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Chapter 0 5

ABOUT THIS PUBLICATION

0.1 Purpose

This document, one of several making up the user documentation for the ProofPower system, contains
a tutorial on the use of ProofPower for specification and proof in Higher Order Logic (HOL).

The objectives of this tutorial are:

• to describe the basic principles and concepts underlying ProofPower

• to enable the student to write simple specifications and undertake elementary proofs in HOL
using ProofPower

• to enable the student to make effective use of the reference documentation

0.2 Readership

This document is intended to be among the first to be read by new users of ProofPower, and is
designed either for use with the ProofPower HOL course, or for independent self tuition.

0.3 Related Publications

A bibliography is given at the end of this document. Publications relating specifically to ProofPower
are:

1. ProofPower Tutorial [14];

2. ProofPower Z Tutorial [17];

3. ProofPower Description Manual [15];

4. ProofPower Reference Manual [20];

5. ProofPower Installation and Operation [16];

6. ProofPower Document Preparation [13].

0.4 Area Covered

This document consists of notes appropriate for the introductory ProofPower-HOL course, which
gives an idea of the way ProofPower is used for checking specifications and conducting proofs in
ProofPower-HOL.
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6 Chapter 0. ABOUT THIS PUBLICATION

After working through this tutorial, the reader should be capable of using ProofPower with
ProofPower-HOL for simple tasks, and should be able to make effective use of the ProofPower
documentation where necessary for approaching more difficult problems.

The tutorial should enable users of ProofPower to become familiar with the following subjects:

1. The dialect of HOL supported by the ProofPower system (which we call ProofPower-HOL) and
its manipulation via the metalanguage.

2. Forward proof and derived rules of inference.

3. Goal directed proof, tactics and tacticals.

0.5 Prerequisites

Prior acquaintance with first order predicate logic and a functional programming language would be
an advantage.

Some familiarity with:

• first order predicate calculus

p(∀x• P x ⇒ R x ) ⇒ ((∀ x• P x ) ⇒ (∀x• R x ))q;

• elementary set theory

p∀a b c• a ∩ (b ∩ c) = (a ∩ b) ∩ cq;

• functional programming
SML

fun fact 0 = 1
| fact n = n ∗ (fact (n − 1 ));

A suitable text for an introduction to the predicate calculus and elementary set theory is Software
Engineering Mathematics [12]. A good account of Standard ML may be found in ML for the Working
Programmer [8].

A gentler introduction to ProofPower may be found in ProofPower Tutorial [14], which though not
strictly pre-requisite can beneficially be read before these tutorial notes. In particular, chapter 1 of
ProofPower Tutorial [14], which describes basic interaction with ProofPower, is recommended, since
this topic is not touched upon in any depth here.

0.6 How To Use This Tutorial

It is intended that this document will allow ProofPower users who have not attended the ProofPower-
HOL course to work through the course material independently. In that case the material could be
read in conjunction with the course OHP transparencies [18].

The best way to learn about ProofPower is by doing things with it.

The two kinds of things which you can do while working through these tutorial notes are:
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0.6. How To Use This Tutorial 7

• Do the set exercises.

To make it easier to do the exercises the installation procedure for ProofPower results in the
establishment of a ProofPower database called ‘example_hol’, which contains the results of
executing all of this tutorial document except the material in Chapter 14 where the solutions
to the exercises may be found. To do the exercises the reader should attempt to set up his own
version of the solutions document (‘usr013S.doc’) by working interactively in a ProofPower
session using a copy of database example_hol.

This is best done using a writeable copy of the database so that you can save the database after
completing some of the exercises and then resume from that point later. This can be done as
follows:

cp $PPHOME/db/example_hol.polydb .
chmod +w example_hol.polydb

Here, $PPHOME is an environment variable which should be set up to be the pathname of
the directory in which ProofPower has been installed.

If you wish to use the X interface for ProofPower, xpp, you can now start your ProofPower
session by starting X if necessary and then giving the UNIX command:

xpp -d example_hol

xpp will come up running ProofPower on your copy of the database and with its editor set up
to work on a new, empty, script in which you can build up your solutions.

• Replay the illustrative material.

This is best done using the source of the tutorial OHP transparencies, usr022_slides.doc. It
can be done running on database example_hol, though you will find that some of the material
will be rejected because definitions have already been made. Alternatively you can work from
a clean database, but then you may find problems if you miss out any of the material. E.g., to
work on the existing database using xpp, you might use the command:

xpp -f $PPHOME/doc/usr022_slides.doc -d example_hol

The illustrative material can be replayed in a batch mode, but this is not very instructive.

In both of these use of the source documents avoids unnecessary re-keying of material, and should
be loaded into a text editor and used by copy-and-paste.

Two alternative approaches to working through the exercise material are:

• Follow the transparencies.

Consulting the tutorial notes as necessary for further information, while using copy-and-paste
on the OHP source file (usr022 slides.doc) to replay the illustrations and do the exercises.

• Follow the tutorial notes.

Work through the tutorial notes (using a .dvi previewer or hard copy) and the exercises as
presented in this document. Source documents are supplied for the exercises (Chapter 13, file
usr013X.doc) and solutions (Chapter 14, file usr013S.doc).

In either case it is best to build up your own document containing your solutions to the exercises
and any experiments you might wish to undertake. ProofPower does not keep any record of what
you type into it, and so if you want to do it again you will need to keep a copy of your script.
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INTRODUCTION

1.1 What is ProofPower?

ProofPower is a suite of tools providing support for the use of formal mathematical notations in the
development of Information Systems.

The functionality supported is:

• document preparation (see ProofPower Document Preparation [13])

• syntax and type checking of specifications

• construction and checking of formal proofs

• theory management

These are described in greater detail below.

1.2 Attributes of ProofPower

ProofPower has been designed and implemented with the following attributes in mind:

• Pedigree

• Power

• Assurance

• Openness

• Extensibility

1.2.1 Pedigree

ProofPower is in the tradition of Principia Mathematica [1]. It is based on Church’s Simple Theory
of Types [2], augmented by Milner style polymorphism [9]. Its implementation builds on research
at Universities of Edinburgh[5], Cambridge [3][4] and Oxford [11]. It follows the LCF paradigm [3],
using standard ML as a ‘meta-language’ [19].
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10 Chapter 1. INTRODUCTION

1.2.1.1 Logic

Following Principia Mathematica, ProofPower supports as its primary object language (in which
specifications are written and proofs conducted) a logical type theory with a small number of primitive
constructs. In the context of this logical system the main body of classical mathematics may be
developed without further logical extensions other than conservative extensions which serve to define
the concepts used to express the mathematics. The main merit of this approach is that once the
primitive logical system has been de-bugged (i.e., shown to be consistent) the further development of
mathematical theories can be undertaken without risk of compromising the consistency of the logic.

The logical system used in Principia Mathematica was Russell’s Theory of Types [10], the first
of many logical type theories to be developed. Probably the simplest type theory adequate for
classical mathematics is the Simple Theory of Types published by Alonzo Church in 1940. Church’s
formulation formed the basis for the logical system implemented in the proof tool for Higher Order
Logic (HOL) developed by Mike Gordon and others at the University of Cambridge [4]. This same
formulation of HOL was adopted without material changes for use in ProofPower.

The transition from the simple Theory of Types to the logical system of Cambridge HOL, apart from
some minor adjustments to the primitive constants and axioms, consists in adding those features
which are desirable for the practical usability of the logic for the development of mathematics or
for applications in Computer Science and Information Systems Engineering. The most significant
of these are the introduction of type variables into the object language, giving an essential element
of polymorphism, and the prescription of acceptable means of conservative extension, enabling new
terminology to be safely introduced.

The polymorphism adopted is due to Robin Milner [9], and was originally used in the LCF system
developed at the University of Edinburgh [5].

1.2.1.2 Implementation

The implementation method adopted in the LCF system (which we often refer to as the LCF paradigm
was also used in ProofPower and is the source of many of the product characteristics. This involves
the use of a strongly typed functional programming language as a meta-language both for the im-
plementation of the proof tool and as the language in which the user interacts with the system.
The meta-language used in ProofPower is ‘standard ML’ a more modern development than the ML
available at the time the Cambridge HOL system was implemented.

1.2.2 Power

ProofPower supports expressive and convenient notations in strong logical systems providing a pro-
ductive environment for specification and proof development.

ProofPower-HOL is:

• Logically as expressive as Zermelo set theory.

• Logically extendible in safe and well understood ways.

• Notationally concise.

• A very simple language.
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ProofPower-HOL has a very high power to weight ratio, giving high levels of expressiveness and
logical strength for very low levels of complexity.

ProofPower also supports the specification language Z, which provides more concise notations at the
cost of some increase in complexity.

The functional programming language ‘standard ML’ is used as a meta-language in ProofPower,
for user interaction, as the language for describing proofs, and as a productive vehicle for program-
ming proof automation and for extending and adapting the capabilities of ProofPower to particular
application domains.

These notations combine to give high levels of productivity in specification and proof, which are
continually improved as the system is developed.

1.2.3 Assurance

ProofPower provides unparallelled levels of assurance in the correctness of propositions proven using
ProofPower about specifications written in ProofPower-HOL or ProofPower-Z.

This assurance derives from:

• The simple uncontroversial classical logical system.

Which reduces to a minimum the risk that the logic is inconsistent or unsound or its imple-
mentation flawed.

• The availability of mathematical and formal specifications of the syntax and semantics of the
formal system.

Which further increases confidence in the soundness of the logic and the correctness of its
implementation.

• The provision of good support for specification by conservative extension.

Which ensures that any errors arising while writing specifications do not compromise the con-
sistency of the logical framework within which reasoning about these specification is conducted.

• The small logical kernel (<10% of the code in the system), implemented as an abstract datatype,
which enforces the logical soundness of proofs.

Minimisation of code in the system critical to the checking of proofs provides maximal con-
fidence in correctness of the checking and enables further development of high level proof
capabilities to be done without any risk of compromising the checking of proofs.

• The formal specification of the logical kernel.

Which ensures not only that the logic itself is well understood but also that the mechanisms
which enforce the checking of proofs against that logic have been thoroughly scrutinised.

1.2.4 Openness

ProofPower is ‘open’ in several different senses of that term:

• ProofPower provides support for standard well documented languages (Standard ML, HOL,
Z, SAL/SPARK). Where standards are in place or under development ProofPower is intended
to implement or intercept these standards.
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12 Chapter 1. INTRODUCTION

• Most of the functions used to implement ProofPower are available for re-use by the user if he
wishes to extend or customise the system.

• A comprehensive reference manual (600 + pages) is supplied documenting the functions sup-
ported by ProofPower (>1000 ML names).

• Extensive libraries of theories and ‘proof contexts’ are provided for re-use.

1.2.5 Extensibility

The open architecture of the LCF paradigm maximises the extent to which users can extend and
customise the system to meet their special requirements.

• Users have access to the meta-language (Standard ML) for:

– developing proofs

– extending the system

– implementing domain specific (or general purpose) proof automation

• The definitional forms acceptable to the system are extendible.

Specifications are acceptable in any form provided that they can be shown to be consistent.
Automatic consistency provers invoked by the system can be replaced or supplemented by the
user extending the forms of specification which are accepted by the system as consistent.

• Many aspects of the behaviour of the automatic proof capabilities are context sensitive, en-
abling their effects to be continually augmented with knowledge of new problem domains.
Customisable ‘proof contexts’ provide this information to the proof system and enable the
proof developer to select a suitable context for conducting any particular proof, maximising
the extent to which the proof support system eliminates or simplifies goals or subgoals auto-
matically.

• The system is designed to support multiple object languages and permits mixed language
working.

• Parser generators are available to simplify the task of providing support for additional notations.

1.3 Languages Supported

ProofPower is designed to support multiple object languages in a single coherent semantic framework.
The approach of implementing secondary object languages by semantic embedding into the primary
object language ProofPower-HOL not only provides for multiple notations, but enables specifications
in distinct notations to be related to each other formally, and permits results to be transferred from
one language to another.

The following languages are currently supported:

• Standard ML (as meta-language)

• Higher Order Logic

• Z
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1.4. Functionality 13

Support for SAL, the SPARK Annotation Language, has been prototyped, but is not yet generally
available.

We hope to be able to provide support for ISO Standard Z when the standard has stabilised.

1.4 Functionality

ProofPower is a suite of programs and scripts intended to assist in the development and checking of
formal specifications and proofs.

The functionality supported is:

• document preparation/printing (see ProofPower Document Preparation [13]):

– using LaTeX ‘literate scripts’ with extended fonts for document sources

– indexes, cross reference and theory listings

• syntax check/type check (interactive or batch)

• formal reasoning (interactive or batch)

• theory management:

– specifications and theorems held in theory hierarchy

– programmable access to theory hierarchy

1.4.1 Document Preparation

ProofPower provides facilities for producing documents containing specifications and proof scripts
exploiting the LATEX typesetting software. Following Knuth [6], these are known as ‘literate scripts’.

The facilities include:

• Screen fonts for use with Sunview or X which enable source documents including formal spec-
ification material to be written using the appropriate special characters rather than ASCII
encodings.

• Under X, a custom-built editor for developing scripts using the special characters.

• Tools for preprocessing source documents prior to their being processed by the ProofPower
proof tool or LATEX.

• Output from ProofPower suitable for inclusion in LATEX documents.

• The production of indexes of defining occurrences of formal names in LATEX documents.
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1.4.2 Syntax and Type Checking

ProofPower processes a variety of formal notations including standard ML, Higher Order Logic, and
Z. These are typically mixed together in a mixed language dialogue with the system. The system
operates either interactively with a user at a console, usually making heavily use of cut and paste
between ProofPower and external text editors, or in a batch mode of operation where input is read
from a nominated file and output written to the standard output and/or other files.

Each of the notations used in interacting with ProofPower is strongly typed. This makes it possible to
provide valuable diagnostic information at the time of processing of each definition or specification.

1.4.3 Proof Development

Following the LCF paradigm proofs are created and checked in ProofPower as computations which
result in values of type THM. THM is an abstract type in the meta-language standard ML, and as
such the means of computing values of this type are strictly limited to those provided at the time the
type was defined. The constructors of the type THM have been engineered to correspond to inference
rules in the supported logic, HOL, so that any value of type THM computed must follow by the rules
of the logic from the declared axioms. Proof automation is provided by the implementation of high
level proof development facilities which ultimately compute theorems only through the inference
mechanisms built into the definition of the data type THM.

Though proofs are always ultimately comprised of elementary proof steps, the availability of a power-
ful modern functional programming language for generating such proofs permits continually growing
sophistication in the automatic proof facilities provided. New subject domains can be incorporated
in the scope of these automatic facilities, and users can customise and extend these capabilities to
meet the special requirements arising in their applications.

1.4.4 Theory Management

In order that the system is able to give reliable indications of what theorems are derived from what
premises, or in the context of which specifications, the system must manage in a secure way the
axioms, definitions and theorems which are used in the development of specifications and proofs.
These are organised in a theory hierarchy, permitting reusable theories to be exploited in different
applications. An initial theory hierarchy is supplied with the system containing some commonly used
theories, such as natural numbers, and lists.

1.5 Levels of Use of ProofPower

ProofPower may be used by several different types of user for different purposes. These different
groups may require distinct levels of knowledge of ProofPower for their particular purposes.

1.5.1 Education

ProofPower has potential as an educational tool, even in areas not directly related to ProofPower
or to the languages supported by ProofPower. For example, after development of suitable course
material ProofPower might be used to support courses in logic and set theory. Course material of
this nature is not yet available with the ProofPower system, but we hope that eventually it will be.
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1.6. Using ProofPower 15

If training material was developed for teaching such topics using ProofPower, the level of knowledge
of ProofPower required for using the material could be made very small.

For those learning the specification languages HOL or Z, the proof facilities provided by ProofPower
are beneficial in developing an understanding of the semantics of these notations.

1.5.2 Specification

ProofPower is a useful and effective tool for those who wish to develop formal specifications of
information systems, even if they have no requirement for conducting proofs about these specifica-
tions. Such users could use the document preparation facilities for writing their specifications, having
these syntax and type checked interactively and incrementally by ProofPower as the specification is
developed.

Those wishing to use ProofPower for developing and checking specifications in this way need have
little more than an understanding of the specification language which they propose to use.

1.5.3 Proof Development

The group of users on whom ProofPower is most deliberately targetted are those who wish to develop
formal specifications and then reason about or in the context of these specifications.

1.5.4 Research and Development

Because of its openness and extensibility ProofPower provides a good vehicle for many kinds of
research, concerning the theory and practice of Formal Methods, or aspects of AI such as automated
deduction.

It is also suitable as a platform for the development of tools with capabilities which include formal
reasoning, or for interactive course support material for academic courses involving formal specifi-
cation or discrete mathematics. Cutomised window based interfaces can be implemented using the
Motif interfaces built into ProofPower.

It is this kind of use of ProofPower which is likely to require the most detailed and comprehensive
knowledge of the facilities provided by ProofPower.

1.6 Using ProofPower

The usual way of using ProofPower to develop specifications and proofs involves two parallel inter-
active tasks:

• Using an editor to develop a literate script in which specifications and proofs are recorded.

• Executing ProofPower-ML commands, typically extracted from the script. This is the means
by which specifications are checked and by which proof steps are taken.

