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Course Objectives

e to describe the basic principles and concepts
underlying ProofPower

e tO enable the student to write simple specifica-
tions and undertake elementary proofs in HOL
using ProofPower

e tO enable the student to make effective use of
the reference documentation
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Course Outline

e Introduction
— an overview of ProofPower

— propositional and predicate calculus proofs

e Specification using ProofPower HOL
— Primitive Syntax for TYPEs and TERMSs
— Derived Syntax for TYPEs and TERMSs

— Paragraphs (declarations) and Theories

e Proof in HOL
— Basics of Proof
— Rules, Conversions, Tactics...
— Stripping, Rewriting

— Induction
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Course Prerequisites

Some familiarity with:

e first order predicate calculus

"(Vze Pz = Rz) = (VW ze Px) = (Vre Rzx))T,

e clementary set theory

"Vabcoean(bnNne)=(anNb)nNct

e functional programming
SML

fun fact 0 = 1
| fact n = n x (fact (n — 1));
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Using Motif Window Manager

After logging in type "“openwin’ .

Use right mouse button away from windows or icons to
get the Root Menu.

Operate menus other than the Root Menu using the
left mouse button.

To open icon: single-click with left mouse button and
use “Restore” menu item.

To close window: single-click on menu button in top
left corner and use “Minimize” menu item.

To move window: single-click on menu button in top
left corner and use “Move” menu item.

To resize window: single-click on menu button in top
left corner and use “Size” menu item.

To select text: press left button at left of selection,
drag pointer to right of selection and release button.

To select single line: triple click with left button.
To select all text: type Control-*‘/".

To copy and paste: select source, press copy and,
with pointer at destination, paste.
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Using ProofPower

Select “HOL Course” from the Root Menu to start up
ProofPower for the course work.

To execute a command enter it into the Script Window
(upper text area), select it, and then use the Command
Menu to “Execute Selection” (or type Control-X).

Meta-language prompt is: “:>" in the Journal Window
(lower text area).

ML commands (or top level expressions) are terminated
by ‘“;” (use Control-; to add this if you forget).

For short commands that you don’t want to save in the
script, use the Command Line Tool.

Select Command Line Tool etc. from the Tools Menu

In case of mismatching brackets or quotes you may
get stuck with the continuation prompt: ' #'. In
this case, use Command Menu to “Abandon” (or type
Control-A).

To enter mathematical symbols, use the Palette
Tool. Get characters either by pressing the buttons
(characters go in script window), or by drag-and-drop
(character go to any text area).

Drag-and-drop character by holding middle button over
the character and dragging the pointer to target posi-
tion; release button to drop character.
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Exercises 0: Getting Started

1. Implement an ML function, fact, to compute
factorials.

2. Test your solution; e.g. execute:

fact 0;
fact 1,
fact 06

Hints:

e Iconified tools on right of the screen include a previewer
for you to browse these slides and an xpp editor contain-
ing the source of the slides.

e Develop your solutions to the exercises in the xpp com-
mand session (tool on the left).

e Copy-and-paste material from the xpp editor where help-
ful.
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Exercises 0: Solutions

The solution on slide 5 is fine, although it loops on negative
numbers.

A more robust solution is:

SML
‘fun fact n = if n <= 0 then 1 else n x fact (n — 1);
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Features of ProofPower

Pedigree

Power

Assurance

Openness

Extensibility
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Pedigree

In tradition of Principia Mathematica.

Based on Church’'s Simple Theory of Types.

Milner style polymorphism

Implementation builds on research at Universi-
ties of Edinburgh, Cambridge and Oxford.

Follows “LCF paradigm”.

Metalanguage is Standard ML.
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Power

ProofPower HOL is:

e Logically as expressive as Z.

e Notationally almost as concise as Z.

e Much less complex than Z.

ProofPower HOL has:

80% of the power of Z
° for
20% of the complexity.

e Modern functional language, Standard ML, as
“metalanguage”, for carrying out proofs and
programming extensions to the system.
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Assurance

Simple uncontroversial classical logical system.

Mathematical and formal specifications of syn-
tax and semantics of formal system.

Good support for specification by conservative
extension.

Small (<10% system code) logical kernel, im-
plemented as abstract datatype, enforces logi-
cal soundness of proofs.

Formal specifications of logical kernel.
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Openness

support for standard well documented lan-
guages targetted:

Standard ML, HOL, Z, SPARK

most of the functions used to build system are
available for re-use by the user

comprehensive reference manual documenting
all the functions supplied:

> 600 pages; >1000 ML names

libraries of theories and ‘“proof contexts” pro-
vided for re-use
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Extensibility

e User has access to metalanguage (Standard
ML) for:

— developing proofs
— extending system

— domain specific proof automation

e cxtendible definitional forms

e customisable “proof contexts”

e designed to support multiple object languages

e parser generator available
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Languages Supported

e NOW:
— Standard ML (as metalanguage)
— Higher Order Logic

— Z

e SOON:

— SPARK Annotation Language, via DRA’s
Compliance Notation

e EVENTUALLY (we hope):
— ISO Standard Z

— others
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Functionality

e document preparation/printing:

— using LaTeX “literate scripts” with extended fonts
for document sources

— indexes, cross reference and theory listings

e syntax check/type check (interactive or batch)

e formal reasoning (interactive or batch)

e theory management:
— specifications and theorems held in theory hierarchy

— programmable access to theory hierarchy
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Levels of Use of ProofPower

e Education

17

ProofPower is suitable for hands on interactive courses in mathe-
matical logic, discrete mathematics and formal methods including

Z. (however, course material needs to be developed)

Specification

ProofPower HOL can be used as a specification language without

the need to understand the proof development facilities.

Proof Development

Most application proofs require knowledge of a modest subset of

the proof facilities.

Research/ Proof tool development

ProofPower, like Cambridge HOL, is a good vehicle for research
in a number of areas. Research, or other developments to the
capabilities of the tool, can be undertaken by users, but requires

deeper knowledge and understanding of the system.
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Some Proofs are Easy with ProofPower

e propositional tautologies

ProofPower proves these automatically, and uses propositional rea-

soning to simplify non-propositional goals automatically.

first order predicate calculus

Often these will also be automatically provable using resolution.
Where resolution fails, there is a simple systematic approach to

proving these results using ProofPower.

elementary set theory

A useful class of results from elementary set theory are automatically

provable.

other classes of results

Whenever a new theory is introduced one or more proof contexts
may be developed to solve automatically a range of results in that
theory. “Decision procedures’” for such classes of results can be

made available via “prove_tac’.

Copyright © : Lemma 1 Ltd. 1992-2011



Simple Predicate Calculus Proofs

e use the subgoaling package

e set the goal

SML
‘set_goal([],r(Vx ye P r = R y)

‘ @(VU’LU.ﬂP’(U\/RU)_I)1

e initiate proof by contradiction

SML
a contr_tac;

ProofPower output
Tactic produced 2 subgoals:

(k xxx Goal "1" xx* *x)

(x 3%) "Vzye Pz =Ry
(x 2x%) "Puw'
(« 1 %) "= Ry

(x ?F %) TR

e instantiate assumptions as required
SML

‘a (list_spec_asm_tac "V z y¢ Pz = Ry ' [[w ' v );

19
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ProofPower output
Tactic produced 0 subgoals:

(x xxx Goal "2" xx* %)

(«x 3%x) "Vowe—-PwVRUv'
(x 2%) "Pg!
(«x 1 %) "= Ry

(x 72 %) "TF

SML
‘a, (list_spec_asm_tac "V v we = P w NV Ro'["y T2z ;

ProofPower output
‘T actic produced 0 subgoals:

‘C’urrent and main goal achieved

SML
‘pop-thm();

ProofPower output

‘Now 0 goals on the main goal stack

wal it =F (Y2 ye Pz = Ry)

< (Vv we—-PwvVv Rwv): THM
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Exercises 1: Proof

Set the theory and the proof context:

SML
‘ open_theory" hol";

‘ set_pc "hol2";

Set the goal (from the examples supplied):

‘ set_goal([]," conjecture ");

Then try the following methods of proof:

e [ wo tactic method using:

‘a contr_tac; (x once *)
‘a (list_spec_asm_tac "asm ' [ t1 ', " t2 ]);
‘ (* as many as necessary *)

e Or

‘a (prove_tac[]); (* once *)

e Or

‘a step_strip_tac;, (x many times *)

in case of difficulty, revert to the two tactic method.
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SML

val PM2 =]
I 1

(x x2.02 x) ¢ = (p=4q) ,
* x2.03 x) (p = - q) = (¢ = ﬁp)_ly
%215 %) (0 p=q) = (= qg=p) |,
«%2.16 %) (= ¢) = (= ¢ = = p) |,
« %217 %) (mg=>—p) = (p= ¢,

* x2.08 x) p = p—l,

x x2.21 x) = p = (p = q)—l];

SML

(x Results from Principia Mathematica *8 %)

val PM3 =|

(x *3.01 %) '—p ANqges =(=pV - q)—l,
(x x3.2 %) '—p:>q¢p/\q—l,

(x *3.26 x) '_p A q = p—l,

(x 327 %) "pAg=q,

(x x3.3 *)[_(p/\q¢7’):>(p:>q:>r)_',
(x %3.31 *) I_(piqir)i(p/\qu)—l,

(%335 %) " (p A (p= @) =q,

%3480 =) AG=>r)=@=qr7),
(x %3.45 *) '—(p:>q)$(p/\r:>q/\r)_|,
(**3.47*)'—(p:>7")/\(q$5):>(p/\q:>7‘/\3)—|];

22 Copyright © : Lemma 1 Ltd.

(* Results from Principia Mathematica *2 *)

**2.04*)(p:>q:>r)$(q=>p=>7“)—l7
*x x2.05 *) (q:>r):(p:>q):>(p:r)—',
**2.06’*)(péq)#(q:r)i(pir)—ly

22
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SML
(* Results from Principia Mathematica */j *)
val PM4 =]

(x%41 ) ' p=>ge-g=>-p,

411 x) (po e (pe-q )

(x %4.13 %) '—p & = p_l,

(x%4.2 %) ' peop

(x %421 x) " (p o q) & (e

4220 e DA (ger)=>Ger)
(x%4.2{ %) "'pepAp )

(x %4.25 %) '—p < pV p—l,

(+%4.3 ) "'pAge gD

(x %4.31 %) I—p\/q<:)>q\/p—|,

(x %4.33 *) I—(p/\q)/\7’<:>p/\(q/\7")_|,
(x%fd *) pAG@V)SGADV AT
(544l x) "'pV @A) GV YAV
4711 %) =)o e (A
5478 %) " g= (e GA))
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SML
(* Results from Principia Mathematica x5 %)
val PM5 =|

(x x5.1 %) l_p ANqg= (p& q)—l,
(x%5.92%)  (p=>(geor)=>(pArg e @Ar)]
(%56 ) (pA=-g=>r)=>(@=@Vr)

SML
(x Definitions from Principia Mathematica x9 x)
val PM9 =]|

(x 9.01 ) " = (Vze ¢z) < (3ze - d7) |,

(x %9.02 %) " = (3ze d2) < (Vze — ¢z)

(x %9.03 %) '_(on pr V p) & (Vre ¢z) V p—l,

(x x9.04 *) '—p VvV (Vze ¢z) < (Vze p Vv qb:c)—l,

(x x9.05 %) | (Jze ¢z vV p) & (Ize ¢z) V p |,

(x x9.06 ) " p v (3ze ¢2) & p v (Tze ¢2) ;

val PM9b =]

