ conv 403
¬ ∀ conv 207

¬ simple ∀ conv 206
simple ∃ ∀ conv1 190

dest ∀ 88
dest simple ∀ 85

dest z ∀ 374
∀ elim 211

all ∀ elim 155
all simple ∀ elim 154

z ∀ elim conv 405
z ∀ elim conv1 404
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z ∀ elim conv2 405
list ∀ elim 175

list simple ∀ elim 174
simple ∀ elim 188

z ∀ elim 406
∀ intro 211

all ∀ intro 156
all z ∀ intro 381

z ∀ intro conv 407
z ∀ intro conv1 405

list ∀ intro 175
list simple ∀ intro 174

simple ∀ intro 189
z ∀ intro 408
z ∀ intro1 407
z ∀ inv conv 408
is ∀ 94

is simple ∀ 93
is z ∀ 374

list mk ∀ 98
list mk simple ∀ 97

mk ∀ 107
mk simple ∀ 104

mk z ∀ 374
∀ reorder conv 212
∀ rewrite canon 287

simple ∀ rewrite canon 203
z ∀ rewrite canon 409

∀ rewrite thm 164
strip ∀ 112

strip simple ∀ 111
∀ tac 290

intro ∀ tac 252
simple ∀ tac 267

z ∀ tac 409
z intro ∀ tac 394

intro ∀ tac1 252
¬ ∀ thm 207

∀ uncurry conv 212
all ∀ uncurry conv 156

∀ ⇔ rule 212
simple ∀ ∃ conv 189

z ∀s conv 442
z ∈ ∀s conv 442

dest z ∀s 374
is z ∀s 374

mk z ∀s 374
∃ asm rule 213

ALL SIMPLE ∃ C 154
add ∃ cd thms 339

current ad ∃ cd thms 330
get ∃ cd thms 339

pp′set eval ad ∃ cd thms 330
set ∃ cd thms 339

′basic prove ∃ conv 341
current ad cs ∃ conv 330

prove ∃ conv 332
simple ∀ ∃ conv 189

z ¬ ∃ conv 403
¬ ∃ conv 207

¬ simple ∃ conv 206
get cs ∃ convs 335

pp′set eval ad cs ∃ convs 330
set cs ∃ convs 335

dest ∃ 89
dest simple ∃ 86

dest z ∃ 375
∃ elim 213

z ∃ elim conv 412
z ∃ elim conv1 410
z ∃ elim conv2 411

simple ∃ elim 189
∃ intro 214

z ∃ intro conv 412
z ∃ intro conv1 411

list simple ∃ intro 174
simple ∃ intro 190

∃ intro thm 213
v ∃ intro 200
z ∃ inv conv 413
is ∃ 95

is simple ∃ 93
is z ∃ 375

list mk ∃ 98
list mk simple ∃ 97

mk ∃ 108
mk simple ∃ 105

mk z ∃ 375
∃ reorder conv 214
∃ rewrite thm 164

prove ∃ rule 332
strip ∃ 112

strip simple ∃ 111
∃ tac 291

asm prove ∃ tac 316
list simple ∃ tac 255

prove ∃ tac 260
simple ∃ tac 267

z ∃ tac 414
∃ THEN 291

SIMPLE ∃ THEN 268
¬ ∃ thm 208

∃ uncurry conv 214
all ∃ uncurry conv 156

current ad ∃ vs thms 331
get ∃ vs thms 340

pp′set eval ad ∃ vs thms 331
set ∃ vs thms 340

simple ∃ ∀ conv 190
simple ∃ ∀ conv1 190

∃ ε conv 215
simple ∃ ε conv 190

∃ ε rule 215
simple ∃ ε rule 191

∃1 conv 215
simple ∃1 conv 268
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z ∃1 conv 415
dest ∃1 88