Under the X Windows system, an integrated program xpp is supplied to support both of these tasks.
For an introduction to the basic use of ProofPower the reader is referred to chapter 1 of ProofPower
Tutorial [14].
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1.7 Introduction to Proof

The proofs of many results are either automatic or straightforward using ProofPower.

1.7.1 Areas of Automation

The following are examples of areas where proof automation in ProofPower is particularly effective:

• propositional tautologies

ProofPower proves these automatically, and uses propositional reasoning to simplify non-
propositional goals automatically.

• first order predicate calculus

Often these will also be automatically provable using a form of resolution. Where resolution
fails, there is a simple systematic approach to proving these results using ProofPower.

• elementary set theory

A useful collection of results from elementary set theory are automatically provable.

• other classes of results

Whenever a new theory is introduced one or more proof contexts may be developed to solve
automatically a range of results in that theory. ‘Decision procedures’ for such classes of results
can be made available via ‘prove tac’.

1.7.2 A Simple Predicate Calculus Proof

The following example illustrated the style of a simple proof in ProofPower.

Most proofs are conducted using the subgoaling package (see Chapter 6). The following example
shows how proofs of results in the first order predicate calculus can be conducted systematically
using only two TACTICs.

To conduct such a proof the first thing to do is set the goal to be proven:

SML

set goal([],p(∀x y• P x ⇒ R y) ⇔ (∀v w• ¬ P w ∨ R v)q);

The ‘two tactic method’ uses proof by contradiction, which is initiated using contr tac. Such a proof
is reduced to derivation of pFq from the negation of the required result (the conclusion of the original
goal). The negated assumption is pre-processed automatically by contr tac and this results in two
subgoals, the first of which is shown below.

SML

a contr tac;
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ProofPower output

Tactic produced 2 subgoals:
...

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 3 ∗) p∀ x y• P x ⇒ R yq
(∗ 2 ∗) pP wq
(∗ 1 ∗) p¬ R vq

(∗ ?` ∗) pFq

The proof now proceeds by specialising the universals in the assumptions until the system is able to
derive the required contradiction. In this case specialisation of assumption 3 with the values pwq
and pvq will enable the contradiction to be derived:

SML

a (list spec asm tac p∀ x y• P x ⇒ R yq [pwq,pvq]);

ProofPower output

Tactic produced 0 subgoals:

The first subgoal is discharged automatically once the necessary specialisation has been identified,
and the subgoal package then present the second subgoal:

ProofPower output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 3 ∗) p∀ v w• ¬ P w ∨ R vq
(∗ 2 ∗) pP xq
(∗ 1 ∗) p¬ R yq

(∗ ?` ∗) pFq

Specialisation of assumption 3 is again the way forward, in this case to the values pyq and pxq:
SML

a (list spec asm tac p∀ v w• ¬ P w ∨ R vq [pyq,pxq]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

This enables discharge of the second subgoal and completes the proof. The theorem can then be
obtained as an ML value:

SML

pop thm();

ProofPower output

Now 0 goals on the main goal stack
val it = ` (∀ x y• P x ⇒ R y) ⇔ (∀ v w• ¬ P w ∨ R v) : THM

The reader should be able to conduct proofs of many elementary results in ProofPower using these
facilities and a collection of exercises which should now be achievable are given in section 13.1.
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1.8 Notational Conventions

Formal text is included throughout this tutorial, mainly giving examples of input and output from
ProofPower.

Formal material is almost always distinguished from informal text by the presence of either an
enclosing box or a vertical bar on the left, usually with some kind of indicator at the top of what
kind of formal material it is.

The most frequent formal inserts are in Standard ML and these are marked by a vertical bar headed
by the acronym SML. These inserts represent samples of input to ProofPower, and are often followed
by the resulting output from ProofPower.

For example, if the following is entered into a ProofPower session:
SML

3+4+5 ;

the following output results:
ProofPower output

val it = 12 : int

Within Standard ML in ProofPower it is possible to include quotations in other languages, of which
the most important in this tutorial is HOL. This is done by enclosing the quotation in ‘Quine corners’.

When quoted in this way an expression in Higher Order Logic evaluates to a value in Standard ML
of type TERM :

SML

p3+4+5q;

and when a value of type TERM is displayed the HOL pretty-printer is normally invoked automat-
ically:

ProofPower output

val it = p3 + 4 + 5q : TERM

Normally in text of the tutorial, where it is necessary to quote an expression in HOL, these same
quotation marks will be used.

Many of the concepts which it is necessary to discuss in explaining Higher Order Logic as implemented
in ProofPower correspond to a type or a value in standard ML as used in the implementation of
ProofPower. Terms and types in Higher Order Logic are represented in standard ML using values
whose ML types are TERM and TYPE respectively.

In interests of precision in the informal text, wherever an informal concept correponds precisely to
a formally defined concept, the name of the formally defined concept may be used in the informal
text as well as in formal texts. For example, HOL types are represented in ML by values of ML type
TYPE and therefore whenever they are referred to in the informal text they are referred to by the
name ‘TYPE ’. In some places other kinds of type are referred to, e.g. ML types, and in these places
the notation ‘TYPE ’ is not used.

For each technical term a ‘defining occurrence’ is displayed in bold type, and its page number appears
in the index at the end of the document. Other occurrences appear in italics when it is intended to
emphasise that the term has been defined elsewhere. It is intended that the appearance of a word
or phrase in italics should indicate that this word or phrase has been defined elsewhere, and the
location of this description may be found in the index.
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1.9 Using the ProofPower Reference Manual

This tutorial is intended to provide a coverage similar to that of the short ProofPower-HOL course,
and is not an exhaustive account of ProofPower. Many of the facilities are mentioned with very brief
or no description.

To become a proficient user of ProofPower it is necessary to become familiar with use of the Proof-
Power Reference Manual [20]. All of the ML names mentioned in this tutorial are documented in the
ProofPower Reference Manual [20], and the documentation may be found by reference to the one of
the indexes to be found in that manual.

The KWIC index in the ProofPower Reference Manual [20] is also invaluable in identifying the
full range of facilities available. Each ML name is composed of a number of atoms separated by
underscore symbols, and the KWIC index groups together all the names containing any particular
atom irrespective of where in the name the atom appears.

Knowledge of a small number of naming conventions enables the user to identify all the relevant
facilities of a particular kind. For example, all tactics have names ending in the atom ‘tac’, and may
therefore be found grouped together in the KWIC index under ‘tac’. All the rewriting facilities have
the atom ‘rewrite’ in their name, and will be found grouped together in the KWIC index.

Once the reader has grasped the main principles of ProofPower and ProofPower-HOL, it is a good
idea to have a browse through the KWIC index to get an idea of the range of facilities available.
Then when he is confronted with a problem in a proof he will know whether there is something
already available which may help to solve the problem, and can then look up the documentation in
detail to discover how the relevant facilities are used.
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THE HOL TYPE SYSTEM

2.1 Introduction

The ProofPower-HOL language provides a notation for making assertions about values in some
domain of discourse. The values in this domain of discourse are abstract entities suitable for use in
mathematical models.

In assertions in HOL, TERM s are used to denote values in the domain of discourse. Each TERM
used must be syntactically well formed, and must also be well typed; ProofPower will check this
automatically and report any problems to the user. A TERM is well typed if there exists an as-
signment of TYPE s to the TERM and its sub-TERM s which is consistent with the HOL TYPE
inference rules described below.

Each TYPE denotes a set of values. The semantics of TYPE s and TERM s in HOL are related so
that the denotation of a well typed TERM is a value which is a member of the denotation of its
TYPE .

In general, TYPE s in HOL may also contain TYPE variables. In this case they are known as
polymorphic TYPEs and should be thought of as denoting a family of monomorphic TYPEs.

In this chapter a thorough and systematic (though informal) description of the TYPE system is
given. This, on a smaller scale, provides a model for the structure of the TERM language treated
in the next chapter.

To give a full account of the TYPE system we provide:

• An abstract syntax giving the logical structure of a notation for describing TYPE s. This
corresponds to the primitive facilities available in the metalanguage for manipulating TYPE s.

• A concrete syntax providing a specific way of writing TYPE s for submission to ProofPower or
for presentation in documents.

• A semantics indicating informally how the set denoted by any TYPE may be determined.

These suffice to define TYPE s as completely as they can be without discussing how they relate to
TERM s. The chapter goes on to describe the principal non-primitive facilities available in Proof-
Power for performing computations with TYPE s.

2.2 The Abstract Syntax of TYPEs

There are just two primitive ways of constructing a TYPE . The first is the construction of a
TYPE variable, which simply has a name. A TYPE variable denotes an arbitrary set. The
second is the construction of a TYPE using a TYPE constructor. A TYPE constructor also has
a name, normally one which has previously been declared for the purpose with an associated arity.
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The construction is performed on the TYPE constructor (which may be thought of as a function
from one or more TYPE s yielding another TYPE ) together with a number of TYPE s to which
the constructor is applied. A special case of a TYPE constructor is a 0-ary TYPE constructor .
This special case encompasses some of the most familiar TYPE s such as the TYPE p:BOOLq which
denotes the set of truth values ( p{T ,F}q), and the TYPE p:Nq which denotes the set of natural
numbers (the positive whole numbers).

The abstract syntax may be described by giving the names and TYPE s in the metalanguage standard
ML of the functions corresponding to the primitive TYPE constructors:

SML

mk vartype : string −> TYPE ;
mk ctype : string ∗ TYPE list −> TYPE ;

2.3 The Concrete Syntax of TYPEs

ProofPower provides a parser for HOL TYPE s both as free standing standard ML values (of type
TYPE ) and as TYPE casts disambiguating the TYPE of a TERM .

The following consists of a simplified description of the concrete syntax of TYPE s, sufficient for the
examples which follow, and sufficient to enter any well formed TYPE .

BNF

Type = Name
| Typars, Name
| Type, InfixName, Type
| ‘(‘, Type, ‘)‘;

Typars = Type
| ‘(‘, Type, { ‘,‘, Type }, ‘)‘;

The first alternative for a TYPE covers both TYPE variables and 0-ary TYPE constructors. The
parser will disambiguate this by assuming that any name starting with a prime (’) is intended as the
name of a TYPE variable.

The second alternative is the default presentation of a TYPE construction, where the name of the
TYPE constructor follows a comma separated list of TYPE s enclosed in round brackets.

Infix syntax is supported for binary TYPE constructors. Such TYPE constructors may be given
infix status and a parsing precedence by an appropriate fixity declaration.

The last alternative allows brackets to be used to enclose a TYPE expression to override the prece-
dence which the parser would otherwise use in parsing the TYPE .

2.4 The Semantics of TYPEs

TYPE s should be thought of as expressions which denote non-empty sets of values. To under-
stand the meaning of the language of TYPE s it is therefore necessary to understand for any TYPE
expression which set is denoted by that expression.

This is complicated slightly by two variable factors. Before the set denoted by any TYPE expression
can be determined it is first necessary to know the denotations of the TYPE variables which occur in
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it (which will not usually be fixed), and secondly to know the denotations of the TYPE constructors
(which will usually have been partly determined by a declaration for the relevant TYPE constructor).

The meaning of a TYPE expression must therefore be understood to be given relative to an as-
signment of values to the TYPE variables and TYPE constructors which appear in it. Such an
assignment will assign to each TYPE variable a non-empty set, and to each n-ary TYPE constructor
a function from n-tuples of non-empty sets (the denotations of the TYPE expressions to which the
TYPE constructor is applied) to non-empty sets (the denotations of the TYPE expression formed
by applying the TYPE constructor to the argument types).

Just describing the necessary context in which the value denoted by some TYPE expression must
be determined conveys most of the content of the description of the semantics of the TYPE system.
There are just two ways in which a TYPE expression may be formed and these determine the set
denoted by the TYPE expression as follows.

If the expression is a TYPE variable then the set denoted is that assigned to the TYPE variable in
the context. If the expression is a TYPE constructor then the value denoted by the TYPE expression
is the value obtained by applying the function assigned in the context to the TYPE constructor to
the tuple of sets which are the denotations of the TYPE expressions supplied as arguments to the
TYPE constructor .

In summary:

• TYPE s denote non-empty sets of values.

• TYPE variables range over non-empty sets of values.

• TYPE constructors denote functions from tuples of sets to sets.

2.5 Examples of HOL TYPEs

The following examples show a variety of TYPE s. They also show different ways in which a TYPE
can be entered into the system. When a TYPE is entered as a top level expression to ProofPower
it is evaluated to yield a standard ML value of type TYPE which is then displayed automatically
invoking a pretty printer which will use the concrete syntax for HOL TYPEs. These outputs from
ProofPower are shown together with the various ways of entering TYPE s.

A TYPE is a value (of type TYPE ) in the metalanguage standard ML. The primitive method for
entering such a TYPE is to enter the standard ML expression which computes the TYPE using the
ML functions which are the constructors of the abstract data type.

Thus a TYPE which is a TYPE variable may be obtained by evaluating the ML function mk vartype
supplying it with the name of the variable:

SML

val t = mk vartype "′a";

ProofPower output

val t = p:′aq : TYPE

Submitting the above command to the ProofPower system causes the TYPE variable with name ‘’a’
to be constructed and bound to the ML name ‘t’.

A TYPE formed from a TYPE constructor may be obtained using mk ctype as follows:
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SML

val u = mk ctype ("BOOL",[]);

ProofPower output

val u = p:BOOLq : TYPE

In the above the 0-ary TYPE constructor ‘BOOL’ is applied to an empty list of TYPE s. p:BOOLq
is the TYPE denoting the set of truth values (true and false) and is a primitive TYPE of the HOL
logic.

Type following example is another primitive TYPE constructor , the binary function space construc-
tor:

SML

mk ctype ("→",[p:Nq,p:Nq]);

ProofPower output

val it = p:N → Nq : TYPE

This expression evaluates to the TYPE whose denotation in a standard model is the set of all total
functions over the natural numbers.

In practice, for most purposes, entry of TYPE s as ML expressions is too cumbersome, and for this
reason a parser is provided which enables the TYPE s to be entered in a convenient concrete syntax.
This parser is invoked automatically when a quotation beginning with the symbol ‘ p:’ is encountered
by the ProofPower system.

Thus:
SML

p:′aq;

ProofPower output

val it = p:′aq : TYPE

is an alternative way of entering the same TYPE variable as that previously bound to ‘t’.

The TYPE formed from the 0-ary constructor ‘BOOL’ is quoted thus:

SML

p:BOOLq;

ProofPower output

val it = p:BOOLq : TYPE

This is parsed as a TYPE constructor rather than a TYPE variable because its name does not begin
with a prime.

The function space TYPE may be quoted using concrete syntax as follows:

SML

p:N → Nq;
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ProofPower output

val it = p:N → Nq : TYPE

This infix concrete representation is permitted for binary TYPE constructors provided that they
have been declared previously as infix identifiers in a fixity declaration.

Where a constructor has not been declared infix the concrete syntax requires postfix application of
the constructor as in the TYPE of lists of natural numbers:

SML

p:(N) LISTq;

ProofPower output

val it = p:N LISTq : TYPE

For 1-ary TYPE constructors the brackets surrounding the list of TYPE s preceding the constructor
name are optional, so:

SML

p: N LISTq;

ProofPower output

val it = p:N LISTq : TYPE

is a quotation which yields exactly the same TYPE as the previous quotation.

The following example illustrates a typical use of TYPE variable, giving a polymorphic TYPE of
lists. This enables the normal operations over lists to be defined in such a way that they apply to
lists of any TYPE of element.

SML

p:′a LISTq;

ProofPower output

val it = p:′a LISTq : TYPE

The quotation facilities are multilingual and support what is sometimes referred to as anti-quotation.
An antiquotation is an expression in ML, quoted inside an object language HOL quotation. The
quoted ML expression must evaluate to an appropriate type of ML expression (in this case an
expression of ML type TYPE ), and the value of this expression is used at the point of quotation in
the TYPE constructed by the TYPE parser. To supply an ML expression providing a constituent
TYPE , the quotation symbol (‘p’) is subscripted with SML : as shown in this example:

SML

p: pSML: tq → pSML: uqq;

which is typed into a source document as:

p: p↘SML:l tq → p↘SML:l uqq;

and evaluates as:
ProofPower output

val it = p:′a → BOOLq : TYPE
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The ML name ‘t’ has previously been bound to the TYPE p:′aqand ‘u’ to TYPE p:BOOLq. These
are is supplied as arguments to the function space binary infix TYPE constructor to yield the TYPE
of boolean valued functions over the natural numbers (which may be thought of as properties of
natural numbers).

This is the same TYPE as would have been obtained from the expression:
SML

mk ctype("→",[t ,u]);

ProofPower output

val it = p:′a → BOOLq : TYPE

Other examples of types formed from infix TYPE constructors are:
SML

p:N × Nq; (∗ pairs of natural numbers ∗)

ProofPower output

val it = p:N × Nq : TYPE

SML

p:N + BOOLq; (∗ disjoint union of N and BOOL ∗)

ProofPower output

val it = p:N + BOOLq : TYPE

2.6 Computation with TYPEs

A full set of constructors, recognisers and destructors for the two different kinds of TYPE are
provided as the primitive operations of the abstract data type in standard ML. In addition to these
primitive operators a range of higher level facilities are available. Those provided include all the
major facilities required in implementing a proof system for a logic with this TYPE system, and
provide a good basis for any further programming with TYPE s which the user may wish to do to
extend or customise the capabilities of the system. Most users will find however, that programming
with TYPE s is not necessary for their application.