(x x9.07 %) '—(‘v’xo or) V (Jye vy) & (Vredye ¢z V ¢y)_|,
(x x9.08 x) '—(Elyo Yy) V (Vre ¢r) < (Vredye 1y V qu)_l];

24 Copyright © : Lemma 1 Ltd. 1992-2011



SML

(x x10.01
(x x10.1

(x x10.21
(x x10.22
(x x10.24
(x x10.27
(x x10.271
(x x10.28
(x x10.281
(x x10.35
(x x10.42
(x x10.5

(x x10.51

25

(* Results from Principia Mathematica *10 %)
val PM10 =]

) | (Fze ¢z) & = (Vye - ¢y) |,

) | (Voo ¢z) = ¢y |,

) ' (Vze p = ¢x) & p = (Vye ¢y) |,

*) I_(V:L‘o or N Yr) < (Vye ¢dy) A (Vzofwz)j,

x) | (Voo ¢z = p) & (3ye dy) = p |,

) | (Vze gz = 1) = ((Vye dy) = (Vze 92)) |,
) | (Voo ¢z & p1) = ((Vye dy) & (Vze 92)) |,
) | (Voo ¢z = 1) = ((ye dy) = (3ze ¥2)) |,
) | (Voo ¢z & p1) = ((ye dy) & (3ze ¥2)) |,
«) " (3ze p A gx) & p A 3ye dy) |,

*) r(ﬂxo or) V (Fye Yy) < (Jze ¢z V'wz)j,

*) r(ﬂxo or N Yzr) = (Jye ¢dy) A (Hzofwz)j,

) | =(3ze ¢z A Yz) = (Vye ¢y = — vy) I;

Copyright © : Lemma 1 Ltd.
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SML
(x Results from Principia Mathematica 11 *)
val PM11 =]

(x x11.1 =) ' (Vz yo p(z,)) = d(z,w) |,
(x x11.2 %) l_(Vx ye o(x,y)) < Vy ze cb(x,y)—l,
(x x11.3 %) " (p = (V2 yo &(2,9)))
& (Vo ye p = ¢(z,y))
(x x11.32 %) '_(V:U ye o(x,y) = ¥(z,y))
= (Vz yo ¢(z,9)) = (Vz yo P(z,y))
(x x11.35 %) I_(Vx ye o(x,y) = p) & (Iz ye o(x,y)) = p—l,
(x x11.45 %) I—(EIZC ye p = ¢(z,y))
& (p= (3 ye ¢(z.9))) |
(x x11.54 %) '—(Elx ye oxr N Yy) < (dxe ¢dx) N (Jye wy)—l,
(x x11.55 %) '_(Elz ye oz N Y(x,y))
& (Ize gz A (Fye ¥(z,1)))
(x %11.6 %) " (3ze (3ye d(z,y) A ¥y) A x2)
& (Jye (Ave d(z,y) A x7) A Yy) |,
(x x11.62 %) '_(Va: ye oz A Y(z,y) = x(z,y))
& (Ve ¢z = (Vye P(z,y) = x(z,)))

I;
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SML
(* results from ZRM provable by stripping )

val ZRM1 = |
l_aUazaU{}—I,
'—au{}zaﬂa—l,

ana=a\{}

Ta\{}=a,

l_aﬂ{}za\a—l,
TaNa={}\a’

Bhae={"

I_anZbLJa—I,
l_aﬂbeﬂa—l,
'—aU(bUc)z(an)Uc_l,
'_aﬂ(bﬂc)Z(aﬂb)ﬂc_l,
l_au(bﬁc)z(an)ﬁ(aUc)_],
-

aﬂ(bUc)z(aﬂb)U(aﬂc)_],
"anb)u(a\b)=al

e\ nb={}",

A\ G\ ) =(a\DU(anc)
e\ \e=(a\ (U,
Tau N =(ub)\(c\a),
'_aﬂ(b\c)Z(aﬂb)\c—l,
T@ub)\Ne=(a\ U@\ )N;

27
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SML

val ZRM2 = |

AN (N =(a\DU(a\),
e {}]

~, C a_l’

T acal

"yca,

Uo=40"

[_ﬂ {} = Universe |;

SML
(x results from ZRM x)

val ZRMS = |
"aCchbeacPob !
l_agb/\bga<:>a=b—|,
"~ (acbAbCa)l,
'—agb/\bgcjagc—l,
|_aCb/\ch:>aCc—|,
{Jcae-a={"
"UGe@un=Uouln "
"NG@ud=ond]
raQbanQUb—l,
l_agbéﬂbgﬂa—l];

28
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The HOL Type System

e abstract syntax/computation

SML
‘mk_vartype . string —> TYPFE;
‘mk_ctype . string x TYPE list —> TYPE;

e concrete syntax

BNF
Type Name
Typars, Name
Type, InfitName, Type
“(¢, Type, )¢,
Type
“(¢, Type, { ¢, Type }, )¢,

Typars

Type variables must begin with a prime.
Infix status and priority determined by fixity declarations.

e semantics
— Types denote non-empty sets of values.
— Type variables range over non-empty sets of values.

— Type constructors denote functions from
tuples of sets to sets.
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Examples of Types

(* parsed type variable )
val t = mk_vartype "'a";

(x computed type variable x)
val w = ":BOOL;

(x O0—ary type constructor *)
mk_ctype ("BOOL",[]);

(x computed 0—ary type construction x)
I_:N—I;
(x 0—ary type constructor )
"o LIST
(x polymorphic list type *)
“(N) LIsT .
(x lists of matural numbers x)
"N - N,

(x infix type constructor x)
mk _ ctype ("—>",[|_:N—|,I_:N—l]);
(x computed function space *)
. r t_l r 171,
- SML: —  SML: U '

(* another way of writing |\/|'_|_mk_ctype("—>",[t,u])—| *)

"N x N

(*x pairs of natural numbers x)
"N + Boor .

(* disjoint union of N and BOOL *)
"N, N) $x

(*x suspending infiz status x)

30 Copyright © : Lemma 1 Ltd. 1992-2011
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Computation with TYPEs (I)
recognisers and destructors

e constructors

SML
mk_vartype :string —> TYPF;
mk_ctype :stringxTYPE list —> TYPF;

e recognisers
SML

i1s_vartype . TYPE —> bool,
is_ctype . TYPE —> bool,

e destructors

SML
dest_vartype . TYPE —> string,
dest _ ctype . TYPE —> string * TYPE list;
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Computation with TYPEs (II)
sample functions

e type equality
SML
op =: . TYPE x TYPE —> bool,

e type variables in a type
SML

type_tyvars . TYPE —> string list,

e type constructors in a type
SML

type_tycons . TYPE —> (string * int) list;

e type instantiation
SML

inst_type . (TYPE x TYPE) list
—> TYPE —> TYPE;

32 Copyright © : Lemma 1 Ltd.
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Computation with TYPEs (III)
support for pattern matching

e DEST_SIMPLE_TYPE

‘datatype DEST_SIMPLE_TYPE =
‘ Vartype of string
H Ctype of (string = TYPE list);

e generalised destructor

SML
‘dest_simple_type: TYPE —> DEST_SIMPLE_TYPFE,

e generalised constructor

SML
‘mk_sz'mple_type . DEST_SIMPLE_TYPE —> TYPFE,

e pattern matching recursive functions

SML

fun type_tyvars2 t =
(fn Vartype s => [s]
| Ctype (s,tl) => list_cup (map type_tyvars2 tl))
(dest_simple_type t);

33 Copyright © : Lemma 1 Ltd. 1992-2011
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HOL Terms

e abstract syntax/computation

datatype DEST _SIMPLE_TERM =

Var of string x TYPE
Const of string x TYPE
App of TERM x TERM

Simplex of TERM x TERM,

dest_simple_term: TERM —> DEST_SIMPLE_TERM;
mk_simple_term: DEST _SIMPLE_TERM —> TERM,;

e concrete syntax

BNF

Term =

‘XY, Name, [“:¢, Type], ‘o, Term
Term, Term

Term, InfitName, Term

Term, ¢.¢, Type

Name

“(¢, Term, °)¢;

Names are treated as variables unless declared as constants.
Infix status and priority determined by fixity declarations.

34
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Types of Terms

Terms must be well typed.
The type of a term is determined by type inference
using the following rules:

e variables
"vial T«

e constants
"cia' T o

e lambda abstractions
t . «
"Nz et B — «

e applications

fra— 0 7«

fallp

35 Copyright © : Lemma 1 Ltd. 1992-2011
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Types of Terms

The same rules may be rendered in ML as follows:

e Vvariables

type_of (mk_var(vname,vtype)) =: vlype;

e constants

type_of (mk_const(cname,ctype)) =: ctype;

e lambda abstractions

type_of term =: ttype;

= T T ttype

type_of "\ z'a e pterm

e applications

I /b—l.

Yo — :

type_of funterm =:

. 1.

type_of arg =: "'a '

type_of " MLfunterm ! MLarg ' =

. I—./b—l.
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Types of Terms - Examples

SML

type_of "N =: N
type_of " x’a =:"a T,
type_of T 0 =: ":NT;
type_of "Azx:N ez + 1 = "N - N
type_of "Xz @ z 4+ 1 = "N - N
type_of "(\r ez + 1) 3" = "N
type_of "$4 1 = "N N
type_of " $+ " = "N NN
type_of " T =: ":BOOL ",

type_of T~ T =: ":BOOL ",

- ""BOOL — BOOL™:
: ":BOOL — BOOL — BOOL"
: ":('a — BOOL) — BOOL™,

type_of " $—"
type_of "N
type_of T $V!

37 Copyright © : Lemma 1 Ltd. 1992-2011
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Semantics of Terms

e Variables
range over the set denoted by their type.

e Constants

denote particular values in the set denoted by their type.

e Lambda Abstractions
denote total functions from the set denoted by the type
of the variable to the set denoted by the type of the
body.

The value at point “p” is the value of the body when

the variable is assigned value “p”.

e Applications
denote the value of the function denoted by the first
term at the point which is the value denoted by the

second term.

Copyright © : Lemma 1 Ltd. 1992-2011



Semantics of Terms - Examples

SML
‘ﬁ_confu "Nz ez + 1) 3"

Hol Output
wval it =F (Azex 4+ 1)3 =234 1:THM

SML
‘rewm’te_conv[] "Nz ez +1) 3"

Hol Output
wval it =F (Nzex + 1) 3 =4 : THM

SML
n-aziom;

Hol Output
wval it =FV fe (Aze fz)=f:THM

SML
‘ext_thm;

Hol Output
‘wlz't=|—‘v’fgof=g<:>(onfx=gx):THM

SML

prove_rule[]] "3 z:N e 48 =z "
prove_rule[] "3 b: BOOL e T =1b"
prove_rule[] "V z:N e x> 0%
prove_rule[] "'V b:BOOL e b=TVb=F"

39 Copyright © : Lemma 1 Ltd.
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Derived Syntax - DEST_TERM

datatype DEST_TERM =

DVar of string x TYPE
| DConst of string x TYPE
| DApp of TERM x TERM
| DA of TERM x TERM
| DEq of TERM x TERM
| D= of TERM x TERM
| DT
| DF
| D- of TERM
| DPair of TERM « TERM
| DA of TERM « TERM
| Dv of TERM x TERM
| D& of TERM x TERM
| DLet of ((TERM x TERM)list x TERM)
| DEnumSet of TERM list
| DY of TYPE
| DSetComp of TERM « TERM
| DList of TERM list
| DEmptyList of TYPE
| DV of TERM x TERM
| D3 of TERM x TERM
| D33 of TERM x TERM
| De of TERM x TERM
| DIf of (TERM x TERM x TERM)
| DN of int
| DChar of string
| DString of string;
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Derived Syntax

prefix, infix and postfix operators

binders

pair matching lambda abstractions

conditionals

local definitions

set displays and abstractions

list displays

literals (numeric, character, and string)
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Binders

e Constants having type: ":('la — 'b) — 'c’!
(or any instance of this)
may be declared as “binders’.

e Normally a “binder” is applied to a lambda ex-
pression, in which case the X\ is omitted.

e binder status may be suspended by use of $.
SML

"Frex =/47=%"$INzex =/

42 Copyright © : Lemma 1 Ltd. 1992-2011
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Nested Paired Abstractions

e nested lambda abstractions can be abbreviated as fol-
lows:

SML
"_)\:I;:NaAy:No (z,y) ' =% "X z y:Ne (z,9) ';

This function takes two natural numbers and returns a

N

pair. (“,” is the infix pairing operator.)

e functions taking pairs may be written:

SML
‘rewm'te_conv[] "(\(z,y):N x Ne z)=Fst "

ProofPower output

‘val it =F O\ (z,y)e x) = Fst & T : THM

This function takes an argument which is an ordered
pair, and returns the first element of the pair.

e these effects can be iterated or combined.