dest simple ∃1 85
dest z ∃1 375

∃1 elim 216
simple ∃1 elim 191

∃1 intro 216
z ∃1 intro conv 415

simple ∃1 intro 191
is ∃1 94

is simple ∃1 93
is z ∃1 375
mk ∃1 107

mk simple ∃1 104
mk z ∃1 375

∃1 tac 291
simple ∃1 tac 269

z ∃1 tac 416
∃1 THEN 292

SIMPLE ∃1 THEN 269
∃1 thm 216

z ∃1 s conv 442
z ∈ ∃1 s conv 442

dest z ∃1 s 374
is z ∃1 s 374

mk z ∃1 s 374
z ∃s conv 443

z ∈ ∃s conv 443
dest z ∃s 375

is z ∃s 375
mk z ∃s 375

z × clauses 492
z × clauses 499
z × conv 430

z ∈ × conv 428
dest z × 375

is z × 375
mk z × 375
z size × thm 470
z size × thm 523

dest × type 89
is × type 95

mk × type 108
⊕
⊕ 491

⊕
⊕ 491

⊕
⊕ 491

( ⊕
⊕ )[X ] 489

z ⊕
⊕ def 498

o
9 479

o
9 479

o
9 479

( o
9 )[X ,Y ,Z ] 478

z o
9 clauses 481

z o
9 def 507

z o
9 thm 481

z o
9s conv 443

z ∈ o
9s conv 443

dest z o
9s 376

is z o
9s 376

mk z o
9s 376
≤ 463

≤ 463
≤ 463

( ≤ ) 462
z ≤ ≤ 0 thm 467
z ≤ ≤ 0 thm 516

z size ≤ 1 thm 470
z size ≤ 1 thm 523

z ≤ antisym thm 467
z ≤ antisym thm 516

z R ≤ antisym thm 474
z R ≤ antisym thm 532

z ≤ cases thm 467
z ≤ cases thm 516

z R ≤ cases thm 474
z R ≤ cases thm 532

z ≤ clauses 467
z ≤ clauses 516

z R ≤ clauses 476
z R ≤ clauses 532

z ≤ conv 518
z R ≤ conv 534
z ≥ ≤ conv 518
z R ≤ def 535

dest z ≤ 513
dest z R ≤ 530

z ≤ induction tac 517
z ≤ induction thm 468
z ≤ induction thm 516

is z ≤ 513
is z R ≤ 530

z R ≤ less cases thm 474
z R ≤ less cases thm 532

z ≤ less eq thm 468
z ≤ less eq thm 516

z R ¬ ≤ less thm 474
z R ¬ ≤ less thm 532

z ≤ less trans thm 467
z ≤ less trans thm 516

z R ≤ less trans thm 474
z R ≤ less trans thm 532

mk z ≤ 514
mk z R ≤ 531

z ≤ plus N thm 467
z ≤ plus N thm 516

z ≤ ≤ plus1 thm 469
z ≤ ≤ plus1 thm 523

z ≤ refl thm 467
z ≤ refl thm 516

z R ≤ refl thm 474
z R ≤ refl thm 532

z minus N ≤ thm 467
z minus N ≤ thm 516

z size ∪ ≤ thm 470
z size ∪ ≤ thm 523
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z R ≤ thm 532
z R eq ≤ thm 474
z R eq ≤ thm 532

z R ¬ less ≤ thm 532
z ¬ ≤ thm 467
z ¬ ≤ thm 516

z ≤ Z ≤ thm 449
z ≤ Z ≤ thm 521
z abs ≤ times thm 471
z abs ≤ times thm 523

z ≤ trans thm 467
z ≤ trans thm 516

z less ≤ trans thm 467
z less ≤ trans thm 516

z R ≤ trans thm 474
z R ≤ trans thm 532

z R less ≤ trans thm 474
z R less ≤ trans thm 532

z R ≤ ¬ less thm 474
z R ≤ ¬ less thm 532

z ≤ ≤ 0 thm 467
z ≤ ≤ 0 thm 516
z ≤ ≤ plus1 thm 469
z ≤ ≤ plus1 thm 523
z ≤ Z ≤ thm 449
z ≤ Z ≤ thm 521