2.6.1 Recognisers and Destructors

Corresponding to the two primitive constructors already introduced for building TYPE s by compu-
tation, there are recognisers, which may be used to discover whether a TYPE in hand was made by a
particular constructor, and destructors, which may be used to take apart the TYPE again, yielding
the values used originally as arguments to the constructor function.

These follow systematic naming conventions, the prefix mk used in the constructor being replaced
by is in the name of the recogniser and dest in the name of the destructor. This pattern of
naming conventions is repeated many times in ProofPower, wherever a new language is considered.
The pattern is repeated for the language of primitive TERM s in HOL, the language of derived
TERMs, and for TERM s representing fragments of Z specifications.

It suffices here simply to record this set of ML procedure names and their ML types, leaving the
reader to infer their functionality from the above informal description:
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• constructors
SML

mk vartype :string −> TYPE ;
mk ctype :string∗TYPE list −> TYPE ;

• recognisers
SML

is vartype :TYPE −> bool ;
is ctype :TYPE −> bool ;

• destructors
SML

dest vartype :TYPE −> string ;
dest ctype :TYPE −> string ∗ TYPE list ;

2.6.2 Basic Facilities

Using the primitive facilities, higher level facilities may be programmed, usually by recursion over
the structure of TYPE s. The following are examples of such higher level facilities supplied with
ProofPower.

• TYPE equality

In order to retain flexibility over the internal representation of TYPE s they are not an ‘equality
type’ in ML, and therefore cannot be compared using the ML equality relation. A function
performing a comparison between two TYPE s is therefore provided, in the form of the infix
ML boolean valued operation ‘=:’.

SML

op =: : TYPE ∗ TYPE −> bool ;

• TYPE variables in a TYPE

The following function will extract the names of all the TYPE variables used in a TYPE .
SML

type tyvars : TYPE −> string list ;

• TYPE constructors in a TYPE

Similarly a function is available to extract the TYPE constructors. In this case both the name
and the arity of the TYPE constructor are extracted as a pair.

SML

type tycons : TYPE −> (string ∗ int) list ;

• TYPE instantiation

When a polymorphic TERM is instantiated to a specific TYPE a substitution is made for
TYPE variables occuring in the TYPE . This is known as TYPE instantiation and is performed
by the following function:

SML

inst type : (TYPE ∗ TYPE ) list −> TYPE −> TYPE ;

The first parameter is a list of pairs of TYPE s. Each pair consists of a TYPE to be substituted and
a TYPE variable for which the substitution takes place.
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2.6.3 Support for Pattern Matching

Standard ML provides support for pattern matching in function definitions. This support depends
on the functions being defined over ML ‘datatype’s. Pattern matching is not available for value of
‘abstract types’. In general the ML types used for representing object language constructs have to
be implemented as abstract types in order that necessary well-formedness conditions are enforced,
including the prevention of unsound derivations.

To mitigate the inconvenience caused to programmers we have made available a number of ML
datatypes suitable for pattern matching function definitions, together with transfer functions which
convert values of these abstract types into values of the corresponding datatypes.

The first example of such a type is the type DEST SIMPLE TYPE , which is defined as:

datatype DEST SIMPLE TYPE =
Vartype of string

| Ctype of (string ∗ TYPE list);

This type reflects the top level structure of a TYPE , the constructors of the datatype corresponding
to the primitive constructors for TYPE s.

Using this datatype generalised constructors and destructors for TYPE s are provided:

• generalised constructor
SML

mk simple type : DEST SIMPLE TYPE −> TYPE ;

• generalised destructor
SML

dest simple type : TYPE −> DEST SIMPLE TYPE ;

The advantage of these facilities is:

• They enable functions over TYPE s to be defined using pattern matching.

• They provide a convenient interactive interface for investigating the underlying structure of a
TYPE .

To illustrate the first advantage we provide an example of a function over TYPE s defined using
pattern matching. The following is in effect a re-implementation of one of the functions provided
with ProofPower. It traverses a TYPE forming a list of all the TYPE variables appearing in it.

SML

fun type tyvars2 t =
(fn Vartype s => [s]
| Ctype (s,tl) => list cup (map type tyvars2 tl))

(dest simple type t);

The argument to the function ‘t’ is a TYPE . This is transformed into a DEST SIMPLE TYPE by
dest simple type and then passed to a function abstraction defined using pattern matching over the
structure of the datatype.

The function list cup, which forms the union of two lists regarded as sets (i.e. removing duplicates), is
one of a number of general purpose functions supplied with ProofPower to supplement the standard
ML library in areas relevant to the functionality of ProofPower.
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HOL TERM s

3.1 Introduction

Following the structured presentation of TYPE s we now present the ProofPower-HOL TERM
language.

The primitive TERM structure is first presented, covering:

• Abstract Syntax

• Concrete Syntax

• Typing Rules

• Semantics

Overlaid on this simple primitive structure there is a syntactically richer derived syntax, all of which
can be explained as more convenient notation for writing TERM s which can also be written in the
primitive language.

The derived syntax is described also, and the semantics of these constructs is illustrated.

When entering TERM s using the concrete syntax it is usually necessary to use ‘Quine corners’
(‘p’ and ‘q’) as quotation marks. A pair of Quine corners enclosing a piece of concrete syntax is
understood by ProofPower as an ML expression of type TERM . The effect of evaluating such an
expression is achieved by parsing the concrete syntax, performing TYPE inference to determine
whether the expression is well typed , and constructing the appropriate TERM . When an expression
is submitted to ProofPower which results in the computation of a value of type TERM , the TERM
pretty printer is automatically invoked to print the TERM , and will print the TERM in HOL concrete
syntax enclosed in Quine corners. These features will be illustrated in the following material.

3.2 Abstract Syntax

The primitive abstract syntax of TERM s has just four constructors.

A TERM is either a TERM variable, a constant , an application, or a lambda-abstraction.

A TERM variable may be thought of as denoting unspecified value, a constant as denoting a previ-
ously defined value. An application denotes the value of some function when applied to an argument,
and a lambda-abstraction describes a function by specifying the value of the function for an arbitrary
value of its argument.

The standard ML datatype DEST SIMPLE TERM reflects the top-level structure of HOL TERM s
and may be used in computations with TERM s.
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datatype DEST SIMPLE TERM =
Var of string ∗ TYPE

| Const of string ∗ TYPE
| App of TERM ∗ TERM
| Simpleλ of TERM ∗ TERM ;

A TERM may be transformed into a DEST SIMPLE TERM, or vice-versa by the following func-
tions.

dest simple term : TERM −> DEST SIMPLE TERM ;
mk simple term : DEST SIMPLE TERM −> TERM ;

Alternatively a full collection of constructors, recognisers and destructors which operate directly on
TERM s are available. The names of these are formed by prefixing mk , is and dest to the names
of the constructors in the abstract data type above (without capitalisation).

3.3 Concrete Syntax

The following BNF describes a very limited subset of the concrete syntax of HOL TERM s which
is sufficient for expressing TERM s according to their primitive structure. Later we we see a richer
syntax which makes the notation more readable.

The clauses in this syntax describe:

1. lambda abstractions

2. function applications

3. infix function applications

4. type casts

5. variables or constants

6. bracketted expressions

in turn.
BNF

Term =
‘λ‘, Name, [‘:‘, Type], ‘•‘, Term

| Term, Term
| Term, InfixName, Term
| Term, ‘:‘, Type
| Name
| ‘(‘, Term, ‘)‘;

Names are treated as variables unless they have been previously declared as constants. Infix status
and priority are determined by fixity declarations.
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3.4 TYPEs of TERM s

Terms must be well typed.

The TYPE of a TERM is determined by TYPE inference using the following rules:

3.4.1 Variables

A TERM variable in the abstract syntax (which may be thought of as its internal representation),
consist simply of a name and a TYPE . The variable has the TYPE associated with it, and this is
essentially an axiom schema in the TYPE inference system

In concrete syntax the TYPE of a variable may be explicitly cited using a TYPE-cast, in which
case the variable constructed by the system in forming the TERM from the quotation will have that
TYPE associated with it (provided a well-typing for the TERM as a whole can be discovered which
is consistent with all the contraints imposed, otherwise an error report will be given and no TERM
will be constructed.

This is reflected in the form of the axiom schema, which is expressed using the concrete syntax.

pv :αq : α

The schema states that the TYPE of any variable quoted with a cast is the same as the TYPE used
in the cast.

Where a variable is not given a cast a most general (possibly polymorphic) TYPE will be inferred
for it (if possible), and this will be used in the construction of the TERM . Nevertheless, the principle
hold that in the asbtract representation it has the TYPE which was associated with it when it was
formed.

3.4.2 Constants

A similar rule holds for constants. Each constant is also constructed as a constant name associate
with a TYPE , and the TYPE supplied at the time of construction is the TYPE of the constant thus
formed.

When constants are constructed by the system while evaluating an object language quotation, the
TYPE inference rules adopted differ from those used for variables. In particular a name parsed
will only be interpreted as a constant if a constant of that name has been declared in the current
scope. The TYPE inferrer will also insist on the TYPE assigned to the constant being the TYPE
associated with the constant when it was declared, or a TYPE instance of that TYPE .

pc:αq : α

3.4.3 Lambda Abstractions

A lambda abstraction denotes a function from values of the TYPE of its formal parameter to the
values of the TYPE of the body of the lambda abstraction. The TYPE of the lambda abstraction
is therefore a function space TYPE where the first argument to the function space constructor (the
domain TYPE ) is the TYPE of the formal parameter (or bound variable) and the second argument
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to the function space constructor (the co-domain TYPE ) is the TYPE of the body of the lambda
abstraction.

t : α
pλ x :β • tq : β → α

The rule then states that if some TERM ‘t’ has TYPE α, then a lambda abstraction with TYPE
cast β on its bound variable and body ‘t’ has TYPE p: β → α q.

3.4.4 Applications

For a function application to be well-TYPEd the function must have a function space TYPE , and
the argument must have the same TYPE as the domain TYPE of the function. In that case the
application will have the same TYPE as the codomain of the function.

f : α → β; x : α
pf xq : β

3.4.5 Type Rules in the Meta-language

The same rules may be rendered in ML as follows:

The main difficulty in expressing rules of this kind in the metalanguage is that the metalanguage is
a programming language, not a logic, and therefore it only contains constructs which are executable,
which does not include universal quantifiers.

Nevertheless something similar to a free variable formulation of the rules can be given. This is an
expression in ML containing variables which are to be understood as uninterpreted, together with the
convention that to assert an ML expression containing such uninterpreted variables is to assert that
the expression will evaluate to the boolean value ‘true’ whatever well-TYPEd value is substituted
for the instances of uninterpreted variables, provided that distinct occurences of the same variable
are assigned the same value throughout the expression.

Such a claim cannot be verified without a logic for the metalanguage, which we do not have, however
it can be illustrated (or tested) by evaluating the expressions for one or more specific values.

Thus all the following ML encapsulations of the HOL TYPE inference rules have the following
characteristic. If for a particular set of values of the free variables occuring in it, the premises of the
rule (the assertions above the line) evaluate to the value ‘true’, then so will the conclusion. This can
be illustrated by evaluating them after making the following specific bindings:

SML

val vname = "var";
val vtype = p:BOOLq;
val cname = "0";
val ctype = p:Nq;
val term = p0q;
val ttype = p:Nq;
val funterm = pfun : ′a → ′bq;
val arg = parg : ′aq;
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• variables

type of (mk var(vname,vtype)) =: vtype;

• constants

type of (mk const(cname,ctype)) =: ctype;

• lambda abstractions

type of term =: ttype;
type of pλ x :′a • pMLtermqq =: p:′a → pSML: ttypeqq;

• applications

type of funterm =: p:′a → ′bq;
type of arg =: p:′aq;

type of p pMLfuntermq pMLargqq =: p:′bq;

In fact the function type of which is supplied in the ProofPower system can be defined by recursion
in a manner very similar to the above statement of the TYPE inference rules.

3.5 Types of Terms - Examples

The following examples use the same method of expressing in the metalanguage claims about the
TYPE of a TERM by citing ML expressions which evaluate to ‘true’.

They also give a preview of how the typed lambda calculus is made into higher order logic, by showing
the TYPE s of some of the logical connectives that are defined in the system.

SML

type of px :Nq =: p:Nq;
type of px :′aq =: p:′aq;
type of p0q =: p:Nq;
type of pλx :N • x + 1q =: p:N → Nq;
type of pλx • x + 1q =: p:N → Nq;
type of p(λx • x + 1 ) 3q =: p:Nq;
type of p$+ 1q =: p:N → Nq;
type of p$+q =: p:N → N → Nq;
type of pTq =: p:BOOLq;
type of p¬ Tq =: p:BOOLq;
type of p$¬q =: p:BOOL → BOOLq;
type of p$∧q =: p:BOOL → BOOL → BOOLq;
type of p$∀q =: p:(′a → BOOL) → BOOLq;
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3.6 The Semantics of TERM s

The semantics of TERM s is explained informally by giving rules for evaluation of a TERM to yield
the value denoted by the TERM . This does not imply that the TERM s are executable, the evaluation
rules will often involve application of non-computable functions.

As with TYPE s, TERM s can only be given a value in an appropriate context.

In the case of TYPE s the necessary context was:

• A TYPE interpretation identifying the TYPE universe (a collection of non-empty sets which
represents the domain of discourse) and assigning values to the TYPE constructors in use.

• An assignment of sets to the TYPE variables occuring in the TYPE .

In the case of TERM s the same context is necessary to enable a denotation to be assigned to the
TYPE s occurring in the TERM , and in addition the following are required:

• An interpretation which assigns to each constant a family of values, one for each monomorphic
instance of the TYPE of the constant, each such value being a member of the denotation under
the TYPE interpretation of the relevant monomorphic TYPE .

• For each assignment of TYPE s to the TYPE variables occuring in the TERM , an assignment
of values for each distinct variable having free occurrences in the TERM . Two variables are
considered the same only if their names and their TYPE s are the same. The values assigned to
the variables must be members of the set denoted by their TYPE in the context of the TYPE
variable assignment.

In such a context the denotation of a TERM can be established by rules depending on the top level
abstract constructor as follows:

• Variables

A variable denotes the value assigned to it under the variable assignment.

• Constants

A constant denotes the value assigned to the constant in the interpretation for the specific
values assigned to TYPE variables in the current TYPE -variable assignment.

• Lambda Abstractions

A lambda abstraction denotes the function whose domain is the set assigned to the TYPE of
its bound variable in the current context and whose value at any point ‘p’ is the value assigned
to the TERM which is the body of the lambda expression in the context formed from the
current context by replacing the value assigned to the free variable having the same name aned
TYPE as the bound variable of the abstraction by the value ‘p’.

• Applications

Denotes the value of the function denoted by the first constituent TERM at the point which
is the value denoted by the second constituent TERM .
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3.7 Semantics of TERM s - Examples

In these examples we use proof in ProofPower to illustrate the semantics of HOL TERM s. The
particular proof facilities used will be explained in greater detail later. For present purposes it is
sufficient to know that an ML name ending in conv is the name of a conversion, and that conversions
are functions which take TERM s as arguments and return theorems after constructing a proof of
the theorem behind the scenes. The theorems returned will normally be equations of which the left
hand side is the TERM supplied as argument, and the right hand side is some transformation of
that TERM .

The first example illustrates how the semantics of application and of lambda abstraction fit together
to give β − reduction. This is the technical term for the process of substituting an argument of a
function into the body of the function definition.

SML

β conv p(λx • x + 1 ) 3q;

Hol Output

val it = ` (λ x• x + 1 ) 3 = 3 + 1 : THM

β conv is a very specific inference facility which does no more than the substitution. In general we
will illustrate semantic features using the more powerful higher level rewriting facilities which will
do β-reduction, and many other useful simplifications.

SML

rewrite conv [] p(λx • x + 1 ) 3q;

Hol Output

val it = ` (λ x• x + 1 ) 3 = 4 : THM

In the above case not only was the β-reduction performed but also the evaluation of the resulting
subexpression formed from numeric literals.

η axiom is one of the primitive axioms of the HOL logic. Its purpose is to assert that functions in
HOL are extensional.

SML

η axiom;

Hol Output

val it = ` ∀ f • (λ x• f x ) = f : THM

This is more transparently stated by ext thm, a theorem derived from η axiom. ext thm states that
two functions are equal if and only if they have the same values at every point in their domains.
(Quantification over the domain is ensured by the TYPE inferrer, given that all functions in HOL
are total functions over their domain TYPE .)

SML

ext thm;

Hol Output

val it = ` ∀ f g• f = g ⇔ (∀ x• f x = g x ) : THM

The final examples are intended to illustrate the facts that:
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• p43q is a natural number.

• pTq is of TYPE p :BOOLq.

• The values of TYPE p :Nq are all greater than or equal to zero.

• There are just two values of TYPE p :BOOLq, pTq and pFq (true and false).

The facts are all provable using the automatic proof facilities provided in ProofPower, which the
reader may verify by pasting in the standard ML expressions below into ProofPower and observing
that the TERM supplied as argument is transformed into a theorem (by proof behind the scenes).