SML
‘ rewrite_ conv []

| "M@y N x N ((vw),2)e v+ y + v+ w + 2)
| (1,2) ((3.4).5)

ProofPower output
‘Ual it =

\ SO (@, ) (v, 0), e+ y + v+ w+ 2)
\ (1,2) (3, 4), 5) = 15 : THM
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Conditionals

e Conditionals may be written:

If t1 then t2 else t3
SML

rewrite_conv|[] "if T then 0 else 177

ProofPower output

val it =+ (if T then 0 else 1) = 0 : THM

SML

rewrite_conv([] "if F then 0 else 17

ProofPower output

val it =+ (if F then 0 else 1) = 1 : THM

SML

rewrite_conv[] Tif 3>6 then x else y'’;

ProofPower output

val it =+ (if &8 > 6 then z else y) = vy : THM
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Let Clauses (1)

e Local declarations may be made in the form:

let defs In term
SML

rewrite_conv|let_def]"let a = " Peter" in a,a’;

ProofPower output
val it = + (let a = "Peter" in (a, a))
= (" Peter", "Peter") : THM

e [ he left hand side of a definition may be a

“varstruct’ :
SML

rewrite_ conv|let_ def]
Clet (z,y) = (1,T) in (y,2)7;

ProofPower output
val it =+ (let (z, y) = (1, T) n (y, z))
= (T, 1) : THM
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Let Clauses (II)

e [ he left hand side of a definition may be a

function definition:
SML

rewrite_conv(let_def]"let f + = xxz in f 37,

ProofPower output
val it = F (let fx =z *xx inf 3)
= 9 : THM

e Multiple definitions may be given in a single let

clause.
SML

rewrite_ conv|let _ def]
"let a = 1 and b = 2 in (a,b)’;

ProofPower output
val it =+ (let a = 1 and b = 2 in (a, b))
= (1, 2) : THM
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Set Displays

e Sets may be entered as terms by enumeration:

SML
‘rewm’te_conv[]'_g € {1x1; 2x2; 8x8; f*4} ",

ProofPower Output
‘wlitzl—gé{l*1;2*2;3*3;4*4}
\ < T THM

SML
‘rewm’te_conv[]'_ZO € {1x1; 2x2; 3x3; f*4} ",

ProofPower Output
wval it =k 10 € {1 % 1, 2% 2, 8% 3, 4 x4}
\ < F o THM

e Sets may also be entered as set abstractions:

SML
‘rewm’te_conv[]'_Q c{z |z <12}

ProofPower Output
wal it =F 9 € {z[z < 12} & T : THM

SML
‘rewm’te_conv[]'_z c{(z,y) |z <y}h

ProofPower Output

‘val it =F 2z € {(z, y)|r < y}
‘ & Fst 2 < Snd z © THM
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List Displays

e A similar syntax is available for lists:

SML

rewrite_ conv|append _ def]
T[1x1; 2x2; 8%83; 4*x4] @ [6x5]";

ProofPower Output

val it =
[1 x1;2%2;8% 8,4 % 4] @[5 % 5]
= [1; 4; 9; 16; 25] : THM

SML
"Cons 1 [2;3;4;5]";

ProofPower Output

val it = "[1; 2; 8; 4; 5] . TERM
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Literals (I)

e Numeric literals consist of a sequence of deci-
mal digits (no sign):
SML

dest_simple_term " 1237,

ProofPower output
val it = Const ("123", ":NT)
. DEST_SIMPLE_TERM

e Character literals consist of a single character

in ¢ characters:
SML

dest_simple_term " ‘o,

ProofPower output
val it = Const ("‘a", "CHAR™) (x ¢ %)
- DEST _SIMPLE_ TERM
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Literals (II)

e String literals consist of zero or more characters in “""
characters:
SML

‘ dest_simple_term ™"

many characters aBy"

ProofPower output
‘val it = Const ("\"many characters aB~y", (x " %)

‘ ":CHAR LIST ") : DEST_SIMPLE_TERM

e A string literal denotes a LIST of characters:

SML
‘TOP_MAP_C string_conv " " characters afBy"

ProofPower output
‘val it = F "characters oBy"

‘ :[(C(;lh(;(a/(;(,r,(;(aj(;(cl;(t(;(e(;(,rt;(s(;

‘ ¢ c; ‘Oz‘; ‘B‘; "7‘] - THM
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Theories/Declarations/Definitions
Specifications/Paragraphs

e Information about specifications is held in the
theory database.

e [he information is mainly put in the theo-
ries using various declarations and definitions,
which are calls to ML functions.

e Some specifications may be effected using
“paragraphs” in the object language (HOL).
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T heories

A theory contains the following information:

52

The name of the theory and the names of its
parents and children.

The names and arities of type constructors de-
clared in the theory.

The names and types of constants declared in
the theory.

Fixity and aliasing information.

Definitions of constants.

A collection of saved theorems.
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Access to Theories

e [0 use a theory it must be “in context”, this
can be achieved be opening the theory or one

of its descendents:
SML

open_theory . string —> unit;

e To display the contents of a theory:
SML

print_theory . string —> unit,

e [0 get things from the theory:
SML

get_aliases; get_ancestors, get_axiom; get_axioms,
get_binders; get_children; get_consts; get_defn;
get_defns; get_descendants; get_parents; get_thm;
get_thms; get_spec;

e [0 save things in the theory use declarations,
definitions, specifications or paragraphs (see
below).
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EXxercises 2: HOL Theory EXxplorations

e Find the names of all the theories:

SML
get _theory_names();

e Print selected theories, e.g.:

SML
‘ open_theory" sets";

‘prmt_ theory" sets";

e Get the terms from the definitions in a theory, e.g.:
SML
‘ open_theory "bin_rel";
‘(map concl o map snd o get_defns) "bin_rel";

e Now select interesting terms and take them apart using, €.g.:

SML
‘dest_sz’mple_term "V orser@s= (Dom s <] r) U s—l;

Hol Output
‘val it =App (v, "X reVser®s= (Doms<]r)yus)
‘ . DEST_SIMPLE_TERM

SML
‘ dest_simple_term l_{Z ;2;5’}—|;

Hol Output
val it = App (" Insert 1,7 {2; 33 ") : DEST_SIMPLE_TERM

SML
get_spec l_]nsert_];

Hol Output
‘valitZI—Vazya
‘ e~z €{} Nz € Universe AN (x € Insert y a <& v =y V z € a) : THM
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Declarations (I)

e theories and parents
SML

open_theory L string —> unit,
new _theory > string —> unat;

new _ parent L ostring —> unat;

e types
SML

new _ type
. string * int —> TYPE,
new_type_defn

55

. string list = string * string list x THM —> THM,

declare_type_abbrev

. string * string list x TYPE —> unit,

55 Copyright © : Lemma 1 Ltd. 1992-2011



56

Declarations (II)

e constants
SML

new_ const

. string x TYPE —> TERM,;
simple_new_defn

. string list = string = TERM —> THM,
new _ spec

. string list = int « THM —> THM,
const_ spec

. string list x TERM list x TERM —> THM;

e types and constants
SML

unlabelled _ product _ spec;
(x mainly for use with Z )
labelled _ product _ spec;

(x see paragraphs below x*)
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Declarations (III)

Any identifier can be declared:

e prefix, infix, postfix (with a priority)

e a binder (like “v" and “3")

SML

declare_prefix
declare_infix
declare_ postfix
declare_ binder
get_ fixity
declare_nonfir

57

ant x string —> unit;
ant x string —> unait;
Dant x string —> unat;

. string —> unat;

. string —> Lex.FIXITY

L string —> unit,

Copyright © : Lemma 1 Ltd.
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Paragraphs

Some declarations may be done without resort to
the metalanguage:

e constant declarations (based on const_spec)
SML

new_theory "tutorial",;
declare_postfix (200, "'");

HOL Constant

$!' : N — N

0! = 1
A Vn:Ne (n4+1)! = n! x (n4+1)

e labelled product declarations

HOL Labelled Product
Date
—

day month year:N
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Paragraphs - Example

HOL Constant
length : "a LIST — N

length [|] = 0
AY h te
length (Cons h t) = length t + 1

SML

print_theory "tutorial",

rewrite_ conv|get_ spec” length ]
“length [1;2;3,4;5],
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EXxercises 3: Specification

e Create a new theory as a child of “hol".
SML

open_theory "tutorial";

e \Write a specification in HOL of a function to
add the elements of a list of humbers.

HINT : if your specification goes in as a “Constspec” then the system
could not prove it consistent, and its probably either wrong or poorly

structured. Try to make it clearly ‘primitive recursive’.

e Use it to “evaluate” the term
“list_suml|[1;2; 3;4; 5]

rewrite_ conv|get_ spec” list _ sum ]
“list_sum [1;2;8;4;5]";
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Forward Proof in ProofPower

theorems - values of type THM computed from ax-

ioms and definitions using rules and conversions.

axXioms - theorems introduced without proof.

definitions - axioms introduced by ‘“conservative”

mechanisms.

rules - functions which compute theorems.

conversions - rules which prove equations from

terms.
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Theorems

The HOL logic is a ‘'sequent calculus'.

A sequent is a “(TERM list) * TERM" (=SEQ) where
each term must have type " :BOOL .

The list of TERMs are known as ‘“assumptions’ the
single term is the conclusion of the sequent.

A sequent is valid if whenever the assumptions are all
true the conclusion is also true.

A theorem is a sequent which has been derived from
axioms and definitions using the rules of the logic. The-
orems are tagged with an indicator of the context in
which they were derived.

The sequent part of a theorem may be accessed using:

SML

‘dest_thm . THM —> SEQ);

‘asms  THM —> TERM list;
‘COHC[ - THM —> TERM:;

Theorems are displayed without “quine corners’; they
cannot be parsed, they must be proven (or introduced
as axioms).

To see the primitive constants and axioms look in theo-
ries “min”, “log” and “init".
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Naming Conventions for Theorems and Rules

63

_ariom

ML names ending with _aziom are used for ax-
ioms and for functions (e.g. new_axiom) for
introducing or accessing axioms.

_def _spec
ML name suffixes used for definitions.

_thm _clauses
ML name suffixes for theorems.

_rule _elim _intro
used for inference rules.