≤R 473
≤R 473

≤R 473
( ≤R ) 472

6= 490
6= 490

6= 490
( 6= )[X ] 489
z 6= def 498
z 6= thm 491
z 6= thm 499

≥ 463
≥ 463

≥ 463
( ≥ ) 462

z R ≥ conv 534
z R ≥ def 535

dest z ≥ 513
dest z R ≥ 530

is z ≥ 513
is z R ≥ 530
mk z ≥ 514

mk z R ≥ 531
z R ≥ thm 532

z ≥ ≤ conv 518
≥R 473

≥R 473
≥R 473

( ≥R ) 472
∪ 490

∪ 490
∪ 490

( ∪ )[X ] 489
z ∪ clauses 492
z ∪ clauses 499
z ∪ def 498

z size ∪ singleton thm 470
z size ∪ singleton thm 523

z F ∪ singleton thm 469
z F ∪ singleton thm 523

z ∪ thm 491
z ∪ thm 499

z dot dot ∪ thm 469
z dot dot ∪ thm 523

z ran ∪ thm 456
z ran ∪ thm 526
z size ∪ thm 470
z size ∪ thm 523

z ∪ ³½ thm 456
z ∪ ³½ thm 526
z ∪ ↔ thm 456
z ∪ ↔ thm 526
z ∪ → thm 456
z ∪ → thm 526

z size ∪ ≤ thm 470
z size ∪ ≤ thm 523

z ∪ ½ thm 456
z ∪ ½ thm 526
z ∪ ³ thm 456
z ∪ ³ thm 526

α conv 216
simple α conv 191

α to z 417
α to z conv 416
β conv 217

all β conv 157
all simple β conv 154

simple β conv 192
z β conv 430

β rewrite thm 164
β rule 217

all β rule 157
all simple β rule 154

all β tac 233
simple β η conv 192
simple β η norm conv 192

simple ∃ ε conv 190
∃ ε conv 215

dest ε 89
ε elim rule 218

simple ε elim rule 192
ε intro rule 218

is ε 95
list mk ε 98

mk ε 108
simple ∃ ε rule 191

∃ ε rule 215
strip ε 112

ε T 292
ALL ε T 233
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ε tac 292
all ε tac 233

η conv 218
simple β η conv 192
simple β η norm conv 192

z θ conv 444
z θ conv1 444

dest z θ 376
z θ eq conv 444

is z θ 376
mk z θ 376

z θ ∈ schema conv 444
z θ ∈ schema intro

conv 436
λ C 219

SIMPLE λ C 193
z λ conv 430

z ∈ λ conv 430
dest λ 89

dest simple λ 86
dest z λ 376

λ eq rule 219
simple λ eq rule 193

is λ 95
is simple λ 93

is z λ 376
list mk λ 98

list mk simple λ 96
mk λ 108

mk simple λ 105
mk z λ 376

λ pair conv 219
λ rule 220

z app λ rule 422
strip λ 112

λ varstruct conv 220
dest z µ 376

is z µ 376
mk z µ 376

z µ rule 431
7³ 452

7³ 452
7³ 452

z 7³ clauses 454
z 7³ clauses 510
z 7³ def 509
z 7³ thm 453
z 7³ thm 510
X 7³Y 452⋃

490
z

⋃
clauses 492

z
⋃

clauses 499
z

⋃
def 498

z
⋃

thm 491
z

⋃
thm 499

z
⋃
F thm 470

z
⋃
F thm 523⋃

[X ] 489

7→ 452
7→ 452

7→ 452
z 7→ clauses 454
z 7→ clauses 510
z 7→ def 509
z 7→ thm 453
z 7→ thm 510
z 7→ thm1 453
z 7→ thm1 510
z 7→ thm2 455
z 7→ thm2 526
X 7→Y 452