SML

prove rule [] p∃ x :N • 43 = xq;
prove rule [] p∃ b:BOOL • T = bq;
prove rule [] p∀ x :N • x ≥ 0q;
prove rule [] p∀ b:BOOL • b = T ∨ b = Fq;

3.8 Derived Syntax for TERM s

The primitive syntax described above for HOL TERM s is complete in the sense that every HOL
TERM can be built up or taken apart using only the primitive constructors and destructors. In the
same way the primitive concrete syntax is complete, permitting any TERM to be written down as
applications or abstractions formed from variables or constants.

This Spartan concrete syntax is however not ideal for writing specifications in a concise and read-
able form. For this purpose it is desirable to be able to adopt a richer variety of syntactic forms
corresponding more with normal mathematical usage.

Product HOL provides ‘syntactic sugar’ which permits specifications to be written in a more readable
way. These forms are also known as ‘derived syntax’. Coresponding to the derived syntax supported
by the HOL parser there are computational facilities which permit TERM s to be processed in ways
which correspond to the derived forms rather than the primitive forms.

To some extent it is arbitrary what features are treated in this way as part of the range of fully sup-
ported ‘derived syntax’. A new datatype DEST TERM is provided which gives a computational view
of the derived syntax of HOL TERM s. A full range of constructors destructors and discriminators
corresponding to the categories in this datatype are also available.

3.8.1 DEST TERM

The full definition of the datatype DEST TERM is as follows:
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datatype DEST TERM =
DVar of string ∗ TYPE

| DConst of string ∗ TYPE
| DApp of TERM ∗ TERM
| Dλ of TERM ∗ TERM
| DEq of TERM ∗ TERM
| D⇒ of TERM ∗ TERM
| DT
| DF
| D¬ of TERM
| DPair of TERM ∗ TERM
| D∧ of TERM ∗ TERM
| D∨ of TERM ∗ TERM
| D⇔ of TERM ∗ TERM
| DLet of ((TERM ∗ TERM )list ∗ TERM )
| DEnumSet of TERM list
| D∅ of TYPE
| DSetComp of TERM ∗ TERM
| DList of TERM list
| DEmptyList of TYPE
| D∀ of TERM ∗ TERM
| D∃ of TERM ∗ TERM
| D∃1 of TERM ∗ TERM
| Dε of TERM ∗ TERM
| DIf of (TERM ∗ TERM ∗ TERM )
| DN of int
| DChar of string
| DString of string ;

The generalised destructor and constuctor for this derived abstract syntax are dest term and mk
term respectively, which are ML functions with the following types.

SML

dest term : TERM −> DEST TERM ;
mk term : DEST TERM −> TERM ;

Specific constructors, destructors and discriminators for each category in this may be obtained by
the following algorithm:

1. Take the name of the corresponding constructor from the definition of DEST TERM.

2. Drop the initial ‘D’.

3. prefix with mk , dest or is as appropriate.

4. Change to lower case every upper case letter in the name and insert an underscore character
in front of it.
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The signature of the constructors and destructors can be obtained directly from the type associated
with the corresponding constructor in the datatype DEST TERM.

Alternatively the KWIC index to the reference manual may be used to find a full listing of syntactic
constructors and destructors.

For example, corresponding to the constuctor ‘DSetComp’ three functions are available as follows:

SML

mk set comp : TERM ∗ TERM −> TERM ;
dest set comp : TERM −> TERM ∗ TERM ;
is set comp : TERM −> bool ;

It may be noted that in this structure the first four items correspond to the four constructors in the
primitive abstract syntax, and therefore, in principle any TERM could be classified as one of these
four. However, when a TERM is transformed into a DEST TERM using the function dest term, it
will only be treated as a constant, a application or an abstraction if it cannot be interpreted as one
of the following derived TERM s (all of which are in primitive TERM s, either constants, applications
or abstractions).

The derived syntax available for TERMs may be classified and discussed in then following categories:

• prefix, infix and postfix operators

• binders

• pair matching lambda abstractions

• conditionals

• local definitions

• set displays and abstractions

• list displays

• literals (numeric, character, and string)

Of these the first two categories represent a general facility where any name can be given a special
lexical status and will then be used in the concrete syntax in that special way. This does not affect
the computational processing of TERM s.

Certain of the categories in the datatype DEST TERM represent the treatment of important con-
stants defined in the system as if they were fixtures of the language. This has been done primarily for
those constructs which in first order logic are normally considered as built in features of the language
rather than as defined primitive or defined constants, which is their true status in HOL. This includes
the normal boolean operators, the quantifiers, and the constants ‘T’ and ‘F’ representing formulae
which are true and false respectively in all standard models.

3.8.2 Binders

Constants having TYPE : p:(′a → ′b) → ′cq (or any instance of this) may be declared as binders.

In normal use a constant which has been declared as a binder must be applied to a lambda expression
with the ‘ λ’ symbol omitted. The lexical status can be suspended by prefixing the name by $, and
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this must be done if it is required to use the name in any way other than by applying it to a lambda
expression.

The following illustrates that an existentially quantified TERM is just the same as an application
of the constant p $∃ q to a lambda expression (in this case ‘just the same as’ means ‘is evaluated to
yield exactly the same TERM ’).

SML

p∃ x• x = 4q =$ p$∃ λ x• x = 4q;

3.8.3 Nested Paired Abstractions

Nested lambda abstractions (often called curried) can be abbreviated as follows:

SML

pλx :N•λy :N• (x ,y)q =$ pλ x y :N• (x ,y)q;

The second occurrence of λ being omitted, together with the preceding •. The function denoted
by the nested abstraction takes two natural numbers and returns a pair. (“,” is the infix pairing
operator.)

Functions taking pairs may be written as ‘pattern matching lambda abstractions’:

SML

rewrite conv [] p(λ(x ,y):N × N• x )=Fstq;

ProofPower output

val it = ` (λ (x , y)• x ) = Fst ⇔ T : THM

This − abstraction takes an argument which is an ordered pair, and returns the first element of the
pair.

Fst is the function defined in ProofPower to select the first element from an ordered pair. By use
of extensionality of functions and the definition of Fst the rewriting facilities have reduced the given
equation to pTq.

These effects can be iterated or combined.
SML

rewrite conv []
p(λ(x ,y):N × N; ((v ,w),z )• x + y + v + w + z ) (1 ,2 ) ((3 ,4 ),5 )q;

ProofPower output

val it =
` (λ (x , y) ((v , w), z )• x + y + v + w + z ) (1 , 2 ) ((3 , 4 ), 5 ) = 15 : THM

3.8.4 Conditionals

Conditionals may be written:

if t1 then t2 else t3
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This TERM denotes the same value as the TERM p t2 q in contexts in which the TERM p t1 q
denotes pTq, otherwise it denotes the same value as the TERM pt3q.

This is illustrated by the following examples:
SML

rewrite conv [] pif T then 0 else 1q;

ProofPower output

val it = ` (if T then 0 else 1 ) = 0 : THM

SML

rewrite conv [] pif F then 0 else 1q;

ProofPower output

val it = ` (if F then 0 else 1 ) = 1 : THM

SML

rewrite conv [] pif 3>6 then x else yq;

ProofPower output

val it = ` (if 3 > 6 then x else y) = y : THM

3.8.5 Let Clauses

Local declarations may be made in the form:

let defs in term

This TERM denotes in any context the same value as the TERM ptermq denotes in the context
obtained by modifying the first context by subsituting the values denoted by the defining expressions
in ‘defs’ to the variables to which they are bound in ‘defs’. i.e. it denotes the value of term when
evaluated in the context of the local definitions in defs. To eliminate a let clause, rewrite with
let def .

SML

rewrite conv [let def ] plet a = "Peter" in a,aq;

ProofPower output

val it = ` (let a = "Peter" in (a, a)) = ("Peter", "Peter") : THM

The left hand side of a definition may be a variable structure (known as a varstruct) formed from
simple variables using the infix pair constructor ‘,’:

SML

rewrite conv [let def ] plet (x ,y) = (1 ,T ) in (y ,x )q;

ProofPower output

val it = ` (let (x , y) = (1 , T ) in (y , x )) = (T , 1 ) : THM

The left hand side of a definition may also be a (non-recursive) function definition:
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SML

rewrite conv [let def ] plet f x = x∗x in f 3q;

ProofPower output

val it = ` (let f x = x ∗ x in f 3 ) = 9 : THM

Multiple definitions may be given in a single let clause.

SML

rewrite conv [let def ] plet a = 1 and b = 2 in (a,b)q;

ProofPower output

val it = ` (let a = 1 and b = 2 in (a, b)) = (1 , 2 ) : THM

Multiple definitions are ‘evaluated in parallel’, i.e. the variable introduced by one definition is only
in scope in the body of the let clause, not in the other definitions.

SML

rewrite conv [let def ] plet a = 2 and b = a∗a in (a,b)q;

ProofPower output

val it = ` (let a = 2 and b = a ∗ a in (a, b)) = (2 , a ∗ a) : THM

If the first definition is required to be in scope for the second definition then nested let clauses should
be used, e.g.:

SML

rewrite conv [let def ] plet a = 2 in let b = a∗a in (a,b)q;

ProofPower output

val it = ` (let a = 2 in let b = a ∗ a in (a, b)) = (2 , 4 ) : THM

3.8.6 Set Displays

Sets may be entered as TERM s by enumeration using the normal mathematical syntax, except that
semi-colons are used instead of commas as separators in the list of elements:

SML

rewrite conv []p9 ∈ {1∗1 ; 2∗2 ; 3∗3 ; 4∗4}q;

ProofPower Output

val it = ` 9 ∈ {1 ∗ 1 ; 2 ∗ 2 ; 3 ∗ 3 ; 4 ∗ 4} ⇔ T : THM

SML

rewrite conv []p10 ∈ {1∗1 ; 2∗2 ; 3∗3 ; 4∗4}q;

ProofPower Output

val it = ` 10 ∈ {1 ∗ 1 ; 2 ∗ 2 ; 3 ∗ 3 ; 4 ∗ 4} ⇔ F : THM
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Sets may also be entered as set abstractions:
SML

rewrite conv []p9 ∈ {x | x < 12}q;

ProofPower Output

val it = ` 9 ∈ {x |x < 12} ⇔ T : THM

SML

rewrite conv []pz ∈ {(x , y) | x < y}q;

ProofPower Output

val it = ` z ∈ {(x , y)|x < y} ⇔ Fst z < Snd z : THM

3.8.7 List Displays

A similar syntax is available for lists:
SML

rewrite conv [append def ]
p[1∗1 ; 2∗2 ; 3∗3 ; 4∗4 ] @ [5∗5 ]q;

ProofPower Output

val it = `
[1 ∗ 1 ; 2 ∗ 2 ; 3 ∗ 3 ; 4 ∗ 4 ] @ [5 ∗ 5 ] = [1 ; 4 ; 9 ; 16 ; 25 ] : THM

SML

pCons 1 [2 ;3 ;4 ;5 ]q;

ProofPower Output

val it = p[1 ; 2 ; 3 ; 4 ; 5 ]q : TERM

3.8.8 Literals

Numeric literals consist of a sequence of decimal digits (no sign):
SML

dest simple term p123q;

ProofPower output

val it = Const ("123", p:Nq) : DEST SIMPLE TERM

As shown this is interpreted as a constant of TYPE p :Nq whose name is the same as the literal itself
(except that leading zeros will have been omitted.

Character literals consist of a single character in ‘ characters:
SML

dest simple term p‘α‘q;
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ProofPower output

val it = Const ("‘α", p:CHARq) : DEST SIMPLE TERM

Again this is interpreted as a constant, in this case of TYPE p :CHARq. The name is prefixed by
a ‘ character in order to prevent its name clashing with the name of any constant introduced by a
user of ProofPower (but it is not terminated by ‘).

String literals consist of zero or more characters in “"” characters:

SML

dest simple term p"many characters αβγ"q;

ProofPower output

val it = Const ("\"many characters αβγ",
p:CHAR LISTq) : DEST SIMPLE TERM

In this case the name of the constant is prefixed with but not terminated by ".

A string literal denotes a LIST of characters:

SML

TOP MAP C string conv p"characters αβγ"q;

ProofPower output

val it = ` "characters αβγ"
= [‘c‘; ‘h‘; ‘a‘; ‘r‘; ‘a‘; ‘c‘; ‘t‘; ‘e‘; ‘r‘; ‘s‘; ‘ ‘; ‘α‘; ‘β‘; ‘γ‘] : THM

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - HOL Tutorial Notes USR013



44 Chapter 3. HOL TERM s

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - HOL Tutorial Notes USR013



Chapter 4 45

THEORIES

Having decribed the HOL TYPE and TERM languages, we now consider other aspects of ProofPower
which enable these to be used in writing specifications and conducting formal proofs.

The term specification has a dual use in the following. It is used to describe a quantitity of formal
material perhaps consisting of many documents and spread over several THEORYs. It is also
used in the name of some of the procedures available for entering parts of a specification into the
system (usually abbreviated to spec), or of paragraphs which provide an alternative concrete syntax
for undertaking such specifications.

A specification (in the first sense), when processed by ProofPower extends the logical system which
ProofPower provides with new TYPE constructors and constants which constitute mathematical
models of the system specified. The means of extension may be classified into those which are
conservative and those which are not. A conservative extension is one which is guaranteed safe, insofar
as its introduction will not render the logical system inconsistent. For most purposes conservative
extensions are sufficient, though it is sometimes desirable to make non-conservative extensions, either
for reasons of cost and convenience, or (very rarely in applications) because there is a real need to
strengthen the logic. Because of the risk associated with non-conservative extensions these are always
recorded as new axioms. The use of an axiom is confined to the theory in which it is declared and
its descendants, and it is always possible to discover the full set of axioms which are present in a
theory and its ancestry.

• Information about specifications is held in the theory database.

• The theory database consists of a hierarchy of theories interconnected by the parent-child
relationship.

• The details of a specification are put in the theories using various declarations, definitions
and specifications which are calls to ML functions, or by the use of paragraphs which provide
an alternative syntax for some of these procedure calls which avoids explicit use of the meta-
language.

4.1 Theories

4.1.1 Introduction

A HOL theory contains the following information:

• The name of the theory and the names of its parents and children.

• The names and arities of TYPE constructors declared in the theory.

• The names and TYPE s of constants declared in the theory.

• Fixity and aliasing information.
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• Possibly some axioms.

• Definitions of constants.

• A collection of saved theorems.

4.1.2 Access to Theories

To use a theory it must be “in context”, this can be achieved by opening the theory or one of its
descendents:

SML

open theory : string −> unit ;

Open theory makes the named theory the current theory.

The theory ‘basic hol’ must always be in context, since its ancestors contain definitions on which
the soundness of the built-in inference rules depend. The ancestors of basic hol may not themselves
be opened (since this would permit theories to be created with incorrect variants of these critical
definitions), but will always be in the ancestry of the currently opened theory.

To display the contents of a theory use:

SML

print theory : string −> unit ;

print theory takes as parameter the name of the theory to be printed, and accepts the abbreviation
"-" instead of the current theory name. The theory must be in context, i.e. the current theory or
an ancestor of it.

To create a new theory which is a child of the current theory:

SML

new theory : string −> unit ;

new theory will create a new theory whose parent is the current theory and whose name is the string
supplied as parameter. This new theory will then become the current theory.

To add a new parent to the current theory:

SML

new parent : string −> unit ;

new parent will add a new parent to the current theory. This enables the contents of the parent
theory and any of its ancestors to be used in the current theory or its descendants.

To get things from the theory a range of functions are provided. These will normally be used only
when the value retrieved is required for computations rather than for display, since print theory will
display the information suitably formatted, while these functions simply return the value rather than
formatting it for display.

These functions, with the sole exception of get spec take a string parameter which is the name of the
theory to be accessed, and sometimes require a further string parameter which is a keyword under
which the required value has been saved. The second parameter is omitted in those functions which
retrieve all the values of a certain kind from a theory (usually names ending in ‘s’, e.g. get binders).
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SML

get aliases : string −> (string ∗ TERM ) list ;
get ancestors : string −> string list ;
get axiom : string −> string −> THM ;
get axioms : string −> (string list ∗ THM ) list ;
get binders : string −> string list ;
get children : string −> string list ;
get consts : string −> TERM list ;
get defn : string −> string −> THM ;
get defns : string −> (string list ∗ THM ) list ;
get descendants : string −> string list ;
get parents : string −> string list ;
get thm : string −> string −> THM ;
get thms : string −> (string list ∗ THM ) list ;
get spec : TERM −> THM ;

To save things in the theory use declarations, definitions, specifications or paragraphs (see below),
or save thm.

You should now be able to do the exercises in section 13.2.

4.2 Declarations, Definitions and Specifications

4.2.1 TYPE constructors

An uninterpreted new TYPE constructor may be introduced using new type, which requires to know
only the name and arity of the new TYPE constructor.

SML

new type : string ∗ int −> TYPE ;

A TYPE constructor may be defined using new type definition by identifying a non-empty subset of
an existing TYPE with which the new TYPE is required to be in one-one correspondence.

SML

new type defn : string list ∗ string ∗ string list ∗ THM −> THM ;

The parameters to new type definition are:

1. A list of keywords under which the TYPE definition will be stored (in the current theory).

2. the name of the new TYPE constructor to be introduced

3. A list of the names of the TYPE variables present in definition of the property which determines
the subset of the representation TYPE to be in one-one correspondence with the new TYPE .

These TYPE variables will correspond to TYPE parameters to the newly introduced TYPE
constructor , and their order determines the order in which the TYPE parameters must be
supplied to the new TYPE constructor .