_conv

for conversions, rules having type TERM ->
THM where the THM is an equation with the
TERM as its left hand operand.
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A Selection of Useful Rules (I)

e assume rule:

SML
‘val thml = asm_rule "Vz y:Ne zxy > 0 ;

ProofPower Output
‘valthml =Vzyezxy>10
‘ FYaxyexxy>0: THM

e Mmodus ponens

SML
‘val thm_a = asm_rule’ a:BOOL '

‘val thm_b = asm_rule" a=b "

ProofPower Output
‘val thm_a = at+ a: THM

‘valthm_bzaébl—aib:THM

SML
‘val thm_c = =_elim thm_b thm_a;

ProofPower Output
‘val thm_c = a = b, at b: THM
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A Selection of Useful Rules (II)

e Specialisation

SML
‘Ual thm2 = V_elim " 455 thm1;

ProofPower Output
‘valthm?z‘v’xyox*y>0
‘ FV ye 455 xy > 0 . THM

e Mmultiple specialisation

SML
‘val thm3 = list_N_elim [ 455 .7 0" thm1;

ProofPower Output
‘valthm3=nyox*y>0
| - 455 % 0 > 0 : THM

e removing outermost universals

SML
‘val thm4 = all_V_elim thmlI;

ProofPower Output
‘fualthm4=‘v’xyox*y>0l—x*y>0:THM

65
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A Selection of Useful Rules (III)

e sSplitting conjunctions

SML
‘val thmd = all_V_elim plus_order_thm;

ProofPower output

val thmdb =+F m + 1 =1+ m

|

‘ Ali+m)+n=1i4+m-+n

‘ Am-+i+n=4¢+m-+n: THM

SML
‘val thmsl = strip_A_rule thmd;

ProofPower output
‘valthmsl =[Fm-4+ =14+ m,

‘ F(G+m)+n=1i4+ m+ n,
‘ Fm+ i+ n=1+ m+ n]: THM list

e adding universals (1)

SML
‘val thm6 = all_V_intro (nth 2 thmsl);

ProofPower output

‘valthm6=l—sz’nom—l—z’—l—n:i—l—m—l—n:THM

e adding universals (II)

SML
‘val thm7 = list_V_intro [" i ,"m " n ] (nth 2 thms1);

ProofPower output

‘valthm7=l—‘7imnom—l—z’—l—n:z’—l—m—l—n:THM
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Exercises 4: Forward Proof

1. Using =_elim and asm_rule prove:
(a) b=c,a=b,akc

(b) a=b=c,a,bc

2. Using V_elim with —_plusl _thm prove:
() F—04+1=0
(b) Fmzxx+1 =10

3. Using all_V_elim with <_trans_thm prove:

(a) Fm<ini<n=m<n

4. Using list_V_elim prove:

(a) (with —_less_thm)
F-0 < 1<1<0

(b) (with <_trans_thm)
FVnNne3<x*xXxAx*x<n=3<n
5. Using all_V_elim, strip_A_rule, nth, all_¥_intro:

(a) (with <_clauses)
FYimnei4+ m<i4+ n&< m<n

(b) (using list_V_intro)
FYyminei4+ m<i+n&<m<n
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SML

(x 1(a) *)
extl _thml
extl _thm?2
extl _thm3
extl _thmy
val extl _thmd
(x 1(0) =)
val ext2_thml

val
val

val
val

SML
(x 2(a) =)

(x 2(b) *)
val exts _thml

SML
( 3(a) )
‘ val extd_thml

SML

(x 4 (a) *)
val ext6b_thml
(x 4(0) *)
val ext7_thml

SML
(x 5(a) =)
val ext8_thml
val ext8_thm2
(x 5(b) =)
val ext8_thm2

68
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Exercises 4: Solutions

asm_rule '_a:>b—|;

asm_rule '_b:>c—|;

asm_rule '_a:BOOL—I;

=_elim extl _thml extl_thm3;
=_elim extl _thm?2 extl_thm/;

=_elim (asm_rule ra#bicj)(asm_rule I_a:BOOL—l);

val ext3_thml = Y_elim " 0] —_plusl _thm;

V_elim " sz | —_plusl _thm,

all_V_elim <_trans_thm,;

list_V_elim [[_0—|,[_1—|] —_less_thm;

I_S,—Il_

list_N_elim [ : _]]

rzxx | <_trans_thm;

strip_A_rule (all_V_elim <_clauses);
all_N_intro (nth 3 ext§_thml);

list_N_intro [l_m_l,l_z'_l,l_n—l](nth 3 ext8_thml);
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Goal Oriented Proof

e a GOAL,
IS just a sequent, viz:
— a list of assumptions (BOOLean TERMS)
— a conclusion (also a BOOLean TERM)
GOAL = TERM list * TERM = SEQ

e a3 PROOF,

is a function which computes a theorem from a list of
theorems.

PROOF = THM list -> THM

e a TACTIC,
is a function which:

— takes a GOAL

— returns
* a list of sub-GOALs

* a PROOF which will compute a theorem corre-
sponding to (“achieving’) the input goal from the-
orems corresponding to the sub-GOALSs.

TACTIC = GOAL -> (GOAL list * PROOF)
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Using the Subgoal Package

e Getting started:
SML
‘set_goal . GOAL —> unit;
‘push_goal : GOAL —> unit;
‘push_consistency_goal . TERM —> wunit,;

e Moving along:
SML
apply_tactic : TACTIC —> unit;
a : TACTIC —> unit;
undo : int —> unit;
set_labelled _goal : string —> unit;
lemma_tac : TERM —> TACTIC:

e Finishing off:
SML
‘tap_thm cunit —> THM,;
‘pop_thm s unit —> THM,
‘save_pap_thm . string —> THM;

e also note:
SML
save_thm . string x THM —> THM;
list _save_thm
. string list x THM —> THM;
save_ consistency_thm
. TERM —> THM —> THM;

70 Copyright © : Lemma 1 Ltd.

70

1992-2011



71

Rewriting

( COTV

rule

[pure_][once_][asm_]rewrite_ { fae

\ thm_tac

conv(= TERM — > THM)
. THM lhist— > ¢ THM — > THM
TACTIC

: THM — > TACTIC

rewrites the term, theorem or goal using:

e conversions in “proof context” (unless pure)

e assumptions (if asm but not conv) (after context sen-
sitive pre-processing)

e theorems in THM list (or THM) parameter (after context

sensitive pre-processing)

Rewriting continues until no more rewrites are possible (un-

less once).
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EXxercises 5: Rewriting with the Subgoal
Package

1. set a goal from the examples on set theory, e.g.:

SML
‘set_goal([],'_a \(bnec)=(a\b)U(a\ c));

2. rewrite the goal using the current proof context:

SML
‘a (rewrite_tacl]);

3. step back using undo:

SML
‘undo 1:

4. now try rewriting without using the proof context:

‘ a (pure_rewrite_tac(]);

(this should fail)

72
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Exercises 5 - Continued

5. try rewriting one layer at a time:

SML
‘ a (once_rewrite_tac[]);

repeat until it fails.

6. now try rewriting with specific theorems:

SML

set_goal([l,"a \ (bNnc) = (a\b)U(a\ ),
a (pure_rewrite_tac[sets_ext_clauses]);

a (pure_rewrite_tac[set_dif _def]);

a (pure_rewrite_tac[N_def, U_def]);

a (pure_rewrite_tac[set_dif _def]);

7. finish the proof by stripping:

SML
‘a (REPEAT strip_tac);

8. extract the theorem

SML
‘tap_thm();

9. repeat the above then try repeating:

SML
pop-thm ()
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EXxercises 6: Combining Forward and
Backward Proof

Prove the following results by rewriting using the goal pack-
age:. for each example try the previous methods to see how they fail

before following the hint

1. :

SML
‘set_goal([],'_x +y=y+2z);

2. .
SML
‘S@t_QOCLl([],I—:E +y+z=(@+vy + 2"

‘(* hint : try using plus_assoc_thm x)

3.
SML
‘Set_goal([],'_z +y+r=y+2z+2');

‘(* hint : try using plus_assoc_thml x)

4.
SML
‘Set_goal([],'_x +y+rz=y+ 2+ 2);

‘(* hint : try using V_elim with plus_assoc_thml x)

5.
SML
‘Set_goal([],'_x +y+z+v=y+v+2+2');

‘(* hint : try using V_elim with plus_order_thm x)
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EXxercises 6: Solutions

1. :

SML
‘Set_goal([],'_x +y=y+2z);
‘a (rewrite_tacl]);

2.

SML
‘set_goal([],'_x +y+z=(@+y + 2"

‘ a (rewrite_tac[plus_assoc_thm]);

3.

SML
‘set_goal([],'_z +y+r=y+z+a);

‘ a (rewrite_tac[plus_assoc_thml1]);

4. :

SML
‘set_goal([],'_x +y+z2=y+ 2+ 2z,

‘ a (rewrite_tac[V_elim "y ' plus_assoc_thm1]);

5. :

SML
‘S@t_QOCLl([],I—:E +y+z24+v=y+v+z+2z");

‘ a (rewrite_tac[V_elim "z plus_order_thm]);
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Stripping

“stripping’ facilities incorporate automatic
propositional reasoning and enable domain
specific knowledge to be invoked
automatically during proof.

strip_tac processes the conclusion of the
current goal

When new assumptions are created, by
strip_tac or otherwise, they are normally
stripped before being entered into the
assumption list.

Stripping of assumptions is different from
stripping of conclusions.
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Stripping Conclusions (concl’s)

1. apply conclusion stripping conversions from proof con-
text

2. if no conversion applies then attempt one of the follow-

ing:
(a) :
‘ .. = Vze Prx ===> .. 7 P 1’
(b) :
‘ . = Pl NP2 ===>
‘ .. ? P1 and .. 7 P2 (two subgoals)
(c) :

‘ . Pl = P2 ===
‘ strip_asm_tac(P1), .. 7+ P2

3. then check if:
(a) conclusion of the goal is ' T
(b) conclusion is in the assumptions

if so, prove the result

77 Copyright © : Lemma 1 Ltd. 1992-2011



78

Stripping Assumptions (asm'’s)

1. Repeat the following transformations until no further
changes occur: apply assumption stripping conversions
from proof context

(a) : apply assumption stripping conversions from proof

context
(b) :
‘ dze Pz F? .. ===> P 2/ 7 ..
(c) :
‘ P1 v P27 . ===
‘ P1 +7? .. and P2 =7 .. (two subgoals)
(d) :
‘ Pl NP2 7. ===

‘ P1, P2 =7 .. (two assumptions)

2. then for each resulting assumption, check if:
(a) assumption = F
(b) assumption = concl
(c) contradicts an existing assumption

if so, prove the result.

3. also check if:
(a) assumption = T
(b) is same as an existing assumption

if so, discard the assumption.
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EXxercises 7: Stripping

e Use the examples from Principia Mathematica & ZRM
given earlier, e.qg.:

SML
set_goal([l,' p A g = (p & @) );

with

SML
a strip_tac;

2. and/or:

SML
a step_strip_tac;

e Observe the steps taken and try to identify the reasons
for discharge of subgoals.

e Select the weakest ‘“proof context':

SML
push_pc"initial";

then retry the examples (or previous exercises).

e \When you have finished restore the original proof context
by:

SML
pop_pc();
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Induction

Induction principles can be expressed as theorems
in Higher Order Logic, e.qg.:

e induction_thm

‘ FVpe p0 A
| (VWVmepm=p(m-+ 1))
‘ = (V ne pn): THM

e cov_induction_thm

‘ FVpe (Vne(Wmem<mn=pm)= pn)
= (V ne pn): THM

e [ist_induction_thm

FVope pll A
(V liste p list = (VY ze p (Cons x list)))
= (V liste p list) : THM

Using V_elim and all_B_rule these can be specialised
for use in forward proofs.
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Induction Tactics

Special tactics are available to facilitate the use
of induction principles:

e induction over natural numbers using
mduction_tac

{I'} ¢t
{I'} t[0/x]; strip{t, '} t[z+1/x]

induction_tac" x|

e induction over natural numbers using
cov_induction_tac

iyt

strip{" Vme m < x = t[m/x] ", I'} t

cov_induction_tac" x|

e induction over lists using
list _induction_tac

{I'} t
{I'}t[[]/x]; strip{t, I'} t[Cons h x/zx]

l_LU—l

list _induction_tac
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Induction - Example (I)

Prove the associativity of append.