½ 452
½ 452

½ 452
z ½ clauses 454
z ½ clauses 510
z ½ def 509

z dom f ½ f thm 457
z dom f ½ f thm 526

z ½ ran eq ³½ thm 455
z ½ ran eq ³½ thm 526
z ½ thm 453
z ½ thm 510

z ◦ ½ thm 456
z ◦ ½ thm 526
z ∩ ½ thm 457
z ∩ ½ thm 526
z ∪ ½ thm 456
z ∪ ½ thm 526

z ½ thm1 456
z ½ thm1 526
X ½Y 452

−C 480
−C 480

−C 480
( −C )[X ,Y ] 478
z −C clauses 482
z −C def 507
z −C thm 481
F 464
F 464

z F def 518
z F diff thm 470
z F diff thm 523
z F empty thm 468
z F empty thm 516
z F induction tac 526
z F induction thm 469
z F induction thm 523
z F size thm 469
z F size thm 523
z F size thm1 470
z F size thm1 523
z F thm 468
z F thm 516

z empty F thm 469
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z empty F thm 523
z ⊆ F thm 470
z ⊆ F thm 523
z

⋃
F thm 470

z
⋃

F thm 523
z F thm1 469
z F thm1 523
FX 462

z F ∩ thm 470
z F ∩ thm 523
z F ∪ singleton thm 469
z F ∪ singleton thm 523
z F P thm 469
z F P thm 523
F1 464

F1 464
z F1 def 518
z F1 thm 468
z F1 thm 516
F1X 462
↗ l 464
↗ l 464

( ↗ l)[X ] 462
↗∗ l 480
↗∗ l 480

( ↗∗ l)[X ] 478
↗+ l 480
↗+ l 480

( ↗+ l)[X ] 478
↗∼l 480
↗∼l 480

( ↗∼l)[X ,Y ] 478
↗ l 464
↗ l 464

( ↗ l)[X ] 462
( ↗ l)[X ] 462

a 484
a 484

a 484
( a )[X ] 483
z a assoc thm 487
z a assoc thm 525
z a assoc thm1 487
z a assoc thm1 525
z a def thm 486
z a def thm 525
z a def 522

z ¬ a empty thm 487
z ¬ a empty thm 525

z a one one thm 487
z a one one thm 525

z seqd a rw thm 488
z seqd a rw thm 525

z a seq x thm 487

z a seq x thm 525
z a singleton thm 486
z a singleton thm 525
z a singleton thm1 487
z a singleton thm1 525
z a thm 486
z a thm 525

z dom a thm 487
z dom a thm 525
z seqd a thm 488
z seqd a thm 525
z size a thm 487
z size a thm 525

z 〈〉 a thm 487
z 〈〉 a thm 525

z a ∈ seq thm 486
z a ∈ seq thm 525
z a ∈ seq thm1 486
z a ∈ seq thm1 525

z seqd a 〈〉 clauses 488
z seqd a 〈〉 clauses 525

z a 〈〉 thm 487
z a 〈〉 thm 525

» 484
» 484

» 484
( » )[X ] 483
z » def 522

7→ 479
7→ 479

7→ 479
( 7→ )[X ,Y ] 478

z ⊕ 7→ app thm 455
z ⊕ 7→ app thm 526
z ⊕ 7→ app thm1 455
z ⊕ 7→ app thm1 526

z 7→ def 507
z 7→ thm 481

z dom ⊕ 7→ thm 455
z dom ⊕ 7→ thm 526

z ⊕ 7→ ∈ → thm 455
z ⊕ 7→ ∈ → thm 526

N 116
N 462
N 463

′ N 346
z N abs minus thm 468
z N abs minus thm 516
z N cases thm 465
z N cases thm 516

z ∈ N conv 518
z N def 518

dest N 89

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030



KEYWORD INDEX 657

z N induction tac 517
z N induction thm 465
z N induction thm 516
is N 95
′ N lit 347

mk N 108
z N plus conv 518
z N plus thm 465
z N plus thm 516
z N plus1 thm 465
z N plus1 thm 516
z N thm 465
z N thm 516