4. the theorem stating that the set determined by the defining property is non-empty
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TYPE abbreviations may also be introduced using:
SML

declare type abbrev : string ∗ string list ∗ TYPE −> unit ;

Where the first name is the name of the TYPE abbreviation and the second is a list of TYPE variables
occurring in the TYPE supplied as third parameter. These are effectively formal parameters to the
definition. The actual parameters supplied when using the TYPE abbreviation will effectively be
substituted for the formal parameters in the defining TYPE .

4.2.2 Constants

new const enables a completely uninterpreted new constant to be introduced. This results in no
definition of the constant.

The primitive way of introducing a constant is simple new defn which enables a constant to be
introduced by identifying an existing TERM as the value for the new constant.

new spec permits greater freedom in the form of the definition of a constant, but to ensure that the
introduction is a conservative extension a prior proof is required that a value satisfying the definition
already exists. A single call to new spec can introduce several constants at once.

const spec is a variant of new spec which avoids the need to prove consistency prior to introducing
the new constants. It will attempt a consistency proof itself using a consistency prover taken from
the current proof context, and if it fails to complete the consistency the constants are nevertheless
introduced, in a form which permits them to be used for their intended purpose only if the consistency
proof completed later.

SML

new const : string ∗ TYPE −> TERM ;
simple new defn : string list ∗ string ∗ TERM −> THM ;
new spec : string list ∗ int ∗ THM −> THM ;
const spec : string list ∗ TERM list ∗ TERM −> THM ;

4.2.3 Product Specifications

Two special functions are provided for introducing new product TYPE s, both labelled and unlabelled.
These introduce a new TYPE at the same time as a number of new constants.

SML

unlabelled product spec
: {tyi : TYPE list , tykey : string ,

tyname : string , tyvars : TYPE list OPT ,
conkeys : string list , conname : string}
−> THM ;

labelled product spec
: {tykey : string , labels : (string ∗ TYPE ) list ,

tyname : string , tyvars : TYPE list OPT ,
conname : string , constkeys : string list}
−> THM ;
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4.2.4 Lexical Declarations

Any identifier can be declared:

• prefix, infix, postfix (with a priority)

• a binder (like “∀” and “∃”)

using the following fixity declaration procedures:

SML

declare prefix : int ∗ string −> unit ;
declare infix : int ∗ string −> unit ;
declare postfix : int ∗ string −> unit ;
declare binder : string −> unit ;

Such a declaration affects all uses of the name including the use of the name as a variable, however the
lexical status of names may vary from one theory to another, or the special fixity may be removed
using:

SML

declare nonfix : string −> unit ;

The following procedure may be used to discover the lexical status of a name in the current theory.

SML

get fixity : string −> Lex .FIXITY ;

4.3 Paragraphs

Some declarations may be done without resort to the metalanguage. This facility enables specifica-
tions to be presented almost entirely in HOL without having to make use of standard ML as well
throughout the specification documents.

The form of these paragraphs is similar to some of the paragraphs forms in the Z specification
language [11], which is supported by ProofPower. These paragraphs, despite their similarity to Z
are distinct from the similar Z paragraphs (which are also accepted by ProofPower). An introduction
to ProofPower support for Z may be found in ProofPower Z Tutorial [17].

4.3.1 Constant Declaration Paragraphs

This is a special syntactic form used for invoking const spec.

SML

(open theory "usr013" handle => (open theory "hol"; new theory "usr013"));
set pc "hol2";
declare postfix (200 , "!");

A HOL constant specification (HOLCONST) paragraph is entered into a document or into Proof-
Power as follows:
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sHOLCONST
length : ′a LIST → N

length [] = 0
∧ ∀ h t• length (Cons h t) = length t + 1

¥

and this normally results in a printed form like this:
HOL Constant

length : ′a LIST → N

length [] = 0
∧ ∀ h t• length (Cons h t) = length t + 1

This results in a new definition being entered into the current theory (see below).

Provided that the system succeeded in proving the consistency of the definition (which it did in this
case) it can immediately be used as follows:

SML

rewrite conv [get specplengthq] plength [1 ;2 ;3 ;4 ;5 ]q;

ProofPower output

val it = ` length [1 ; 2 ; 3 ; 4 ; 5 ] = 5 : THM

4.3.2 Labelled Product Paragraphs

These provide an object language construct (HOLLABPROD paragraph) for introducing
labelled products using labelled product spec.

The entry in the source document, which may be read or pasted into ProofPoweris:

sHOLLABPROD Date
day month year :N

¥

Which is printed as:
HOL Labelled Product

Date
day month year :N

The following definitions result:
SML

print theory "usr013";
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ProofPower output

=== The theory usr013 ===

−−− Parents −−−

cache ′hol hol

−−− Constants −−−

length ′a LIST → N
year Date → N
month Date → N
day Date → N
MkDate N → N → N → Date

−−− Types −−−

Date

−−− Fixity −−−

Postfix 200 : !

−−− Definitions −−−

length ` length [] = 0
∧ (∀ h t• length (Cons h t) = length t + 1 )

Date ` ∃ f • TypeDefn (λ x• T ) f
MkDate
day
month
year ` ∀ t x1 x2 x3

• day (MkDate x1 x2 x3 ) = x1
∧ month (MkDate x1 x2 x3 ) = x2
∧ year (MkDate x1 x2 x3 ) = x3
∧ MkDate (day t) (month t) (year t) = t

=== End of listing of theory usr013 ===

You should now be able to attempt the exercises in section 13.3.
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FORWARD PROOF

5.1 Introduction

ProofPower follows the LCF paradigm [5], in which an abstract data type implemented in a func-
tional programming language (known as the metalanguage, in this case Standard ML) guarantees
that a protected type (THM in this case) includes only values which have been obtained by compu-
tations which precisely correspond to proofs in the object language (ProofPower-HOL).

ProofPower keeps track of which theorems have been proven and in what context, so that the user
can always establish whether a theorem is valid and if so, from which axioms and definitions it has
been derived. ProofPower does not keep track of how a theorem has been derived, once it has fully
checked the validity of the derivation. Users of ProofPower will usually keep a record of how they
have derived their theorems in a document (often referred to as a ‘proof script’). ProofPower does
provide some support for the preparation of such proof scripts and for their printing and processing,
interactively or in batch.

A theorem in ProofPower is a value of type THM computed from axioms and definitions using
rules and conversions. An axiom is a theorem introduced without proof, and recorded as such in the
theory hierarchy. A definition is a special kind of axiom introduced by “conservative” mechanisms.
A rule is a function which computes theorems. Rules may be logically primitive rules, in which
case the form part of the primitive abstract logic, kernel rules in which case they are among the
rules implemented directly in the logical kernel (which includes all the primitive rules), or they may
be derived rules, in which case they are implemented as standard ML functions which compute
the required results using the kernel rules. A conversion is a special kind of rule which proves
THM s which are equations. A conversion takes a TERM argument and (if successful) returns a
THM whose conclusion is an equation with the same TERM on the left hand side of the equation.
The idea of derived rules as computations is due to Robin Milner. conversions, a very important
special case of derived rules which form the basis for equational reasoning, were invented by Larry
Paulson [7].

5.2 Theorems

The HOL logic is a sequent calculus. A sequent is a value in Standard ML having an ML type
named either SEQ or GOAL defined as: (TERM list) * TERM. Each TERM in a sequent must have
HOL TYPE p :BOOLq. In such a sequent the list of TERMs on the left are known as assumptions
or asms while the single TERM on the right is the known as the conclusion or concl of the sequent.

A sequent may be assigned a value in the context of a HOL interpretation and an assignment to
the free variables occurring in the sequent. This value is defined using the rules for evaluation of
TERM s (see section 3.6), which in the case of boolean TERM s will always assign either the value
pTq or pFq. The value assigned to the sequent will be pTq if the value assigned to the conclusion of
the sequent is pTq, or if the value assigned to any one of the assumptions is pFq.

A sequent is satisfied by an interpretation if it evaluates to pTq in the context of that interpretation
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for every well typed assignment of values to the free variables in the sequent. A sequent is entailed
by a set of axioms and definitions if it is satisfied by every model which satisfies all of the axioms
and definitions.

The logic supported by ProofPower enables only those sequents to be proven in the context of any
collection of axioms and definitions which are entailed by those axioms and definitions. In the case
that the only axioms in context are the five primitive axioms of the HOL logic the sequent ‘([],pFq)’
is not provable, no matter what collection of definitions are in context. (ProofPower will reject any
attempt to enter a definition which would enable the sequent to be proven).

A theorem corresponds to a sequent which has been derived from axioms and definitions using the
rules of the logic. Theorems are tagged with an indicator of the context in which they were derived
(and because of this extra information are not identical with the corresponding sequent).

The sequent part of a theorem may be accessed using the following ML functions:
SML

dest thm : THM −> SEQ ;
asms : THM −> TERM list ;
concl : THM −> TERM ;

dest thm returns the complete sequent corresponding to a value of type THM, while asms and concl
return the left hand part of the the sequent (the assumptions) and the right hand part (the conclusion)
respectively.

No constructor is available which simply constructs a theorem from a sequent, since this may only
be done by proof. The closest function to achieving this is:

SML

new axiom : (string list ∗ TERM ) −> THM ;

which, though returning the required theorem, does so only after this has been recorded as an axiom
in the current theory. The strings supplied are keywords against which the theorem is stored in the
theory, and may be used subsequently to retrieve the theorem from the theory.

Theorems are displayed without ‘Quine corners’ (‘p’,‘ q’). Unlike TERM s they cannot be parsed,
they must be proven (or introduced as axioms).

5.3 The Primitive Logic

The primitive HOL logic can be described abstractly in very simple terms.

There are three primitive TYPE constructors:

• BOOL

A 0-ary TYPE constructor which denotes a set containing the two truth values (pTq and pFq).

• IND

A 0-ary TYPE constructor which denotes an infinite set of individuals.

• →
A 2-ary TYPE constructor known as the ‘function space constructor’ denoting the function
which, given two sets (the domain and the codomain), returns the set of all functions which
are total over the domain and have values in the codomain.
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The primitive constants are:

• =

the polymorphic curried infix equality function.

• ⇒
The curried infix BOOLean operator which denotes material implication.

• ε

Which denotes a polymorphic choice function

The primitive TYPE constructors and constants are introduced in theory min. A number of addi-
tional constants are defined in terms of these primitives in theory log, and then the five axioms of
the HOL logic are introduced in theory init.

There are seven primitive rules which complete the primitive logic.

5.4 The Logical Kernel

The Logical Kernel of ProofPower is that part of ProofPower which is critical to the checking of
proofs and the soundness of the implemented logical system.

The logical kernel implements the primitive logic and also a small number of non-primitive rules.

Features which are not in the primitive logic are included in the logical kernel for two main reasons.

Firstly, support for certain literals is in practice essential, but not directly addressed in the primitive
logical basis. The literals supported at present are numeric literals, character literals, and string
literals. Literals provide convenient concrete syntax for infinite families of constants. These constants
in all cases could be introduced logically by the use of definitions were it not that an infinite number
of definitions would be required. The literals are therefore treated as built in constants the definitions
of which are obtained from conversions provided in the logical kernel. The TYPE s p :Nq, p :CHARq
and p :CHAR LISTq of these literals are therefore in the pervasive theories.

Secondly, efficiency in computing and checking proofs is greatly improved if a small number of
inference rules which could be implemented as derived rules are in fact implemented directly in the
logical kernel.

In addition to these rules, the mechanisms for undertaking conservative extensions ought strictly also
be considered to be part of the logic, since flaws in their definition or implemetation might result in
the logical system being rendered inconsistent.

Closely associated with the logical kernel are the set of pervasive theories. These theories intro-
duce the primitive TYPE constructors and constants, and a number of definitions of other TYPE
constructors and constants. The theories contain all the definitions on which the soundness of the
rules implemented in the logical kernel depend. The pervasive theories are basic hol and its ancestors.
No new theory may be introduced which does not have basic hol as an ancestor.

5.5 Naming Conventions for Theorems and Rules

Certain naming conventions are useful in permitting theorems and rules to be located in the reference
documentation (with the assistance of the KWIC index).
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• axiom

Names ending with axiom are used for axioms or for functions (e.g. new axiom) which
introduce or access axioms.

• def spec

Name suffixes used for definitions or specifications.

• thm clauses

Name suffixes for theorems. Many theorems are conjuncts of several useful results, and in these
cases the suffix clauses is used in the theorem name.

• rule elim intro

Names ending in elim are usually inference rules which eliminate some HOL construct (e.g. a
conjunction). Names ending in intro are inference rules which introduce the relevant construct.
Other rules will normally end with rule.

• conv

Names ending in conv are conversions, i.e. rules having type TERM -> THM where the THM
is an equation (or bi-implication) with the TERM as its left hand operand.

5.6 A Selection of Useful Rules

5.6.1 Assume Rule

The ML function asm rule implements the primitive rule corresponding in a sequent calculus to
making an assumption in a natural deduction proof.

Given any BOOLean TERM , asm rule will return the theorem which has that TERM both as its
sole assumption and as its conclusion.

SML

val thm1 = asm rule p∀x y :N• x∗y > 0q;

ProofPower Output

val thm1 = ∀ x y• x ∗ y > 0
` ∀ x y• x ∗ y > 0 : THM

5.6.2 Modus Ponens

The primitive rule often known as modus ponens, whose name in ProofPower is ⇒ elim, enables
a theorem to be deduced once it has been proven that it is implied by some other proven fact.

SML

val thm a = asm rule pa:BOOLq;
val thm b = asm rule pa⇒bq;

ProofPower Output

val thm a = a ` a : THM
val thm b = a ⇒ b ` a ⇒ b : THM

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - HOL Tutorial Notes USR013



5.6. A Selection of Useful Rules 57

SML

val thm c = ⇒ elim thm b thm a;

ProofPower Output

val thm c = a ⇒ b, a ` b : THM

5.6.3 Specialisation

The specialisation of a universal result to a particular case in performed by the rule ∀ elim.

The value to be used for specialisation is supplied as a TERM in the first parameter, and must be
consistent with the TYPE of the quantified variable.

SML

val thm2 = ∀ elim p455q thm1 ;

ProofPower Output

val thm2 = ∀ x y• x ∗ y > 0 ` ∀ y• 455 ∗ y > 0 : THM

5.6.4 Multiple Specialisation

Several nested universal quantifications can be specialised at once using list ∀ elim. In this case
the values to be used for specialisation are supplied as a list of TERM s.

SML

val thm3 = list ∀ elim [p455q,p0q] thm1 ;

ProofPower Output

val thm3 = ∀ x y• x ∗ y > 0 ` 455 ∗ 0 > 0 : THM

5.6.5 Removing Outermost Universals

A special case of the above is the case where it is required to specialise all universals to the free
variable having the same name as the variable used for quantification. all ∀ elim will accomplish
this specialisation wihout need of any parameters.

SML

val thm4 = all ∀ elim thm1 ;

ProofPower Output

val thm4 = ∀ x y• x ∗ y > 0 ` x ∗ y > 0 : THM
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5.6.6 Splitting Conjunctions

From a theorem whose conclusion is a conjunction, a list of theorems can be derived. The conclusions
of these theorems are the individual conjuncts of the original theorem, and the assumptions are the
same as those in the original theorem.

In the context of the binding:
SML

plus order thm;

ProofPower output

val it = ` ∀ i m n
• m + i = i + m ∧ (i + m) + n = i + m + n ∧ m + i + n = i + m + n : THM

plus order thm can be broken apart by using strip ∧ rule as follows:
SML

val thm5 = all ∀ elim plus order thm;

ProofPower output

val thm5 = ` m + i = i + m
∧ (i + m) + n = i + m + n
∧ m + i + n = i + m + n : THM

SML

val thms1 = strip ∧ rule thm5 ;

ProofPower output

val thms1 = [` m + i = i + m,
` (i + m) + n = i + m + n,
` m + i + n = i + m + n] : THM list

5.6.7 Adding Universals

A theorem may be closed by universally quantifying over all variables which have free occurrences
in the conclusion of the theorem but not in any of its assumptions. all ∀ intro accomplishes this
task.

The ML function nth selects the nth element from a list.
SML

nth 2 thms1 ;

ProofPower output

val it = ` m + i + n = i + m + n : THM

SML

val thm6 = all ∀ intro (nth 2 thms1 );
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ProofPower output

val thm6 = ` ∀ m i n• m + i + n = i + m + n : THM

If the quantifiers are required in some specific order list ∀ intro should be used and supplied with
the list of variables over which universal quantification is desired.

SML

val thm7 = list ∀ intro [piq,pmq,pnq] (nth 2 thms1 );

ProofPower output

val thm7 = ` ∀ i m n• m + i + n = i + m + n : THM

You should now be able to attempt the exercises in section 13.4.

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - HOL Tutorial Notes USR013



60 Chapter 5. FORWARD PROOF

c© Lemma 1 Ltd. 2006 PPTex-2.9.1w2.rda.110727 - HOL Tutorial Notes USR013



Chapter 6 61

GOAL ORIENTED PROOF

6.1 Introduction

Direct forward proof of non-trivial results is usually a complex and difficult process.

In practice, finding such a proof will usually begin with a conjecture thought to be true of which
a proof is sought, and will proceed by working backwards from this conjecture to more elementary
results from which it can be derived until the conjecture is seen to be derivable from axioms or
previously proven theorems.