SML
set_goal([]," V11 12 13:'a LIST e

(1 @12) @13 =11 @ (I2 @13)");
(x remove universal quantifiers )

a (REPEAT strip_tac);

ProofPower output
‘(* *kx Goal "" xxx *)

(x7-x) (1 @I2)CIB =1 Q@I12@1I3]
SML
‘(* induct on " 117 %)

‘a (list _induction_tac " 11 );

ProofPower output
(x xxx Goal "2" xx* x)

(x 1 %) "(1@I2)@IB=11@I20I3"

(x 2 %) "V ze (Cons z 11 @ [2) @ I3
= Cons z 11 @12 @[3

(x xxx Goal "1" xx* x)

x7-%) "(@i)en=[@i2eIi3'
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Induction Example (II)

SML
‘ a (rewrite_tac [append_def]);

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved, next goal 1s:

(x xxx Goal "2" xx* x)
(x 1 %) "(l1 @I12)QI3 =11 @2 Q@[3

(x 7 %) "V 2e (Cons z 11 @ 12) @ I3
= Cons x 11 @12 @13

SML
‘ a (asm_rewrite_tac [append_def]);

‘val append _assoc_thm = pop_thm();

ProofPower output
Tactic produced 0 subgoals:

Current and main goal achieved
val append_assoc_thm =

-V 11215 (11 @I2) @13 =11 @12 @3 : THM
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Exercises 8: Induction

1. Appending the empty list has no effect:
SML

set_goal([], "VIl @ 11 @[] = I17);

2. “Reverse” distributes over “@" (sort of):
SML

set_qgoal([], "VI1 12 e
Rev (11 ® [2) = (Rev 12) @ (Rev 11)7);

3. “Map” distributes over "Q":
SML

set_goal([], "Vf 11 12 e
Map f (11 @ 12) = (Map f 11) @ (Map f 12)™);

4. “Length” distributes over “@Q":
SML

set_qgoal([], "VI1 [2e Length (11 @ [2)
= Length 1 + Length [27);
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Exercises 8: Solutions

SML
set_goal([],rW] e/l O[] = lZ—I); (x no. 1 %)

a strip_tac;

a (list_induction_tac N
THEN asm_rewrite_tac [append_def]);
val empty_append_thm = pop_thm();

SML
set_goal([],r‘v’ll 12 @ Rev (I1 @ [2) =
(Rev 12) @ (Rev l])—l);(* no. 2 x)
a (REPEAT strip_tac);
a (list_induction_tac "1 THEN asm_rewrite_tac

[append _assoc_thm, empty_append_thm,
append_def, rev_def]);
val rev_distrib_thm = pop_thm();

SML
set_goal([],'—Vf I1 12 @ Map f (I1 @ [2) =
(Map f 1) @ (Map f ZQ)—I); (x no. 8 %)
a (REPEAT strip_tac);
a (list_induction_tac "1V THEN asm_rewrite_tac
[map_def, empty_append_thm, append_def]);
val rev_distrib_thm = pop_thm();

SML
set_goal([],erl [2e Length (11 @ 12) =

Length 11 4+ Length ZQ_I); (x mo. 4 *)
a (REPEAT strip_tac);

a (list_induction_tac "1 " THEN asm_rewrite_tac
[append_def , length_def, plus_assoc_thm]);

val length_distrib_thm = pop_thm();
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TACTICALS and other -ALs

e TACTICALsS may be used to combine the available tac-
tics.

e EXxpressions using TACTICALSs may be used directly in
proofs, e.g.:

a (REPEAT strip_tac);

e named tactics may be defined using TACTICALS:

SML
val repeat_strip_tac = REPEAT strip_tac;

e TACTICALsS may be used to define parameterised tac-
tics:

SML
‘ fun list_induct_tac t = REPEAT strip_tac
‘ THEN list_induction_tac t:

e tacticals usually have capitalised names ending in “_T",
though the most common (e.g. REPEAT, THEN) have
aliases omitting the “_T7"

e Other higher order functions are available:

conversionals (_C suffix)
THM_TACTICALS (_THEN suffix)
THM_TACTICAL combinators (_TTCL suffix)
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Commonly used TACTICALs

REPEAT - takes a tactic and returns a tactic which
repeats that tactic until it fails.

If goal splits occur the repeating continues on all sub-
goals.

THEN - an infix tactical which composes two tactics
together. The second tactic is applied to all subgoals
arising from the first tactic. If any applications of the
operand tactics fail then the resulting tactic fails.

ORELSE - an infix tactical which attempts to apply its
first argument, and if this fails applies its second argu-
ment. If both arguments fail then the resulting tactic
fails.

TRY_T - a tactical taking one argument which will do
nothing (but succeed!) if it argument tactic fails.

THEN_TRY - variant on THEN which does not fail even
if the second tactic fails.

tl THEN_TRY t2 = t1 THEN (TRY_T t2)
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SML

88

Exercises 9: TACTICALsS

Write a tactic which does strip_tac three times.
test it on:

‘set_goal([],'_(a =b=>c)=>a=b=c);
‘Set_goal([],'_(a = b)=a=c);

2. Write a tactic which does strip_tac up to 3 times.

3.

88

Try it on the same examples.

Write a tactic which takes two arguments:
e a term which is a variable
e a list of theorems

and performs an inductive proof of a theorem concerning
lists by:

e Stripping the goal
e inducting on the variable

e rewriting with the assumptions and the list of theo-
rems

Use it to shorten the earlier proofs about lists.
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Exercises 9: Solutions

SML

(x no. 1 %)

val strip3_tac = strip_tac THEN strip_tac THEN strip_tac;
set_gaal([],'—(a =>b=c¢c)=>a=>0b=> c—l)
a strip3_tac;

SML

(x no. 2 %)

val stripto3_tac = strip_tac THEN _TRY strip_tac
THEN_TRY strip_tac;

set_goal([],l_(a = b) = a=> C—I)

a stripto3_tac,

SML
(x no. 3 %)

fun list _induct_tac var thl =
REPEAT strip_tac
THEN list_induction_tac var
THEN_TRY asm_rewrite_tac thi;

set_goal([],l_‘v’ll 1213 @
(1 @I12)@I3=11 @ U2 @3N

a (list_induct_tac “117a LIST [append_def]);
val append_assoc_thm = pop_thm ();

set_goal([], "Vi17a LIST e II @ [ = U1 —I);

a (list_induct_tac "11va LIST [append _def]);
val empty_append_thm = pop_thm();
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More Predicate Calculus Tactics (I)
strip_asm_tac

e strip_asm_tac strips a theorem into the assumptions in
the same way that strip_tac adds new assumptions

Tactic
{I}t strip_asm_tac

{strip ¢, I' } t (- ¢)

e a case split results if the conclusion of the theorem is a
disjunction

e names ending in _cases_thm indicate theorems designed
for use with strip_asm_tac for case splits:

‘N_cases_thm FYmem=20V ((3Jiem=1i-+ 1)

‘less_cases_thm FYmnem<nVm=nVn<m

e use [list_]V_elim to specialise the _cases_thm
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strip_asm_tac: example

SML
‘set_goal([], "(if x = 0 then 1 else ) > 0);

SML
‘V_ elim” x '"N_cases_thm;

ProofPower Output
val it =Fx =0V (Jiex =14+ 1): THM

SML
‘ a(strip_asm_tac(V_elim" z 'N_cases_thm));

ProofPower Output
(x xxx Goal "2" xx* x)

(x 1 %) "o =04+ 1"
(x 2 %) "(if © = 0 then 1 else £) > 0"
(x xxx Goal "1" xx* %)

(x 1 %) "o =0"

(x 7+ %) "(if 2 = 0 then 1 else ) > 0

91
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More Predicate Calculus Tactics (II)
cases_tac

e cases_tac' ¢! lets you reason by cases according as a
chosen condition c¢ is true or false:

Tactic
{ I } t cases_tac

{strip ¢, I' } t; "¢:BOOL'
{strip —c, I" } t

e cases_tac' ¢ BOOL ' is effectively the same as:

strip_asm_tac(V_elim" c:BOOL (prove_rule[]" Vbeb Vv —b ));

but it’s less to type and quicker.
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cases_tac: example

SML
set_goal([], "(if © <y + 1 then z else y) <y + 1);

SML
‘a(cases_tac r<y+17);

ProofPower Output
(x xxx Goal "2" xx* x)

(x 1 %) "mz<y+4+ 1"
(x 2 %) "(if v <y 4+ 1 then v else y) <y + 1
(x xxx Goal "1" xx* x)

(x 1 %) "o <y+ 1"

(x?F%) "(if s <y+1thenzelsey) <y-+ 1"
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More Predicate Calculus Tactics (III)
swap_ asm_ concl_tac

e swap_asm_concl_tac lets you interchange (the nega-
tions) of an assumption and a conclusion

Tactic
{ F, t1 } t2 swap_asm_concl_tac

{strip —t2, I' } —tl 1]

e Often used to rewrite one assumption with another

e Also useful when the conclusion is a negated equation
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swap_asm_concl_tac: example

SML

95

‘set_goal([], "(Vz yozx <y = P(z,y)) Nz =y = P(z,y)");

‘a(strip-tac);
ProofPower Output

(x 2x%) "Veyozr<y= P (z,y)
(x 1 %) '_xzy_l

(x 72 %) "P (z,y)'

ProofPower Output

SML
‘a(list_spec_nth_asm_tac 20z "y D;

ProofPower Output

(x 3%) "Veyezr <y= P (z,y)
(x 2%) "Tz=y

(>|< 1 *) M- r < y_'

(x 7 %) "P (z, y)'

SML
‘a(swap_asm_concl_tac T <yl

ProofPower Output

(x 3%) "Veyezr <y= P (z,y)
(x 2%) "Tz2=y

(¢« 1%) "= P (z,9)

(x 2 %) Tz <yl
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More Predicate Calculus Tactics (IV)
lemma_tac

e lemma_tac lets you state and prove an “in-line” lemma

Tactic
{ '} conc lemma_tac

{ I} lemma; " lemma |

{strip lemma, I" } conc

e Gives a more natural feel to many proofs

e If just one tactic will prove the lemma then THEN1 is a
convenient way of applying it

e tacl THENI tac?2 first applies tacl and then applies tac2
to the first resulting subgoal
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lemma_tac: example

SML
‘set_goal([], "(Vz yex < y = P(z,y)) ANz =y = P(z,y)");
‘a(strip-tac);

ProofPower Output

(*

(*

1%) "o =y

%) TP (2, y)

SML
‘ a(lemma_tac' z < y );

ProofPower Output

(*
(*
(*
(*

(*
(*

(*
(*

(*

o7

sk Goal "2" skkk k)

(x 2%) "Voyezrz <y= P (z,y)

3%) '"Veyer <y=P(z,9)

2%) Tg=q
14) Tz <y

%) TP (2, y)

sk Goal "1" skkk %)

2%) "Vzyer <y=P(z,9)

1%) "o =y

x) T <y
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Processing of “New” Assumptions

e TJactics which add new assumptions normally do so with
strip_asm_tac.