z 0 N thm 465
z 0 N thm 516

z abs N thm 468
z abs N thm 516
z size N thm 470
z size N thm 523

z size seq N thm 486
z size seq N thm 525

z ∈ N thm 467
z ∈ N thm 516
z ¬ N thm 465
z ¬ N thm 516

z ≤ plus N thm 467
z ≤ plus N thm 516

z N times conv 518
z N times thm 466
z N times thm 516
z N ¬ minus thm 466
z N ¬ minus thm 516
z N ¬ plus1 thm 465
z N ¬ plus1 thm 516

z minus N ≤ thm 467
z minus N ≤ thm 516

N1 462
N1 464

z N1 def 518
z ∈ N1 thm 468
z ∈ N1 thm 516

z R real NR thm 533
³ 452

³ 452
³ 452

z ³ clauses 454
z ³ clauses 510
z ³ def 509

z dom f ³ f thm 457
z dom f ³ f thm 526

z ³ ran thm 457
z ³ ran thm 526
z ³ thm 453
z ³ thm 510

z empty ³ thm 458
z empty ³ thm 526

z ◦ ³ thm 456
z ◦ ³ thm 526

z ∩ ³ thm 457
z ∩ ³ thm 526

z → ran eq ³ thm 455
z → ran eq ³ thm 526

z ∪ ³ thm 456
z ∪ ³ thm 526

z ³ thm1 456
z ³ thm1 526
X ³Y 452
z P clauses 492
z P clauses 499

z setd ∈ P conv 425
z ∈ P conv 429

dest z P 377
is z P 377

mk z P 377
z ∈ P thm 491
z ∈ P thm 499
z F P thm 469
z F P thm 523
z ∈ P thm1 460
P1 491

P1 491
z P1 clauses 492
z P1 clauses 499
z P1 def 498
z P1 thm 491
z P1 thm 499
P1X 489
C 479

C 479
C 479

( C )[X ,Y ] 478
z C clauses 481
z C def 507
z C thm 481

z ran C thm 455
z ran C thm 526

z C → thm 455
z C → thm 526

( ) 491
( ) 491

( ) 491
( ( ) )[X ,Y ] 489

( ( ) )[X ,Y ] 489
( ( ) )[X ,Y ] 489

( ) 491
( ) 491

¹ 484
¹ 484

¹ 484
( ¹ )[X ] 483
z ¹ def 522
z ¹s conv 445

z ∈ ¹s conv 445
dest z ¹s 377

is z ¹s 377
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mk z ¹s 377
Z 462
Z 464

z Z cases thm 465
z Z cases thm 516
z Z cases thm1 466
z Z cases thm1 516
z Z consistent 448
z Z conv 521
z Z def 518
z Z def 521
z Z eq conv 518
z Z eq thm 465
z Z eq thm 516

z R Z exp conv 534
z R Z exp def 535

dest z R Z exp 530
is z R Z exp 530

mk z R Z exp 531
z Z induction tac 519
z Z induction thm 465
z Z induction thm 516

z less Z less thm 449
z less Z less thm 521

z Z minus thm 449
z Z minus thm 521
z Z one one thm 449
z Z one one thm 521
z Z plus thm 448
z Z plus thm 521
z Z subtract thm 449
z Z subtract thm 521
z Z times thm 448
z Z times thm 521
z Z 448
Z z 448
Z z consistent 448
Z z conv 521
Z z def 521
Z z minus thm 449
Z z minus thm 521
Z z one one thm 449
Z z one one thm 521
Z z plus thm 449
Z z plus thm 521
Z z subtract thm 449
Z z subtract thm 521
Z z times thm 449
Z z times thm 521

z ≤ Z ≤ thm 449
z ≤ Z ≤ thm 521

[[...]] 450
[[... ]] 450

([[... ]])[X ] 450
7½ 452

7½ 452
7½ 452

z 7½ clauses 454

z 7½ clauses 510
z 7½ def 509
z 7½ thm 453
z 7½ thm 510
z 7½ thm1 456
z 7½ thm1 526
X 7½Y 452

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - Z REFERENCE MANUALUSR030