A ‘subgoal package’ is available in ProofPower to assist in this process, and this is normally used in
constructing all but the very simplest proofs.

The subgoal package is based on the notion of a TACTIC . A TACTIC , given a GOAL which the user
wishes to prove, will determine one or more subgoals from which the GOAL is derivable and return
the list of subgoals and a function, known as a PROOF which is able to prove the original GOAL
from theorems corresponding to the subgoals which the TACTIC has chosen. Normally a tactic
would be expected to deliver a set of subgoals which are easier to prove than the original GOAL,
and in this way the proof is progressed until subgoals are reduced to the level at which TACTIC s
can be found which are able to prove the subgoals from the empty set of subgoals.

The subgoal package helps the user to manage the development of a proof using TACTIC s by keeping
track of the outstanding subgoals and composing together the fragments of proof delivered by the
various TACTIC s applied during the development of the proof.

• a GOAL,

is just a sequent, viz:

– a list of assumptions (boolean TERM s)

– a conclusion (also a boolean TERM )

GOAL = TERM list * TERM = SEQ

• a PROOF,

is a function which computes a theorem from a list of theorems.

PROOF = THM list -> THM

• a TACTIC ,

is a function which:

– takes a GOAL

– returns

∗ a list of subgoals
∗ a PROOF which will compute a theorem corresponding to (“achieving”) the input

goal from theorems corresponding to the subgoals.
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TACTIC = GOAL -> (GOAL list * PROOF)

6.2 Using the Subgoal Package

6.2.1 Getting Started

A proof using the subgoal package is initiated by supplying to the subgoal package the GOAL to be
proven.

The following three functions are available for this purpose:
SML

set goal : GOAL −> unit ;
push goal : GOAL −> unit ;
push consistency goal : TERM −> unit ;

set goal is the function most frequently used. If the subgoal package was already in use this will
replace the current GOAL by the newly supplied goal and the proof in progress will be aborted.

In the case that a proof is in progress and the user wishes to return to that proof after completing the
proof he is about to start, then he should use push goal. In this case the old proof will be resurrected
when the new proof has been completed.

push consistency goal is used when the consistency of a HOL constant specification has not been
proven automatically when the constant was introduced and the user wishes to complete the proof
himself. In this case a HOL TERM is supplied as parameter to the procedure. This TERM must
consist of the constant the consistency of whose specification is to be proven, and the goal will then
be set appropriately.

6.2.2 Doing the Proof

Only a small number of subgoal package procedures are needed to conduct the proof.
SML

apply tactic : TACTIC −> unit ;
a : TACTIC −> unit ;
undo : int −> unit ;
set labelled goal : string −> unit ;
lemma tac : TERM −> TACTIC ;

apply tactic, which may be abbreviated simply as a, may be used to progress the proof by applying a
tactic to the current goal. The user selects the tactic to be applied and supplies this as a parameter
to apply tactic. The tactic will then be applied to the current subgoal, and if it is successful the
resulting subgoals will be displayed. If the application of the tactic is successful but no new subgoals
result, then the tactic has completed the proof of the original subgoal. Another outstanding subgoal
will be selected and displayed. If all subgoals have been proven the user will be informed that his
proof is complete.

If, on seeing the effect of his selected tactic, the user decides that he would rather do something
else, then he may use undo to reverse the effects of the tactic application. The user may step back
through several steps, the number of steps remembered by the subgoal package for this purpose being
determined by a system control parameter.
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At each step in the development of the proof, after applying a tactic to the current subgoal, the sub-
goal package will select a subgoal as the current subgoal. If the user wishes to prove the outstanding
subgoals in an order differing from that selected by the subgoal package then he may select a subgoal
for processing by using set labelled goal. This function requires a string parameter which is the label
assigned by the subgoal package to the goal when it was first introduced. This is displayed as a
string suitable for input by cut and paste to set labelled goal when the goal is displayed.

In many cases the best thing to prove next is in fact not one of the outstanding subgoals but some
other result from which the current subgoal could be proven. For this purpose no special functionality
in the subgoal package is required, use of a TACTIC called lemma tac will do the job. lemma tac
should be used to commence proof of a result which can be proven from the list of assumptions on
the current subgoal, and which will facilitate the proof of the conclusion of the current subgoal. The
tactic is used by supplying the new conclusion as a TERM parameter to lemma tac. lemma tac will
then (usually) create two new subgoals. The first is the subgoal with the same assumptions as the
current subgoal, but the new conclusion as supplied to lemma tac. The second subgoal is the original
subgoal with the new result stripped into the assumptions. The stripping process may cause further
case splits, in which case more than two subgoals may arise, or it may even cause the second subgoal
to be discharged, in which case only the one subgoal will result from the application of lemma tac.

lemma tac would not normally be used where the result to be proven is of general interest beyond
the current proof. In such a case the general result would be set up as a new main goal by using
push goal. After completion of this subsidiary proof the result would be stored in a suitable theory
or bound to an ML name. The original proof can then be resumed making use of the result thus
obtained.

6.2.3 Finishing Off

When the subgoal package declares that the proof is complete the user has the following options:
SML

top thm : unit −> THM ;
pop thm : unit −> THM ;
save pop thm : string −> THM ;

top thm may be used to retrieve the theorem just proven, returning this as a value but making no
other changes.

pop thm returns the theorem just proven, without retaining the theorem in the subgoal package. If
the proof was started with a push the previous proof will now be resumed by displaying the current
subgoal in that proof.

Often the user will wish to save the theorem in his current theory, in which case save pop thm may
be used. A single string is supplied as a keyword for retrieving the theorem from the theory, and the
value of the theorem is returned as well as being stored (it is usually convenient to bind the theorem
to an ML name at the same time).

also note:
SML

drop main goal : unit −> GOAL;
save thm : string ∗ THM −> THM ;
list save thm : string list ∗ THM −> THM ;
save consistency thm : TERM −> THM −> THM ;
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drop main goal may be used to abandon a proof attempt (possibly because it has become clear that
the original GOAL is unprovable). If there are other proofs stacked, the most recent will be resumed.
repeat drop main goal may be used to discard all the goals on the main goal stack.

save thm and list save thm may be used to save theorems which have been proven without using the
subgoal package. list save thm allows the theorem to be saved under more than one key (and may
be used for this, with pop thm to save the result of a subgoal package proof under multiple keys).

save consistency thm should be used to save the result of a subgoal proof where the proof was initi-
ated using push consistency goal. It does however require the theorem to be saved to be submitted
as a parameter, and is therefore normally used with pop thm. The TERM parameter must be one
of the constants whose specification has been proven consistent.
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PREDICATE CALCULUS

This chapter considers the three most important facilities in ProofPower for reasoning essentially
within the first order predicate calculus with equality, and a number of miscellaneous tactics con-
cerned with the predicate calculus.

The core functionality of each of these facilities is within the predicate calculus, but they all include
context sensitive pre- and post-processing which may be set up to incorporate knowledge of broader
areas.

The facilities are:

• stripping

The facilities in this group are frequently used, being invoked continually during most proofs,
and are almost entirely determined by context. Stripping is the principal technique for dealing
with propositional connectives and for this reason is the source of most of the case splitting
which occurs in ProofPower proofs.

• forward chaining

Forward chaining is in most applications the most convenient way of instantiating generalised
implications which are among the assumptions of the current goal, or among the theorems
previous proven.

• rewriting

The rewriting facilities provide support for using equations to transform theorems or GOALs.

7.1 Stripping

The stripping facilities, most frequently invoked using strip tac, provide systematic ways of sim-
plifying both the conclusion of a goal and assumptions introduced during a proof.

Stripping the conclusion is the primary purpose of strip tac, one invocation of which will perform
one step of transformation on the conclusion.

New assumptions are commonly created by the stripping of a conclusion which is an implication, but
forward inference from the assumptions also results in the creation of new assumptions. The default
action on creating a new assumption is to completely strip the assumption before adding it to the
current assumptions.

Most of the effects created when stripping either conclusions or assumptions are achieved by the
application of equational transformations to the existing conclusion or the new assumption. All such
changes are configurable, and the set of such transformations in force at any time is determined by the
current proof context . The small set of actions of the stripping facilities which are not configurable,
are just those effects necessary to make stripping capable of solving propositional tautologies and to
do the few completely uncontroversial quantifier rules (essentially ‘skolemisation’ of quantifiers).
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To understand the behaviour of the stripping facilities (which is not necessary to use them success-
fully), you need to understand what the built in actions are, and what conversions are applied in
any particular context. In this section we are concerned only with those configurable actions which
are concerned with reasoning in the predicate calculus. Almost all proof contexts will include these
actions as well as further actions relating to the non-predicate calculus reasoning which is to be
exploited.

In the following sections we therefore describe the built in actions on stripping conclusions and
assumptions, and then the conversions normally in place which relate to the predicate calculus.

• “stripping” facilities incorporate automatic propositional reasoning and enable domain specific
knowledge to be invoked automatically during proof.

• strip tac processes the conclusion of the current goal

• When new assumptions are created, by strip tac or otherwise, they are normally stripped
before being entered into the assumption list.

• Stripping of assumptions is different from stripping of conclusions.

7.1.1 Stripping Conclusions

There are three logical constructs whose behaviour is built in, because the required behaviour is
more complex than simply transforming the conclusion itself.

• conjunctions

are built in because the stripping of a conjunction is required to produce a split into two
subgoals.

• implications

are built in because stripping an implication causes the left hand side of the implication to be
made into a new assumption.

• universals

are built in because, though the processing of a universal results in its elimination by skolemisa-
tion, this effect is not obtainable by an equational transformation (because the new conclusion
is not logically equivalent to the old).

• discharge

finally, a number of checks are built in which may result in the discharge of the subgoal

The effect of stripping the conclusion of the current goal is therefore as follows:

1. apply conclusion stripping conversions from proof context

2. if no conversion applies then attempt one of the following:

(a) :

.. ?` ∀x• P x ===> .. ?` P x ′
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(b) :

.. ?` P1 ∧ P2 ===>
.. ?` P1 and .. ?` P2 (two subgoals)

(c) :

.. ?` P1 ⇒ P2 ===>
strip asm tac(P1 ), .. ?` P2

3. then check if:

(a) conclusion of the goal is pTq
(b) conclusion is in the assumptions

if so, prove the result

The following transformations on conclusions concerning the predicate calculus, though not built in
to the action of the stripping facilities, are present in almost all proof contexts:

• equivalence statements are transformed to conjunctions

• disjunctions are transformed into implications

• negations are pushed in over any logical construct using de-Morgans laws and double negations
are cancelled

7.1.2 Stripping Assumptions

Like the stripping of conclusions, the stripping of assumptions has a number of actions built in, as
well as applying transformations from the current proof context. Unlike the stripping of conclusions,
the norm is to completely strip an assumption prior to adding it into the assumptions, rather than
to transform assumptions one step at a time.

In summary the built in effects of assumption stripping are:

• conjunctions

are broken in to two parts each of which is treated as a separate assumption

• disjunctions

give rise to case splits, each resulting subgoal having just one side of the disjunction stripped
into its assumptions

• existentials

are eliminated by skolemisation

• checks

a set of checks (not the same as the ones used when stripping conclusions) is made which may
result in discharge of the subgoal

More precisely the algorithm is as follows:
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1. Repeat the following transformations until no further changes occur:

(a) : apply assumption stripping conversions from proof context

(b) :

∃x• P x `? .. ===> P x ′ `? ..

(c) :

P1 ∨ P2 `? .. ===>
P1 `? .. and P2 `? .. (two subgoals)

(d) :

P1 ∧ P2 `? .. ===>
P1 , P2 `? .. (two assumptions)

2. then for each resulting assumption, check if:

(a) assumption = pFq
(b) assumption = concl

(c) contradicts an existing assumption

if so, prove the result.

3. also check if:

(a) assumption = pTq
(b) is same as an existing assumption

if so, discard the assumption.

Configured transformations for assumptions concerning the predicate caculus are:

• equivalence statements are transformed to conjunctions

• implications are transformed to disjunctions

• negations are pushed in over any logical construct using demorgans laws and double negations
are cancelled

You should now be able to attempt the exercises in section 13.7.

7.2 Rewriting

A large amount of the power of ProofPower comes from its general purpose rewriting facilities.
These are primarily used to transform the conclusion of the current goal using universal equations
which are automatically instantiated to values which enable the conclusion to be rewritten (where
possible). The facility is more general and powerful than can be achieved simply by application
of a finite set of generalised equations. Arbitary algorithms which yield equational results can be
invoked during the rewriting process, permitting simplifications which would not otherwise have been
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possible. For example, in most contexts rewriting peforms beta-reduction automatically whenever an
application of a lambda-abstraction is found, even though beta-reduction is a rule which cannot be
expressed as a theorem even in higher order logic (other than by stepping up into the metalanguage).

Because the reasoning involved in rewriting is equational it is applicable in several different ways,
hence the rewriting facilities are available not only as TACTIC s but also as conversions and rules.
In addition, the facilities provide for two distinct strategies for traversing the TERM under transfor-
mation, (the occurrence of once in the name of the function indicating a strategy intended to prevent
looping). Finally, the clauses which are used in the rewriting process will normally include a set of
defaults determined by the current proof context to be applied, in addition to the clauses derived
from theorems supplied as parameters to the function.

[pure ][once ][asm ]rewrite





conv
rule
tac
thm tac

: THM list− >





conv(= TERM− > THM )
THM− > THM
TACTIC

: THM− > TACTIC

rewrites the term, theorem or goal using:

• conversions in proof context (unless pure)

• assumptions (if asm but not conv) (after context sensitive pre-processing)

• theorems in THM list (or THM ) parameter (after context sensitive pre-processing)

Rewriting continues until no more rewrites are possible (unless once).

You should now be able to attempt the exercises in sections 13.5 and 13.6.

7.3 Forward Chaining

Facilities for forward chaining consist of a group of tactics for reasoning forward from the assump-
tions. These are based on a rule, fc rule, which uses a list of implications to generate a list of new
theorems from a list of “seed” theorems. The arguments to fc rule are two lists:

• Implications

a list of theorems which are implications (possibly universally quantified), e.g.:

[Γ 1 ` ∀x1 x2 ...•A1 ⇒ B1 , ...]

• Seeds

a list of theorems to be matched against the antecedents of the implications, e.g:

[Γ 1 ` c1 , ...]
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For each implication, ` ∀x1 x2 ...•A ⇒ B and for each seed ` c, fc rule determines whether A can
be specialised to give c and if so it includes the corresponding specialisation of B in its result.

For example:

SML

(fc rule : THM list −> THM list −> THM list)

[asm rule p∀x•x > 10 ⇒ P xq,
asm rule p∀y•y < 10 ⇒ Q yq]

[prove rule [] p101 > 10q,
prove rule [] p4 < 10q];

ProofPower Output

val it = [∀ y• y < 10 ⇒ Q y ` Q 4 ,
∀ x• x > 10 ⇒ P x ` P 101 ] : THM list

In practice, rather than fc rule one of the forward chaining tactics is more likely to be used.

The forward chaining TACTIC s are:

[all ][asm ]fc tac

[all ][asm ]forward chain tac

All these functions have type:
THMlist− > TACTIC

The asm variants take the implications from their the argument together with the assumptions.
Other variants just use list given as argument as implications. In all cases the seeds are the assump-
tions.

The variants without all take one pass over the seeds for each implication. Variants with all add
any new implications to the list of implications and loop until no new results can be generated.

New theorems deduced by these tactics are stripped into the assumptions. The all variants only
strip in theorems which are not themselves implications.

For example:

SML

set goal([], p∀a b c d•a ≤ b ∧ b ≤ c ∧ c ≤ d ⇒ a ≤ dq);
a(REPEAT strip tac);

ProofPower Output

(∗ 3 ∗) pa ≤ bq
(∗ 2 ∗) pb ≤ cq
(∗ 1 ∗) pc ≤ dq

(∗ ?` ∗) pa ≤ dq
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SML

a(fc tac[≤ trans thm]);

ProofPower Output

(∗ 6 ∗) pa ≤ bq
(∗ 5 ∗) pb ≤ cq
(∗ 4 ∗) pc ≤ dq
(∗ 3 ∗) p∀ n• b ≤ n ⇒ a ≤ nq
(∗ 2 ∗) p∀ n• c ≤ n ⇒ b ≤ nq
(∗ 1 ∗) p∀ n• d ≤ n ⇒ c ≤ nq

(∗ ?` ∗) pa ≤ dq

SML

a(all asm fc tac[] THEN all asm fc tac[]);

ProofPower Output

Tactic produced 0 subgoals:
Current and main goal achieved

Many useful properties are naturally formulated as universally quantified implications:

≤ trans thm ` ∀ m i n• m ≤ i ∧ i ≤ n ⇒ m ≤ n
less trans thm ` ∀ m i n• m < i ∧ i < n ⇒ m < n
mod less thm ` ∀ m n• 0 < n ⇒ m Mod n < n

Forward chaining saves having to specialise such facts explicitly.

A function, fc canon, is used by the forward chaining TACTIC s to generate implications from the
arguments to the forward chaining.