E.g., strip_tac, cases_tac, lemma_tac work like this.

Sometimes, this causes more case splitting than you might expect.

o if xxx_tac adds new assumptions, then often XXX_T ex-
ists to allow the new assumption to be used some other
way.

e commonly, XXX_T has an argument of type THM— >
TACTIC telling what to do with the new assumption.

E.g., cases_tac is the same as CASES_T strip_asm_tac.

e Other useful THM — > TACTICS include:

asm_tac(-t) put ¢ into the assumptions as
is (good for debugging)
ante_tac(F t) conclusion, ¢, becomes t=-c¢

rewrite_thm_tac(- t) rewrite with ¢

Take care with rewrite_thm_tac: it discards the new assumption after
rewriting with it. It's safe in examples like:

SML
‘set_goal([], I_(z'f r <y -+ 1 then x else y) <y + Z—I);

‘a(CASES_T " < y + 1] rewrite_thm_tac);

ProofPower Output
‘Tactic produced 0 subgoals:

‘C’urrent and main goal achieved
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Exercises 10: strip_asm_tac etc.

1. Use strip_asm_tac (with V_elim and N_cases_thm) or
cases_tac to prove

(a) Vze(if x = 0 then 1 else z) > 0

(b) Vz ye(if x <y + 1 then z else y) < y + 1
(c) Va bea < (if a < b then b else a)

(d) Vaea = 0V 1 < a

2. Using (i) swap_asm_concl_tac and (ii) lemma_tac give two
different proofs of each of:

(@) (Vo yor <y = P(z,y)) = (Vz yoz = y = P(z, y))

(b)) (Vzyef 2 < fy= z2<y)= NVoysfz=fy=z<y)
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Exercises 10/1 : Solutions

SML

(x (a) *)
set_goal([], l_Va:o(if x = 0 then 1 else ) > 0—|);
a(REPEAT strip_tac);
a(stm’p_asm_tac(v_elim'—x—lN_cases_thm) THEN asm_rewrite_tac(]);
pop-thm();

SML

(x (b) *)
set_goal([], "V yo(if © <y + 1 then z else y) < y + 1—|);
a(REPEAT strip_tac);

a(CASES_T "z < y + 1 rewrite_thm_tac);
pop-thm();

SML

(x (¢) *)
set_goal([], "Va bea < (if a < b then b else a)—l);
a(REPEAT strip_tac);

a(CASES_T " < b rewrite_thm_tac);
pop-thm();

SML
(x (d) *)
r _ 1N.
set_goal([], ' Vaea = 0V 1 < a');
a(strip_tac);
a(strip_asm_tac(V_ elim" a 'N_ cases_thm) THEN asm_rewrite_tac[]);
pop—thm();
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Exercises 10/2 : Solutions

With swap_asm_concl_tac:

SML
set_qgoal({], (x (1) (a) *)

" (Vo yer <y = P(z,y)) = (Vz yer =y = P(z, y)) );
a(REPEAT strip_tac);

a(list_spec_nth_asm_tac 2
J < y—l THEN asm_rewrite_tac[]);

Fz Ty D

a(swap_asm_concl_tac

pop-thm();

SML
set_goal([], (x (1) (b) *)

"Vryef s <fy=> z<y)=> W zyefr=fy=>z<y));
a(REPEAT strip_tac);

a(list_spec_nth_asm_tac 2
a(swap_asm_concl_tac " fz<f y—l THEN asm_rewrite_tac(]);

(2 Ty D

pop-thm();

With lemma_tac:

SML
set_qgoal (][], (x (i) (a) *)

" (Vz yer <y = P(z,y)) = (Vz yexr =y = P(z, y)) );

a(REPEAT strip_tac);

a(lemma_tacl—a: < y—l THEN1 asm_rewrite_tacl[]);
a(list_spec_nth_asm_tac 3 ['_x—l, I_y—l]);

pop-thm();

SML
set_goal([], (x (1) (D) *)

"(Vryefr <fy=> z<y)=>NVayefr=fy=z<y) )

a(REPEAT strip_tac);

a(lemma_tacl_f x < f y—l THEN1 asm_rewrite_tac[]);
a(list_spec_nth_asm_tac 3 ['—az—l, '—y—l]);

pop_thm();
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Forward Chaining (I)

Forward chaining refers to a group of tactics for rea-
soning forward from the assumptions.

Based on a rule, fc_rule, which uses a list of implications
to generate a list of new theorems from a list of ‘“seed”
theorems. Arguments are two lists:

Implications maybe universally quantified:
[F] - Vol 22 ...eA; = B], ]

Seeds any form:
[F] = Cit, ]

For each implication, + VzI z2 ...eA = B and for each
seed ¢, fc_rule determines whether A can be specialised
to give ¢ and if so it includes the corresponding special-
isation of B in its result. For example:

rule © THM list —> THM list —> THM list)
[asm_rule' Ve > 10 = P 1 ',
asm_rule’ Vyoy < 10 = Q y ']
[prove_rule[]" 101 > 10,
prove_rule[]" 4 < 107;

ProofPower Output

‘ val

102

it =[Vyey<10=Qykr Q 4,
Vzexr > 10 = P x+ P 101] : THM list
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Forward Chaining (II)

In practice, don't call fc_rule directly. Instead use one of
the forward chaining tactics:

[all_][asm_]fc_tac

[all_][asm_]forward_chain_tac

All have type
THM list — > TACTIC

asm_ variants take implications to be the argument to-
gether with the assumptions. Other variants just use
list given as argument. In all cases the seeds are the
assumptions.

Variants without «all_ take one pass over the seeds for
each implication. Variants with «all_ add any new impli-
cations to the list of implications and loop until no new
results can be generated.

New theorems deduced are stripped into the assump-
tions. The «all_ variants only strip in theorems which are
not themselves implications.
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Forward Chaining (III)

For example:

SML
‘set_gOal([], "Vabcdoa<bAbD<cAc<d=a<d),
(a(REPEAT strip_tac);

ProofPower Output
(x 3%) "Ta<b'
(x 2x%) "h<e¢!
(« 1 %) "¢

IAIA |

d_l

(x?2F%) "a<d'

SML
‘ a(fe_tac[<_trans_thm]);

ProofPower Output
(x 6%) "a<?b'
(x 5%x) "b<ec!

(¢ 4%) Te<d

(x 3%) "Vneb<n=a<n'
(x 2%) "Vnec<n=>b<n
(x 1 %) "Vned<n=c<n'

(x 7F%) "Ta<d'

SML
‘ a(all_asm_fc_tac[] THEN all_asm_fc_tacl]);

ProofPower Output
‘Tactz’c produced (0 subgoals:

‘Current and main goal achieved
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Forward Chaining (IV)

e Many useful properties are naturally formulated as uni-
versally quantified implications:

‘g_tmns_thm FVminem<iAiI<n=m<n
‘less_tmns_thm FYminem<iAi<n=m<n
‘mod_less_thm FVY mne 0 <n=m Modn<n

Forward chaining saves having to specialise such facts
explicitly.

e A function, fc_canon, is used to generate implications
from the arguments to the forward chaining. E.g.,

\I—(A/\B)\/C
‘I—‘v’mz’nomgi/\ign#mgn

are treated as:
\l— - B=-C=7F

‘|——|A:>—|C:>F
‘I—‘v’nimomgiﬁignj—'mgniﬁj

e The =F part produced by fc_canon is simplified away
when the new theorem is stripped into the assumptions.

e [he new theorems stripped into the assumptions are
made as general as possible by universally quantifying
them over any free variables which do not appear in the
goal.
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Exercises 11 : Forward Chaining

1. Experiment with the various all- and asm_ variants of
fc_tac to prove the following goals:

(a) (using <_trans_thm)
Va b cdea < bANbD< cANc<d=a<d

(b) (no theorem required)
VX Y Ze X CYNY CZ=XC/Z

In each case, what is the minimum number of applica-
tions of a forward chaining tactic required and why?

2. Can you use forward chaining to simplify the proof of
the following example from exercises 10:
(Ve yof 2 < fy= 2<y)= Veysf 2 =fy=1z<y)
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Exercises 11 : Solutions

SML
set_goal([], "Vabcdea<bAb<cAc<d=a< d—l);
(x 1(a) *)
a(REPEAT strip_tac);
a(all_fe_tac[<_trans_thm] THEN all_fc_tac[<_trans_thm]);
pop-thm();
SML
set_goal([], VX YV Ze X CYANY CZ=XCZM: (x 1(b) *)

a(REPEAT strip_tac);
a(all_asm_fc_tac[] THEN all_asm_fc_tacl]);

pop-thm();

In both cases, at least 2 applications of forward chaining are needed since
a result from one forward chaining pass must be added to the assumptions
to ‘“seed” the second pass.

SML

set_goal([], (x 2 %)

" (Vryefr<fy= <y =>Vryfr=fy=>z<y )
a(REPEAT strip_tac);

a(lemma_tac '_f r < f y_l THEN1 asm_rewrite_tacl]);
a(all_asm_fc_tac[]);

pop—thm();
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Proof Contexts

e A proof context is a named collection of settings of
parameters for many of the tactics, conversions, rules
etc.

e Customises many parts of the system including:
— stripping (strip_tac, strip_asm_tac etc.)
— rewriting (rewrite_tac etc.)
— automatic proof (prove_tac, asm_prove_tac)

— automatic existence proof (prove_3_tac)

e Some proof contexts recommended for everyday use:

predicate calculus predicates
sets sets_extl
above + lists etc. hol2, hol

e use get_pcs to list the proof context names together
with the theory each proof context belongs to.

Names with ’ are component proof contexts: mainly intended for use in
conjunction with others.

Names without /' are complete proof contexts: usable on their own.
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Using Proof Contexts

e Switch proof context for just one tactic, conversion or
rule using:

SML
PC_T : string —> TACTIC —> TACTIC,

PC_T1 : string —> ('a —> TACTIC) —> "a —> TACTIC;

PC_C : string —> CONV —> CONV;
PC_C1 : string —> (la —> CONV) —>'a —> CONV;

pc_rule : string —> (‘a —> THM) —>'a —> THM,
pc_rulel : string —> ("a —>"b —> THM) —>
'a —>"'b —> THM,

e Work with a proof context over several steps using:

SML
set_pc . string —> unit;

push_pc . string —> unit;
pop_pc . unit —> unit;

e \Work with multiple merged proof contexts using, e.g:

SML
MERGE_PCS_T : string list —> TACTIC —> TACTIC;

‘set_merge_pcs . string list —> unait;
etc.

e Find out what proof context is in force using:

SML
print_status . unit —> unit;
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What's in the proof contexts?

SML
‘ PC_C1 "sets_extl" rewrite_convl]

| 2 C{@, ) e+ 1 <yvy>5T,

ProofPower Output:

wal it =F{(1,2)} C{(z, Pz + 1 <y} Vv 4{>5
e (Y2l 22e (21, 22) = (1, 2) = 2l + 1 < 12)
| V4> 5 THM

SML
\PC_C1 "hol2" rewrite_conv|]

| ", Y@,y e+ 1 <yrv4>5T

ProofPower Output:
wal it =F {(1, 2)} C{(z, Yl + 1 <y Vv 4 >5
o (Valx2exl =1 N2 =2=1a1 +1<22): THM

SML
‘PC_ C1 "hol2" rewrite_conv[]" AN A C B';

ProofPower Output:
‘valitzl—AﬂAgB<:>(‘v’xox€A:>:I;€B):THM

SML
‘PC_ C1 "hol" rewrite_conv[]" AN A C B

ProofPower Output:
‘Ualitzl—AﬂAgB@AgB:THM

110
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Automatic Proof Procedures

e Proof context component accessed via:

prove_tac when the conclusion of a goal is au-

tomatically provable on its own
asm_prove_tac when the goal is automatically prov-

able using the assumptions
prove_rule to state and prove a conjecture

automatically

e If you merge several proof contexts, the “prove_tac”
comes from the last one in the list.

e Many proof contexts contain basic_prove_tac. It uses
rewriting, a simple heuristic for eliminating equations
involving variables, and a few steps of first-order res-
olution.