For example the theorems:

` (A ∧ B) ∨ C
` ∀ m i n• m ≤ i ∧ i ≤ n ⇒ m ≤ n

are treated as:

` ¬ B ⇒ ¬ C ⇒ F
` ¬ A ⇒ ¬ C ⇒ F
` ∀ n i m• m ≤ i ⇒ i ≤ n ⇒ ¬ m ≤ n ⇒ F

The ‘⇒F ’ part produced by fc canon is simplified away when the new theorem is stripped into the
assumptions.

The new theorems stripped into the assumptions are made as general as possible by universally
quantifying them over any free variables which do not appear in the goal.
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7.4 More Predicate Calculus Tactics

7.4.1 strip asm tac

• strip asm tac strips a theorem into the assumptions in the same way that strip tac adds new
assumptions

Tactic

{ Γ } t
{strip c, Γ } t

strip asm tac
(` c)

• a case split results if the conclusion of the theorem is a disjunction

• names ending in cases thm indicate theorems designed for use with strip asm tac for case
splits:

N cases thm ` ∀ m• m = 0 ∨ (∃ i• m = i + 1 )
less cases thm ` ∀ m n• m < n ∨ m = n ∨ n < m

• use [list ]∀ elim to specialise the cases thm

strip asm tac: example

SML

set goal([], p(if x = 0 then 1 else x ) > 0q);

SML

∀ elim pxq N cases thm;

ProofPower Output

val it = ` x = 0 ∨ (∃ i• x = i + 1 ) : THM

SML

a(strip asm tac(∀ elim pxq N cases thm));

ProofPower Output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) px = i + 1q

(∗ ?` ∗) p(if x = 0 then 1 else x ) > 0q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 1 ∗) px = 0q

(∗ ?` ∗) p(if x = 0 then 1 else x ) > 0q
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7.4.2 cases tac

• cases tac pcq lets you reason by cases according to whether a chosen condition pcq is true or
false:

Tactic

{ Γ } t
{strip c, Γ } t ;
{strip ¬c, Γ } t

cases tac pc:BOOLq

cases tac pc:BOOLq

• is effectively the same as:

strip asm tac(∀ elim pc:BOOLq (prove rule [] p∀b•b ∨ ¬bq));

but it’s less to type and quicker.

cases tac: example
SML

set goal([], p(if x < y + 1 then x else y) < y + 1q);

SML

a(cases tac px < y + 1q);

ProofPower Output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p¬ x < y + 1q

(∗ ?` ∗) p(if x < y + 1 then x else y) < y + 1q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 1 ∗) px < y + 1q

(∗ ?` ∗) p(if x < y + 1 then x else y) < y + 1q

7.4.3 swap asm concl tac

• swap asm concl tac lets you interchange (the negations) of an assumption and a conclusion

Tactic

{ Γ , t1 } t2
{strip ¬t2 , Γ } ¬t1

swap asm concl tac
pt1q

• Often used to rewrite one assumption with another

• Also useful when the conclusion is a negated equation
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swap asm concl tac: example

SML

set goal([], p(∀x y•x ≤ y ⇒ P(x ,y)) ∧ x = y ⇒ P(x ,y)q);
a(strip tac);

ProofPower Output

(∗ 2 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 1 ∗) px = yq

(∗ ?` ∗) pP (x , y)q

ProofPower Output

SML

a(list spec nth asm tac 2 [pxq, pyq]);

ProofPower Output

(∗ 3 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 2 ∗) px = yq
(∗ 1 ∗) p¬ x ≤ yq

(∗ ?` ∗) pP (x , y)q

SML

a(swap asm concl tac p¬ x ≤ yq);

ProofPower Output

(∗ 3 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 2 ∗) px = yq
(∗ 1 ∗) p¬ P (x , y)q

(∗ ?` ∗) px ≤ yq

7.4.4 lemma tac

• lemma tac lets you state and prove an ‘in-line’ lemma

Tactic

{ Γ } conc
{ Γ } lemma;

{strip lemma, Γ } conc

lemma tac
plemmaq

• Gives a more natural feel to many proofs

• If just one tactic will prove the lemma then THEN1 is a convenient way of applying it

• tac1 THEN1 tac2 first applies tac1 and then applies tac2 to the first resulting subgoal
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lemma tac: example

SML

set goal([], p(∀x y•x ≤ y ⇒ P(x ,y)) ∧ x = y ⇒ P(x ,y)q);
a(strip tac);

ProofPower Output

(∗ 2 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 1 ∗) px = yq

(∗ ?` ∗) pP (x , y)q

SML

a(lemma tacpx ≤ yq);

ProofPower Output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
(∗ 3 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 2 ∗) px = yq
(∗ 1 ∗) px ≤ yq

(∗ ?` ∗) pP (x , y)q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
(∗ 2 ∗) p∀ x y• x ≤ y ⇒ P (x , y)q
(∗ 1 ∗) px = yq

(∗ ?` ∗) px ≤ yq

You should now be able to attempt the exercises in section 13.10.
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INDUCTION

Induction principles can be expressed and proven as theorems in Higher Order Logic, e.g.:

• induction thm is the usual principle of induction over the natural numbers

` ∀ p• p 0 ∧
(∀ m• p m ⇒ p (m + 1 ))

⇒ (∀ n• p n) : THM

• cov induction thm expresses course of values induction over the natural numbers

` ∀ p• (∀ n• (∀ m• m < n ⇒ p m) ⇒ p n)
⇒ (∀ n• p n) : THM

• list induction thm is the principle of structural induction over lists

` ∀ p• p [] ∧
(∀ list• p list ⇒ (∀ x• p (Cons x list)))

⇒ (∀ list• p list) : THM

Using ∀ elim and all β rule these can be specialised for use in forward proofs, however, in practice
induction principles are normally used via induction tactics.

8.1 Induction Tactics

Special tactics are available to facilitate the use of induction principles:

In the following descriptions of tactics the notation expressing the effect of the tactic shows the goal
at the point of applying the tactic above a double horizontal line. To the right of the line is the tactic
employed together with any parameters, and below the line the resulting subgoals are described.

Goals are expressed as lists of assumptions enclosed in set brackets (suggesting that for many purposes
the assumptions behave like a set) followed by the conclusion. Often these will involve meta-variables,
though in these informal presentations there is no systematic way of distinguishing meta-variables
from object language variables.

The notation ‘strip{a, A}’ means ‘the set of assumptions arising from stripping the new assumption
‘a’ into the list of assumptions ‘A’. Since this process may result in any number of subgoals the
number of subgoals visible below the double line indicates only the number which would arise if no
case splits or goal accomplishments occur during stripping.

If more than one goal is shown below the line they are separated by semicolons.
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• induction over natural numbers using induction tac

{ Γ } t
{ Γ } t [0/x ]; strip{t , Γ} t [x+1/x ]

induction tac pxq

This tactic supports proof by induction over the natural numbers. It takes as a parameter a
term which should be a variable of type p :Nq which occurs free in the conclusion of the current
goal (but not free in the assumptions). Two subgoals would typically arise, corresponding to the
base case and the induction step. The base case is arrived at by substituting p0q for the variable
supplied as parameter, in the conclusion of the original goal, without changing the assumptions.
The step case is obtained by stripping the original conclusion into the assumptions replacing
the conclusion by the term resulting from substituting the induction variable +1 (px + 1q)
into the original conclusion.

• induction over natural numbers using cov induction tac

{Γ} t
strip{p∀m• m < x ⇒ t [m/x ]q, Γ} t

cov induction tac pxq

Course of values induction has a strong feel of getting something for nothing. Applied under
similar circumstances as the standard natural number induction tactic, the resulting subgoal has
the same conclusion as the original goal, but one extra premise is stripped into the assumptions.
The extra premise is that for all values less than the value of the induction variable the original
conclusion is true.

• for induction over lists list induction tac may be used

{Γ} t
{Γ} t [[]/x ]; strip{t , Γ} t [Cons h x/x ]

list induction tac pxq

In the case of induction over lists the base case subgoal is obtained by substituting the empty
list for the induction variable, while the step case involves substitution for the induction variable
of the non-empty list formed by adding a value denoted by a new variable onto the front of the
list denoted by the induction variable.

• for other kinds of induction gen induction tac may be useful

SML

gen induction tac : THM −> TERM −> TACTIC ;

This function is takes as its first parameter a theorem expressing an induction principle (e.g.
induction thm, list induction thm), and returns an induction tactic using that principle. This
is a quick way of getting a TACTIC from a new induction principle which the user may have
proved. For full details see theProofPower Reference Manual [20].

8.2 Induction Example

The theory of lists contains few theorems, but most of the results needed are simple to prove by
induction.

The following example is a proof of the associativity of append, further examples are found in the
exercises.
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First we set the goal, a universally quantified statement of the associativity of the append operator
p$@q, then immediately we strip the goal, discarding the universal quantifiers.

SML

set goal([],p∀l1 l2 l3 :′a LIST•
(l1 @ l2 ) @ l3 = l1 @ (l2 @ l3 )q);

(∗ remove universal quantifiers ∗)
a (REPEAT strip tac);

ProofPower output

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) p(l1 @ l2 ) @ l3 = l1 @ l2 @ l3q

We now proceed by induction on pl1q
SML

a (list induction tac pl1q);

ProofPower output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p(l1 @ l2 ) @ l3 = l1 @ l2 @ l3q

(∗ ?` ∗) p∀ x• (Cons x l1 @ l2 ) @ l3
= Cons x l1 @ l2 @ l3q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) p([] @ l2 ) @ l3 = [] @ l2 @ l3q

The base case is solved simply by rewriting with the definition of append:
SML

a (rewrite tac [append def ]);

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p(l1 @ l2 ) @ l3 = l1 @ l2 @ l3q

(∗ ?` ∗) p∀ x• (Cons x l1 @ l2 ) @ l3
= Cons x l1 @ l2 @ l3q

In the step case the induction assumption has to be used, and we therefore rewrite with the assump-
tions as well as the definition of append.
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SML

a (asm rewrite tac [append def ]);
val append assoc thm = pop thm();

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved
val append assoc thm =
` ∀ l1 l2 l3• (l1 @ l2 ) @ l3 = l1 @ l2 @ l3 : THM

Finally the value of the theorem has been bound to the ML name append assoc thm.

You should now be able to attempt the exercises in section 13.8.
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TACTICALs AND OTHER ’ALS

A TACTICAL is a function which computes a TACTIC usually taking one or more TACTIC s as
arguments. The suffix ‘AL’ follows mathematical usage in calling a function which operates over
functions a functional.

There are many other kinds of higher order functions in ProofPower which greatly enhance produc-
tivity in developing new proof facilities.

At a very elementary level programming TACTIC s using TACTICALs occurs througout proof work.
At each step in a proof using the subgoal package an ML expression is presented for application to
the current goal. TACTICALs are very often used in a very simple way to compute the TACTIC to
be applied.

More complex and sophisticated tactical programming may be used to make small or large extensions
to the automatic proof capabilities of the system.

• TACTICALs may be used to combine the available tactics.

• Expressions using TACTICALs may be used directly in proofs, e.g.:

a (REPEAT strip tac);

• named tactics may be defined using TACTICALs:

SML

val repeat strip tac = REPEAT strip tac;

• TACTICALs may be used to define parameterised tactics:

SML

fun list induct tac t = REPEAT strip tac
THEN list induction tac t ;

TACTICALs usually have capitalised names ending in T, though the most common (e.g. REPEAT,
THEN) have aliases omitting the T. This facilitates identification of the full range of TACTICALs
supplied with ProofPower since their names are all collected together under T in the KWIC index
to the reference manual.

As well as TACTICALs many other higher order functions are available for programming extensions
to the systems proof capability:

Among these are conversionals (ending with C) which are used to compute conversions,
THM TACTICALs (ending with THEN) which compute THM TACTIC s from THM TAC-
TIC s, and THM TACTICAL combinators (ending with TTCL) which compute THM TAC-
TICALs from THM TACTICALs .
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9.1 Commonly used TACTICALs

• REPEAT - takes a tactic and returns a tactic which repeats that tactic until it fails.

If goal splits occur the REPEATing continues on all subgoals.

• THEN - an infix tactical which composes two tactics together. The second tactic is applied
to all subgoals arising from the first tactic. If any applications of the operand tactics fail then
the resulting tactic fails.

• ORELSE - an infix tactical which attempts to apply its first argument, and if this fails applies
its second argument. If both arguments fail then the resulting tactic fails.

• TRY - a tactical taking one argument which will attempt to do the TACTIC which is its
argument and will do nothing (but succeed!) if its argument tactic fails.

• THEN TRY - variant on THEN which does not fail even if the second tactic fails.

t1 THEN TRY t2 = t1 THEN (TRY t2)

9.2 Processing of “New” Assumptions

Tactics which add new assumptions normally do so using strip asm tac.

E.g., strip tac, cases tac, lemma tac work like this.

However, there are many alternative things which you might want to do with the result instead of
than stripping it into the assumptions. Sometimes, the stripping causes more case splitting than is
desirable, you may wish to add the assumption without stripping it. Alternatively you may wish to
perform other transformations before adding the result into the assumptions.

To give this kind of flexibility most TACTIC s which normally strip in new assumptions have corre-
sponding TACTICALs which will operate on a THM TACTIC (which takes a theorem and yields
a TACTIC ) to give a new TACTIC . The new tactic performs the same function as the first tac-
tic, except that instead of stripping in new assumptions it passes them to the THM TACTIC for
processing.

If xxx tac is a TACTIC which creates new assumptions, then often XXX T is a corresponding
TACTICAL which allows the user to select how the results (which xxx tac would have added to the
assumptions) are processed.

For example, cases tac c is the same as CASES T c strip asm tac, where:
SML

cases tac : TERM −> TACTIC ;
CASES T : TERM −> (THM −> TACTIC ) −> TACTIC ;
strip asm tac : (THM −> TACTIC );

If the new assumptions arising from an application of cases tac were needed to do a single rewrite
of the conclusions then this could be done without adding them to the assumptions using: CASES
T rewrite thm tac. You need to be sure you will not need the assumptions again before using this
technique. It’s safe in examples like the following:

SML

set goal([], p(if x < y + 1 then x else y) < y + 1q);
a(CASES T px < y + 1q rewrite thm tac);
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ProofPower Output

Tactic produced 0 subgoals:
Current and main goal achieved

where the tactic finishes (a branch of) the proof.

Another occasionally useful THM − > TACTIC is ante tac, which places its THM argument into
the left of an implication in the new conclusion, of which the previous conclusion is the right hand
side. This is like the inverse of stripping an implication and can be used to place an assumption in
the conclusion for rewriting or automatic proof.

You should now be able to attempt the exercises in section 13.9.
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PROOF CONTEXTS

10.1 Introduction

The behaviour of the proof facilities provided in ProofPower has been made ‘context sensitive’ in
order that:

• When the user shifts from using one specification language to another the behaviour of the proof
facilities changes in ways appropriate to the language in which reasoning is being conducted.

• Knowledge about various theories or problem domains can be applied automatically, in ap-
propriate contexts, reducing the burden on the user to identify appropriate results from the
relevant theories.

This is achieved by making many of the proof facilities (TACTIC s etc.) sensitive the values held in
the current proof context, and by supplying a collection of proof contexts in which the user can
chose to conduct his proofs, as well as facilities for building new proof contexts.

A proof context is therefore a named collection of settings of (implicit) parameters for many of the
tactics, conversions, rules etc.

Proof contexts are used to customise many parts of the system including:

• stripping (strip tac, strip asm tac etc.)

• rewriting (rewrite tac etc.)

• forward chaining (fc tac, asm fc tac, all fc tac)

Each proof context also contains some ‘automatic’ provers, which will attempt to solve problems in
the domain for which they have been constructed.

• for general purpose automatic proof: prove tac attempts to prove the conclusion of the current
goal without using the assumptions, asm prove tac attempts such a proof making use of the
assumptions of the current goal.

• for automatic existence proof prove ∃ tac is provided. This is used whenever a constant is
specified using const spec or a HOLCONST paragraph to attempt to prove the consistency
of the specification, and is useful for use interactively in proving existentially quantified goals.
Where a constant specification has not been proven automatically, manual application of prove
∃ tac often greatly simplifies the manual proof.

Each proof context is associated with some particular theory which must be in scope when the proof
context is in use.
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Some proof contexts recommended for everyday use, together with the name of the relevant theory,
are:

predicate calculus predicates
sets sets ext1
above + lists etc. hol2 , hol

The function get pcs may be used to list the names of all the proof contexts currently available
together with the name of theory each proof context is associated with.

Proof contexts with names beginning with ′ are component proof contexts. These are intended for
use in conjunction with others. Names without ′ are complete proof contexts suitable for use on their
own. The simplest way to create a new proof context is to create a component context containing
only the new material and then merge that with other existing proof contexts to give the complete
range of coverage required.

10.2 Using Proof Contexts

The simplest way to use a proof context is to set the proof context using set pc or push pc:
SML

set pc : string −> unit ;
push pc : string −> unit ;

Each of these takes a single string parameter which is the name of the proof context which is to
become the current proof context . Thenceforth all TACTIC s which make use of the proof context
will refer to the identified proof context , until the proof context is changed again. The proof context
identified must be associated with a theory which is currently in scope.

The push variant operates on a stack of proof contexts, the current context being the one at the
top of the stack, and is therefore useful if a temporary change of context is required, permitting the
previous context to be restored using pop pc.

SML

pop pc : unit −> unit ;

It is also possible to make local switches of proof context , perhaps for just one tactic, conversion or
rule.