As seen with the theorems from PM and ZRM, this is
useful for simple predicate calculus theorems and for el-
ementary facts about sets. For example:

SML

‘prove_rule[]'_(Ela:o ¢z) V (Tye vy) < (Fze ¢z V z)

‘prove_rule[]'—Va bea CbANDCasa=0b"

ProofPower Output

‘UalitZI—(Ela:oqu)\/(Elyowy)
‘ & (JzepzVayz): THM
‘UalitZI—Vaboagb/\bgaﬁa

b: THM
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Linear Arithmetic (I)

e Proof context lin_arith contains an automatic proof pro-
cedure for linear arithmetic.

e Useful for many simple arithmetic problems. For exam-
ple,
SML
‘pc_rulel "lin_arith" prove_rule(]

"a<bANa+b<cH+a=a<ch

ProofPower Output
‘valitzl—agb/\a—l—b<c—|—a:>a<c: THM

e Strictly speaking, “linear arithmetic’ means terms built
up from:

“Atoms” (numeric literals, variables of type N, etc.)
Multiplication by numeric literals

Addition

=, <, >, < >

Logical operators

e E.g. all the following are terms of linear arithmetic:

‘Vaco(ﬂbanb/\—'b<c)=>a,Zc
“v’abcoa+2*b<2*a:>b+b<a
‘nyoﬁ(Q*x—l—y=4/\4>|<:(:-|—2>|<y:7)
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Linear Arithmetic (II)

e Rewriting/stripping in lin_arith processes numeric rela-
tions by “multiplying out and collecting like terms’.

SML
‘ pe_rulel "lin_arith" rewrite_convl|]

"G4 )G ) < gxj 5

ProofPower Output
wal it =F G+ )G +1)<j*xj+]
Stk 4+ 2x0x7 <73 THM

1% 1, 1% 7 and 7 now treated as atoms.
So a little more general than “strict” linear arithmetic.

e —(a < 14 2%b A 4*xb < 2xa) is proved thus:

if (1) a<2xb

and (2) 4xb+1<2=xa

then 2*¥(1) +(2) 2xa+4*xb+1<2xa-+4*b
whence 1 <0

whence CONTRADICTION
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Exercises 12: Proof Contexts

Using REPEAT strip_tac and asm_rewrite_tac prove

(Vz yof(z, y) = (y, ) = Vo yof(f (z, y)) = (z, y)

Apply the tactics one at a time rather than using THEN.
Now set the proof context to “predicates” using set_pc
and prove it again. What differences do you observe?

Set the proof context back to “hol2” when you've fin-
ished.

Prove the following

@) {(@, y) [ ~z=0Ay=2x} C{(z,y) |2z <y}
(b) {(z,9) [z=2 ANy =2z} C{(z,y) |2+ 1 <y}
(c) Au(BnNnC)=((AuB)n(Au (C)

(d) Vme{i | m <iANi<m+ 3} = {m; m+1; m+2}
(e) {i | 5%t = 6xi} = {0}
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Exercises 12: Solutions

SML

(x 1 %)
set_goal([], " (V& yef(z, 1) = (y, 2)) = Vz yef(f (z, v)) = (z, y) V;
a(REPEAT strip_tac);
(x sk Goal "1™ sx* x)
a(asm_rewrite_tac[]);
(x xxk Goal "2" sxx x)

a(asm_rewrite_tac[]);
pop_thm();

SML
set_pc"predicates",

set_goal([], " (Vz yof (z, y) = (y, 2)) = Vz yef (f (z, v)) = (=, y) );
a(REPEAT strip_tac);

a(asm_rewrite_tacl]);

pop—thm();
set_pc"hol2";

The second proof is shorter because the proof context predicates does not
cause equations between pairs to be split into pairs of equations.

SML
(x 2 %)

map (merge_pcs_rulel ["hol2", "lin_arith"] prove_rule[]) |
G (@%) {@y) | e =0nAy=2x} C{z, y) |z <y},
G » ey le>2ny=25} C{@ ) e+ 1<y},
(« (d) +) "Vme{i |m <iAi<m+ 8} ={m mtl; mt2}
G+ (&) %) T {i| 5% = 6xi} = {0} 1,
(x (¢) *)  pc_rulel "sets_extl"™ prove_rule[]

"AUBNC)=AUBNAUC)

(Alternatively, use the subgoal package and PC_T1.).
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Case Study: Vending Machine
System Model

The following paragraphs give a model of a simple vending
machine:

SML
‘ new_theory" vm";

HOL Labelled Product

hV]\J _State
takings . N;
stock - N:
price - N;
cash_tendered - N

|

HOL Constant
vm . VM _State — VM _State

Vste vm st

= if stock st = 0
then MEVM _State

(takings st) (stock st) (price st) 0

else if cash_tendered st < price st
then st
else iof cash_tendered st = price st
then MEVM _ State

(takings st 4+ cash_tendered st)
(stock st — 1) (price st) 0

else MEVM _ State
(takings st) (stock st) (price st) 0
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Case Study: Vending Machine
Discussion (I)

e the state of the vending machine is defined as a labelled
record type VM _State.

e labelled record type declares projection functions:

Projection Functions

takings: VM _State — N
stock: VM _State — N
price: VM _State — N
cash_tendered: VM _State — N

If st is a state value, takings st is like st.takings in Z or
Pascal or Ada.

e also introduces constructor functions:

Constructor Function

MEVM _State: N ->N->N — N — VM_State

If ¢, s, p, and ct are numbers, MEVM_Statetspct is a
state value with those numbers as its components.
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Case Study: Vending Machine
Discussion (II)

e Can test the behaviour of the vending machine model
by rewriting.

e E.g. introduce a conversion to do this

SML

‘val run_vm = rewm'te_conv[get_spec'_vm_l, get_spec'_MkVM_State—l];

ProofPower Output
‘val run_vm = fn : CONV

e Now look at test cases

SML
‘mn_vm "om (MkVM_State 0 20 5 5) "

‘mn_vm T om (MEVM _State t 20 5 5)—|;

ProofPower Output
val it = F vm (MEVM_State 0 20 5 5)

= MEVM_State 5 19 5 0 : THM

val it = F vm (MEVM_State t 20 5 5)
= MKVM _State (t + 5) 19 5 0 : THM

e Second test case does symbolic execution
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Case Study: Vending Machine
Critical Requirements

Informal statement of critical requirement: “No transaction
of the vending machine causes the machine’s owner to lose
money".

We formalise this by specifying the set of transition functions
which never reduce the value of the machine’s contents. The
value of a state is computed by the following function.

HOL Constant
value © VM _State — N

Vstevalue st = takings st 4 stock st x price st

The set of machines satisfying the critical requirement is
then:

HOL Constant
vm_ok : (VM_State — VM _State) SET

vm_ ok
= { trf
| Vcb s p cte
let s1 = MkEVM_State cb s p ct
in let s2 = trf sl
in value s2 > wvalue si}
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Exercises 13: Case Study

First of all execute the new_theory command and the 4 paragraphs of the
vending machine specification.

1. Execute the definition of run_vm:

SML
val run_vm = rewm'te_conv[get_specl_vm_l, get_specl—MkVM_State

120

0,

Experiment with the model by using run_vm to see what it does on
various test data. What does the vending machine do if the price
is set to 07

Prove that the model of the vending machine satisfies its critical
requirements. I.e., prove:

vim € vin_ok

Hints:

(2)
(b)

(©)
(d)

(f)

Try REPEAT strip_tac

Try rewriting with the definitions of any of MEVM _State, vm,
vm_ok or worth which appear in the goal.

let-expressions may be eliminated by rewriting with let_def.

Is there an if-term in the goal? Can you use N_ cases_thm
or less_cases_thm (together with strip_asm_tac and V_elim or
list_V_elim) to perform the relevant case analysis?

If you believe the goal is true by dint of arithmetic facts alone
try PC_T1"lin_arith" asm_prove_tacl].

If none of the above hints apply, do you have an if-term which
could be simplified using an “obvious” arithmetic consequence
of your assumptions. If so set the “obvious” consequence up
as a lemma with lemma_tac.
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Exercise 13/1: Solution

The following test cases check out each branch of the if-terms in the
definition of vm:

Branch 1: out of stock: the machine refunds any cash tendered.

SML
run_vm | vm (MEVM _State t 0 p ct)—l;

Branch 2: in stock; cash tendered is less than the price: the machine
waits for more cash to be tendered:

SML
run_vm " vm (MkVM_State t 20 5 2) "

Branch 3: in stock; cash tendered is equal to the price: the machine
dispenses a chocolate bar and adds the cash tendered to its takings:

SML
run_vm " vm (MEKVM_State t 20 5 5)

Branch 4: in stock: cash tendered exceeds the price: the machine refunds
the cash tendered:

SML
run_vm " vm (MkVM_State t 20 5 6)

If the price is set to 0, the machine first refunds any cash tendered and
then gives away all the stock!

SML

run_vm " vm (MEVM_State t 4 0 6) ;
run_vm | vm (MEVM _State t 4 0 0)_|;
run_vm | um (MEVM _State t 3 0 0)—|;
run_vm | um (MEVM _State t 2 0 0)—|;
run_vm | vm (MEVM _State t 1 0 0)—|;
run_vm | om (MEVM _State t 0 0 0)—|;
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Exercise 13/2: Solution

SML
set_goal([], “om € vm_ok—l);

(x Goal "": Expand definitions and let—terms: *)

a(rewrite_tac [get_spec '—vm_ok—l, get_spec'_vmj,

get_spec’ MEVM _State |, let_def]);

(x Goal "": remove outer universal quantifiers *)
a(REPEAT strip_tac);

(x Goal "": case split on the amount of stock:
s =0V s=1-4 1 for some i x)
a(stm’p_asm_tac(v_eliml_s—l N_cases_thm) THEN asm_rewrite_tacl]);

(x Goal "1": s = 0 *)
. r 1 r 1y
a(asm_rewrite_tac[get_spec’ value °, get_spec: MkVM _State ']);

(x Goal "2": case split on ct < p: ct < pV ct =pV p < ctx*)
1

a(stm'p_asm_tac(list_v_elim[rct : |—p—l] less_cases_thm));
(x Goal "2.1": ct < p: *)
a(asm_rewrite_tac[get _ specl_Mk VM_State—l] );

(x Goal "2.2": ct = p: %)

. r i r Iy
a(asm_rewrite_tac[get_spec’ value °, get_spec’ MkVM _State ']);
a(PC_T1 "lin_arith" asm_prove_tacl]);

(x Goal "2.3": ct > p: need —ct < p N\ — ct = p to evaluate if *)

a(lemma_tac "t < p A ct= p_| THEN1
PC_T1 "lin_arith" asm_prove_tacl]);

a(asm_rewrite_ tac[get_spec[_value—l, get_spec'—Mk VM_State_]] );

val vm_ok_thm = pop_thm();

122
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Proof Strategy

e A large application proof may take several man

123

years of effort to complete.

Top level proof strategy for large proofs must
be carefully thought out.

The lemmas are best proven separately, stored in the theory, and
combined in a top level proof delivering the required result from the

major lemmas. Exploration may be forwards or backwards.

Lemmas of moderate size may be proven using
the goal package.

Such a proof would consist of a combination of stripping, rewrit-
ing with definitions, assumptions and previously proven results, and

other uses of previous results.
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What to do when faced with a Goal
Sanity Checks

Decide whether the goal is true, if not, don't
try to prove it!

Decide whether the conclusion is relevant (are
the assumptions inconsistent?).

Do you see what the goal means? If not, can
you simplify it.

If all else fails, try retracing your steps.
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What to do when faced with a Goal
Main Choices

Decompose by stripping or contradiction
(strip_tac, contr_tac)

Work forwards from assumptions
(e.g. spec_asm_tac, fc_tac)

Do a case split (strip_asm_tac, cases_tac)

Swap the conclusion with an assumption
(swap_asm_concl_tac)

Prove a lemma (lemma_tac)
Prove automatically (e.g. asm_prove_tac, prove_3_tac)

Transform the conclusion by rewriting
(e.g. with a definition)

Induction (... _induction_tac)
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Exercises 14.

1. Use contr_tac, and spec_asm_tac and rewriting prove that there is no
greatest natural number:

SML
‘set_goal([], " VYmedne m < n—l);

(Hint: m<m+1).

2. Rather than using contr_tac, it is often more natural to prove goals
with existentially quantified conclusions directly. d_tac lets you do
this by supplying a term to act as a “witness’. Use d_tac to give a
more natural solution to the previous exercise:

SML

‘set_goal([], " VYmedne m < n—l)

1

3. Prove that there is no onto function from the natural numbers to the
set of all numeric functions on the natural numbers:

SML
‘Set_goal([], l_Vf N — (N — N)oElgoWo—‘f = g—l);

(Hints: Note that for f of the above type, \je(fjj) + 1 cannot be
in the range of f. Rewriting with ext_thm is useful for reasoning
about equations between functions.)
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4. It can happen that an equation is the wrong way round for use as a
rewrite rule. The usual means for dealing with this type of prob-
lem is the conversion eq_sym_conv. Like other conversions this may
be propagated over a term using the conversionals MAP_C and
ONCE_MAP_C. Execute the following lines one at a time to see
what happens:

‘eq_sym_com) ™y + 1+ 1= 5’—|;
‘eq_sym_conv '—Vazox + x4+ z = 3*:5—';
‘ONCE_MAP_C’ eq— Sym_ conv MVrer 4+ 4+ z = 5’*:5—';

A conversion may be converted into a tactic using conv_tac. Use
this and the conversion and conversional you have just experimented
with together with the tactics swap_asm_concl_tac and the theorems
ext_thm and comb_k_def to prove the following:

SML
‘set_goal([], l_Vf:’a—>’b—>’ao(Va: yexr = f r y) = f = CombK_');

(Hint: take care to avoid looping rewrites by using the “once”
rewriting tactics while you look for the proof.)

5. A common way of using a theorem is to to strip it into the assump-
tions. This is done with strip_asm_tac. Very often one specialises
the theorem with V_elim or list_V_elim before stripping it in and
sometimes one may wish to use rewrite_rule to rewrite it too. Use
the theorem div_mod_unique_thm in this way to prove:

SML
‘set_goal([], " jolO < i = (i *j) Divi= j—l);

(Hints: rewrite the theorem with times_comm_thm suitably spe-
Cialised to identify subterms of the form ¢ %7 and j x ¢ into the
same form; use the technique of the previous exercise to avoid a
looping rewrite with the assumption added by strip_asm_tac).
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6. Execute the following paragraph to define a function o which maps 1
to the sum of the first ¢ positive integers:

HOL Constant

o: NN

o0 =10
A Vie o(i4+1) =0 i+ (i + 1)

The consistency of this paragraph should be proved automatically.
Check this by using get_spec to get the defining axiom for o, which
should have no assumptions. Prove the following theorem:

SML
‘set_goal([], "Vies i = (ix(i + 1)) Div 2 );

(Hint: use induction to prove a lemma that ix (i + 1) = 2 % o1
and then use the result of the previous exercise; the lemma may be
proved by rewriting with assumptions and the definition of o and
then using the proof context lin_arith.)

7. Construct a paragraph defining a function ¢ such that for positive
i, ¢i is the i element of the Fibonacci sequence, 1,1,2,3,5,...,
where each number is the sum of the previous two. Does the system
automatically prove the consistency of your definition?
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8. If you did the previous exercise, delete the function ¢ you defined
(using delete_const). Enter the following paragraphs which define ¢
using an auxiliary function ~:

HOL Constant

v N = (N x N)

v 0 =(0,1)
A Viey(i+1) = let (a, b) = v i in (b, a + b)

HOL Constant

¢:N—>N

Viep 1 = Fst (v i)

These definitions are proved consistent automatically. Prove that
¢ does indeed compute the Fibonacci numbers:

set_goal([], -

b0 =10
A o1 =1
A Viep(i+2) = ¢(i+1) + ¢ i

(Hints: first rewrite with the definition of ¢; then prove a lemma or
lemmas showing how ~ 1 and v(i+ 2) may be rewritten so that the
definition of v may be used to rewrite them.)

9. The approach of the previous exercise has the disadvantage that the
specification was not as abstract as one might like. A cleaner ap-
proach is to use the obvious definition of ¢, and then prove that it is
consistent using a function ~ which is only introduced as a variable
during the course of the proof. The tactic prove_d_tac gives access
to the mechanisms that the system uses in its attempt to prove
that paragraphs are consistent.

We demonstrate the above technique in this exercise.
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9.(cont) First of all, delete the function ~ that you defined in the pre-
vious exercise (using delete_const, which will also cause ¢ to be
deleted).

SML
‘ delete_ const'—’y—l;

Enter the following paragraph which gives the natural definition of

¢:
HOL Constant
o - N N
¢ 0 =10
A o1 =1
A Viep(i+2) = ¢(i+1) + ¢ i

Examine the theorem that get_spec returns for ¢, it has a consistency
caveat as an assumption. Discharge this consistency caveat as
follows:

First of all go into the subgoaling package using the following com-
mand:

push_ consistency — goal'_qb—l ;

Now set as a lemma the existence of a v as in the previous exer-
cise; the lemma is proved immediately by prove_d_tac and you can

then use E_tacr)\ioFst('yz')—l followed a proof almost identical with
the previous exercise (hint: rewrite_tac will eliminate the (-redexes
introduced when you apply J_tac). Save the consistency theorem
using the following command:

‘ save_ consistency_thm '_qb—l (pop_thm());

If you now examine the theorem that get_spec returns for ¢, you
should see that it no longer has an assumption.

(Note: the variable name ‘¢'’, created by decorating ‘¢’ is displayed
by the pretty printer as $ “¢'" since it violates the HOL lexical rules
for identifiers. The parser will accept identifiers violating the normal
lexical rules if they are presented in this way.)
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Exercises 14: Solutions

SML
(x mo. 1 %)

r N.
set_goal([], ' Vmedne m < n ');

a(contr_tac);

a(spec_asm_tac' ¥V ne = m < n " m41);

val thml = pop_thm();

SML

(x no. 2 %)

set_goal([], " VYmedne m < n—l);
a(REPEAT strip_tac);
a(EI_tacl_m—I—Z—l);
a(rewrite_tacl]);

val thm2 = pop_thm();

SML
(x no. 3 %)

set_goal([], [_Vf N - (N — N)oElgoWo—'f = g_]);
a(REPEAT strip_tac);

aB3-tac’ Njo(f j j) 4+ 1 1;

a(rewrite_tac[ext_thm]);

a(REPEAT strip_tac);

a(3_tac' i ' THEN REPEAT strip_tac):

val thm8 = pop_thm();

(x no. 4 *)

set_goal([], I_Vf:’a—>’b—>’ao(V3: yor = [z y) = f = CombKj);
a (REPEAT strip_tac);

a (rewrite_tac[ext_thm, comb_k_def]);

a (swap_asm_concl_tacl—v ryexr =[x y_l);

a (conv_tac(ONCE_MAP_C eq_sym_conv));

a (swap_asm_concl_tacl_—' fxa = z | THEN asm_rewrite_tacl[]);
val thm4 = pop_thm();
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(x mo. & %)

set_goal([], "vi jeol0 < i = (i *j) Divi= j—l);
a (REPEAT strip_tac);

a (strip_asm_tac(

rewrite_rule[V_ elim'—j—ltz’mes comm, _thm]

132

(list_V_ elzm['_z*]_l I I—]_I I_O—I] div_mod_unique_thm)));

a (swap_asm_concl_tac j = (i *x7) Div i ' THEN
(conv_tac(ONCE_MAP_C eq_sym_conv)));

a (strip_tac);

val thmb = pop_thm();

SML

(x no. 6 %)

set_goal([], "Vieo i = (ix(i + 1)) Div 2_|);
a (REPEAT strip_tac);

a (lemma_tacri x (1 +1)=2=x0 z'_]);

(¢ wkx Goal "1" skx %)

a (induction _ tac” i ' THEN asm_rewrite_ tac[get_spec a—l])

a(PC_T1 "lzn_amth" asm_prove_tacl]);
(x xxx Goal "2" sxx x)

a (asm_rewrite_tac[rewrite_rule[](list_V_ 6lim['—2—|, " z'_l]thmf)')]);
val thm6 = pop_thm();
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‘(* no. 7 %)

133

The obvious way of defining the Fibonacci function is not automatically

proved consistent:

SML
delete_ const'_qb—l;

HOL Constant

¢:N—>N
¢ 0 =10
A o1 =1
N Viep(i+2) = ¢p(i+1) + ¢ i

SML
get_spec[_gb—l;

133
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SML
‘ delete_ const'—gb—l;

‘(* no. 8 *)

HOL Constant

7:N—>(NXN)

v 0 =(0,1)
A Viey(i+1) = let (a, b) = ~v i in (b, a + b)

HOL Constant

¢:N—>N

Viep i = Fst (v i)

SML
set_goal([], -
o0 =20
A o1 =1
A Viegp(i+2) = ¢(i+1) + ¢ i
N,

a (Tewm'te_tac[get_specl_qb—l]);

a (lemma_tac'_7 1 =~(0 4+ 1) ANVie~v(i 4+ 2) = 'y((z'—l—l)—l—l)—l);
(x sxk Goal "1™ sx* x)

a (rewrite_tac[plus_assoc_thm]));

(x x*xx Goal "2" x*x* *)

a (pure_asm_rewrite_tac[get_specl_fy—l, let_def] THEN rewrite_tacl]);
val thm8 = pop_thm();
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‘(* no. 9 *)

‘ delete_ const'—'y—l;

HOL Constant

135

SML
get_specl_¢—l;

push _ consistency - goalrgb—l ;

a (lemma_tac'_Elfyo
70 =(0,1)

¢N—>N
o0 =20
A o1 =1
A Viep(i+2) = ¢(i+1) + ¢ i

A Viey(i+1) = let (a, b) = ~v i in (b, a + b)

—|).

(x **xx Goal "1" x** %)

a (prove_3_tac);

(x xxx Goal "2" *xx %)

a (El_tac'_)\z'oFst(’y ’é)_]);

a (rewrite_tac[));

a (lemma_tac' v 1 = ~(0 + 1) A Vie v(i + 2) = ~v((i+1D)+1) );

(¢ wkx Goal "2.1" sx% *)
a (rewrite_tac[plus_assoc_thm]);
(¢ wkx Goal "2.2" sxx )

a (pure_asm_rewrite_tac[let_def] THEN asm_rewrite_tac[]);

save_ consistency_thm |_¢—| (pop_thm());

get_specl_¢—l;
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