Among the facilities supporting this kind of context switching are:
SML

PC T : string −> TACTIC −> TACTIC ;
PC T1 : string −> (′a −> TACTIC ) −> ′a −> TACTIC ;

PC C : string −> CONV −> CONV ;
PC C1 : string −> (′a −> CONV ) −> ′a −> CONV ;

pc rule : string −> (′a −> THM ) −> ′a −> THM ;
pc rule1 : string −> (′a −> ′b −> THM ) −> ′a −> ′b −> THM ;

Note here that the variants ending with ‘1’ here are variants suitable for use with parameterised
TACTICS, conversions or rules. These are needed where the parameterised function accesses the
current proof context when it is supplied its first argument.
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For example, to do a rewrite in a different proof context than the current context the following, will
not suffice:

SML

a (PC T "lin arith" (rewrite tac[]));

even though this will be accepted and will do some rewriting. This is because the subexpression
(rewrite tac[]) (intended to rewrite using only the default rewrite conversions in the current proof
context) is evaluated first, in the current proof context , to yield a TACTIC . At this stage rewrite
tac has already made use of the current proof context in preprocessing the theorems to be used for
rewriting, and has accessed the default rewriting conversions in the proof context . The resulting
TACTIC is then applied in proof context ”lin arith” but is no longer context sensitive.

The correct way to rewrite in a specific proof context is:
SML

a (PC T1 "lin arith" rewrite tac []);

in which case PC T1 arranges for the proof context to be switched before rewrite tac is applied to
its first argument.

It is also possible to combine the contents of more than one of the available proof contexts using
proof context merge facilities.

SML

set merge pcs : string list −> unit ;
MERGE PCS T : string list −> TACTIC −> TACTIC ;

which behave in a similar manner to their non-merge version, but accept a list of proof context names
instead of a single name, and combine the contexts together to form the new current proof context .

print status may be used to discover which proof context is current.
SML

print status : unit −> unit ;

10.2.1 What’s in the proof contexts?

We now show one or two examples of the effects of some of the commonly used proof contexts.

Proof contexts which have the atom ‘ext’ in their name are usually contexts which apply the rule of
extensionality of sets by default. Depending on what you are trying to prove this may either enable
a rapid discharge of the goal (e.g. if the goal is a result of elementary set theory) or may cause
confusion by expanding things which are not appropriate. It is therefore useful to get a feel for when
extensional reasoning is likely to be helpful.

An example of the effect of using extensionality is:
SML

PC C1 "sets ext1" rewrite conv []
p{(1 , 2 )} ⊆ {(x , y) | x + 1 ≤ y} ∨ 4 > 5q;

ProofPower Output:

val it = ` {(1 , 2 )} ⊆ {(x , y)|x + 1 ≤ y} ∨ 4 > 5
⇔ (∀ x1 x2• (x1 , x2 ) = (1 , 2 ) ⇒ x1 + 1 ≤ x2 )

∨ 4 > 5 : THM
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Not all proof contexts which contain these rules do have the ‘ext’ atom, the most frequently used
extensional context without it is ‘hol2’, which combines a knowledge of most of the theories which
are ancestors of the theory ‘hol’ with a propensity for extensional reasoning. This means that there
are a lot of elementary results which this context will solve automatically, but for less elementary
results it may be too aggressive and cause the goal to become complicated and difficult to relate to
the original problem.

SML

PC C1 "hol2" rewrite conv [] p{(1 , 2 )} ⊆ {(x , y) | x + 1 ≤ y} ∨ 4 > 5q;

ProofPower Output:

val it = ` {(1 , 2 )} ⊆ {(x , y)|x + 1 ≤ y} ∨ 4 > 5
⇔ (∀ x1 x2• x1 = 1 ∧ x2 = 2 ⇒ x1 + 1 ≤ x2 ) : THM

SML

PC C1 "hol2" rewrite conv []pA ∩ A ⊆ Bq;

ProofPower Output:

val it = ` A ∩ A ⊆ B ⇔ (∀ x• x ∈ A ⇒ x ∈ B) : THM

SML

PC C1 "hol" rewrite conv []pA ∩ A ⊆ Bq;

ProofPower Output:

val it = ` A ∩ A ⊆ B ⇔ A ⊆ B : THM

10.3 Automatic Proof Procedures

To encourage the development of domain specific automatic proof TACTIC s, which are capable of
solving a useful collection of problems using domain specific techniques the proof contexts have a
place for such TACTIC s.

This provides a uniform interface to automatic proof TACTIC s reducing the tendency for such
domain specific proof automation to cause every greater complexity in the user interface. A good
example of the provision of this kind of facility is the provision of linear arithmetic. Though the
linear arithmetic package is a complex package, a large part of its functionality is made available to
the user through existing procedural interfaces. If the user selects the lin arith proof context then
the standard rewriting facilities will perform normalisation operations on the operands of arithmetic
relations, and prove tac will solve goals whose conclusions are terms in linear arithmetic.

The automatic proof facilities in the current proof context may be accessed by the use of the following
three functions:

SML

prove tac : THM list −> TACTIC ;

• when the conclusion of a goal is automatically provable on its own
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SML

asm prove tac : THM list −> TACTIC ;

• when the goal is automatically provable using the assumptions

SML

prove rule : THM list −> TERM −> THM ;

• to state and prove a conjecture automatically

If you merge several proof contexts, the “prove tac” comes from the last one in the list.

Many proof contexts contain basic prove tac. It uses rewriting, a simple heuristic for eliminating
equations involving variables, and a few steps of first-order resolution.

As seen with the theorems from PM and ZRM (in the ‘easy proof’ exercises, section 13.1), this is
useful for simple predicate calculus theorems and for elementary facts about sets.

For example:

SML

prove rule [] p(∃x• φx ) ∨ (∃y• ψy) ⇔ (∃z• φz ∨ ψz )q;
prove rule [] p∀a b•a ⊆ b ∧ b ⊆ a ⇔ a = bq;

ProofPower Output

val it = ` (∃ x• φ x ) ∨ (∃ y• ψ y) ⇔ (∃ z• φ z ∨ ψ z ) : THM
val it = ` ∀ a b• a ⊆ b ∧ b ⊆ a ⇔ a = b : THM

10.4 Linear Arithmetic

Proof context lin arith contains an automatic proof procedure for linear arithmetic.

This is useful for many simple arithmetic problems.

For example:

SML

pc rule1 "lin arith" prove rule[] pa ≤ b ∧ a + b < c + a ⇒ a < cq;

ProofPower Output

val it = ` a ≤ b ∧ a + b < c + a ⇒ a < c : THM

‘linear arithmetic’ means terms built up from:

• “Atoms” (numeric literals, variables of type N, etc.)

• Multiplication by numeric literals

• Addition, =, ≤, ≥, <, >

• Logical operators
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So all the following are terms of linear arithmetic:

∀a c•(∃b•a ≥ b ∧ ¬ b < c) ⇒ a ≥ c
∀a b c•a + 2∗b < 2∗a ⇒ b + b < a
∀ x y• ¬ (2∗x + y = 4 ∧ 4∗x + 2∗y = 7 )

Rewriting/stripping in lin arith processes numeric relations by “multiplying out and collecting like
terms”as follows.

SML

pc rule1 "lin arith" rewrite conv []
p(i + j )∗(j + i) ≤ j∗j + jq;

ProofPower Output

val it = ` (i + j ) ∗ (j + i) ≤ j ∗ j + j
⇔ i ∗ i + 2 ∗ i ∗ j ≤ j : THM

i ∗ i , i ∗ j and j are then treated as atoms, so this proof context solves problems a little more general
than “strict” linear arithmetic.

¬(a < 1 + 2∗b ∧ 4∗b < 2∗a)

is proved thus:

if (1) a ≤ 2 ∗ b
and (2) 4 ∗ b + 1 ≤ 2 ∗ a
then 2*(1) +(2) 2 ∗ a + 4 ∗ b + 1 ≤ 2 ∗ a + 4 ∗ b
whence 1 ≤ 0
whence CONTRADICTION

You should now be able to attempt the exercises in section 13.12 (other exercises involving linear
arithmetic may be found in sections 13.14 and 13.15).
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CASE STUDY: VENDING MACHINE

11.1 Vending Machine Specification

The following paragraphs give a model of a simple vending machine:

SML

(open theory "usr013" handle => (open theory "hol"; new theory "usr013"));
set pc "hol2";

The state of the vending machine is defined as a labelled record type VM State by the following
paragraph:

HOL Labelled Product

VM State
takings : N;
stock : N;
price : N;
cash tendered : N

The labelled record type paragraph declares the following projection functions:

Projection Functions

takings : VM State → N
stock : VM State → N
price : VM State → N
cash tendered : VM State → N

If st is a state value, takings st is like st .takings in Z or Pascal or Ada.

This paragraph also introduces a constructor function:

Constructor Function

MkVM State : N → N → N → N → VM State

If t , s, p, and ct are numbers, MkVM State t s p ct is a state value with those numbers as its
components.

The following paragraph introduces a new constant vm which is a functional model of the behaviour
of the vending machine.
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HOL Constant

vm : VM State → VM State

∀st• vm st
= if stock st = 0

then MkVM State
(takings st) (stock st) (price st) 0

else if cash tendered st < price st
then st
else if cash tendered st = price st
then MkVM State

(takings st + cash tendered st)
(stock st − 1 ) (price st) 0

else MkVM State
(takings st) (stock st) (price st) 0

We can use ProofPower to ‘test’ or ‘animate’ the behaviour of the vending machine model using the
ProofPower rewriting facilities.

The following conversion may be used for animating vm:

SML

val run vm = rewrite conv [get spec pvmq, get spec pMkVM Stateq];

ProofPower Output

val run vm = fn : CONV

The behaviour of the vending machine can now be illustrated by executing run vm on various vending
machine states.

SML

run vm pvm (MkVM State 0 20 5 5 )q;
run vm pvm (MkVM State t 20 5 5 )q;

ProofPower Output

val it = ` vm (MkVM State 0 20 5 5 )
= MkVM State 5 19 5 0 : THM

val it = ` vm (MkVM State t 20 5 5 )
= MkVM State (t + 5 ) 19 5 0 : THM

Note that the second test case above is effectively doing symbolic execution.

11.2 Vending Machine Critical Requirements

The critical requirement might be informally stated as:

“No transaction of the vending machine causes the machine’s owner to lose money”.
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We formalise this by specifying the set of transition functions which never reduce the value of the
machine’s contents.

The value of a state is computed by the following function.

HOL Constant

value : VM State → N

∀ st •value st = takings st + stock st ∗ price st

The set of machines satisfying the critical requirement is then:

HOL Constant

vm ok : (VM State → VM State) SET

vm ok
= { trf

| ∀cb s p ct•
let s1 = MkVM State cb s p ct
in let s2 = trf s1
in value s2 ≥ value s1}

You should now be able to attempt the exercises in section 13.13.
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PROOF STRATEGY

A large application proof may take several man years of effort to complete.

Top level proof strategy for large proofs must be carefully thought out. Major lemmas are best
proven separately, stored in the theory, and combined in a top level proof delivering the required
result. Exploration may be forwards or backwards.

Lemmas of moderate size may be proven using the goal package. Such a proof would consist of a
combination of stripping, rewriting with definitions, assumptions and previously proven results, and
other uses of previous results.

12.1 What to do when faced with a Goal

Sanity Checks:

• Decide whether the goal is true, if not, don’t try to prove it!

• Decide whether the conclusion is relevant (are the assumptions inconsistent?).

• Do you see what the goal means? If not, can you simplify it.

• If all else fails, try retracing your steps.

Main Choices

• Decompose by stripping or contradiction (strip tac, contr tac)

• Work forwards from assumptions (e.g. spec asm tac, fc tac)

• Do a case split (strip asm tac, cases tac)

• Swap the conclusion with an assumption (swap asm concl tac)

• Prove a lemma (lemma tac)

• Prove automatically (e.g. asm prove tac, prove ∃ tac)

• Transform the conclusion by rewriting (e.g. with a definition)

• Induction (. . . induction tac)

You should now be able to attempt the exercises in sections 13.14 and 13.15.
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EXERCISES

This Chapter contains the exercises set for students on the last short course on ProofPower-HOL,
with the exception of the exercise in Section 13.15.

Solutions to most of these exercises may be found in Chapter 14.

Unless otherwise stated the exercises should be conducted in proof context ‘hol2’.

The source of the exercises for use with copy-and-paste may be found in file usr022 slides.doc
(the tutorial overheads) or usr013X.doc.

13.1 Easy Proofs

Set the theory and the proof context:

SML

open theory"hol";
set pc "hol2";

Set the goal (from the examples supplied):

set goal([],pconjectureq);

Then try the following methods of proof:

• Two tactic method using:

a contr tac; (∗ once ∗)
a (list spec asm tac pasmq [pt1q, pt2q]);

(∗ as many as necessary ∗)

• or

a (prove tac[]); (∗ once ∗)

• or

a step strip tac; (∗ many times ∗)

in case of difficulty, revert to the two tactic method.
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SML

(∗ Results from Principia Mathematica ∗2 ∗)
val PM2 =[
p(∗ ∗2 .02 ∗) q ⇒ ( p ⇒ q)q,
p(∗ ∗2 .03 ∗) (p ⇒ ¬ q) ⇒ (q ⇒ ¬ p)q,
p(∗ ∗2 .15 ∗) (¬ p ⇒ q) ⇒ (¬ q ⇒ p)q,
p(∗ ∗2 .16 ∗) (p ⇒ q) ⇒ (¬ q ⇒ ¬ p)q,
p(∗ ∗2 .17 ∗) (¬ q ⇒ ¬ p) ⇒ (p ⇒ q)q,
p(∗ ∗2 .04 ∗) (p ⇒ q ⇒ r) ⇒ (q ⇒ p ⇒ r)q,
p(∗ ∗2 .05 ∗) (q ⇒ r) ⇒ (p ⇒ q) ⇒ (p ⇒ r)q,
p(∗ ∗2 .06 ∗) (p ⇒ q) ⇒ (q ⇒ r) ⇒ (p ⇒ r)q,
p(∗ ∗2 .08 ∗) p ⇒ pq,
p(∗ ∗2 .21 ∗) ¬ p ⇒ (p ⇒ q)q];

SML

(∗ Results from Principia Mathematica ∗3 ∗)
val PM3 =[
(∗ ∗3 .01 ∗) pp ∧ q ⇔ ¬(¬ p ∨ ¬ q)q,
(∗ ∗3 .2 ∗) pp ⇒ q ⇒ p ∧ qq,
(∗ ∗3 .26 ∗) pp ∧ q ⇒ pq,
(∗ ∗3 .27 ∗) pp ∧ q ⇒ qq,
(∗ ∗3 .3 ∗) p(p ∧ q ⇒ r) ⇒ (p ⇒ q ⇒ r)q,
(∗ ∗3 .31 ∗) p(p ⇒ q ⇒ r) ⇒ (p ∧ q ⇒ r)q,
(∗ ∗3 .35 ∗) p(p ∧ (p ⇒ q)) ⇒ qq,
(∗ ∗3 .43 ∗) p(p ⇒ q) ∧ (p ⇒ r) ⇒ (p ⇒ q ∧ r)q,
(∗ ∗3 .45 ∗) p(p ⇒ q) ⇒ (p ∧ r ⇒ q ∧ r)q,
(∗ ∗3 .47 ∗) p(p ⇒ r) ∧ (q ⇒ s) ⇒ (p ∧ q ⇒ r ∧ s)q];

SML

(∗ Results from Principia Mathematica ∗4 ∗)
val PM4 =[
(∗ ∗4 .1 ∗) pp ⇒ q ⇔ ¬ q ⇒ ¬ pq,
(∗ ∗4 .11 ∗) p(p ⇔ q) ⇔ (¬ p ⇔ ¬ q)q,
(∗ ∗4 .13 ∗) pp ⇔ ¬¬ pq,
(∗ ∗4 .2 ∗) pp ⇔ pq,
(∗ ∗4 .21 ∗) p(p ⇔ q) ⇔ (q ⇔ p)q,
(∗ ∗4 .22 ∗) p(p ⇔ q) ∧ (q ⇔ r) ⇒ (p ⇔ r)q,
(∗ ∗4 .24 ∗) pp ⇔ p ∧ pq,
(∗ ∗4 .25 ∗) pp ⇔ p ∨ pq,
(∗ ∗4 .3 ∗) pp ∧ q ⇔ q ∧ pq,
(∗ ∗4 .31 ∗) pp ∨ q ⇔ q ∨ pq,
(∗ ∗4 .33 ∗) p(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)q,
(∗ ∗4 .4 ∗) pp ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)q,
(∗ ∗4 .41 ∗) pp ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)q,
(∗ ∗4 .71 ∗) p(p ⇒ q) ⇔ (p ⇔ (p ∧ q))q,
(∗ ∗4 .73 ∗) pq ⇒ (p ⇔ (p ∧ q))q];
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SML

(∗ Results from Principia Mathematica ∗5 ∗)
val PM5 =[
(∗ ∗5 .1 ∗) pp ∧ q ⇒ (p ⇔ q)q,
(∗ ∗5 .32 ∗) p(p ⇒ (q ⇔ r)) ⇒ ((p ∧ q) ⇔ (p ∧ r))q,
(∗ ∗5 .6 ∗) p(p ∧ ¬ q ⇒ r) ⇒ (p ⇒ (q ∨ r))q];

SML

(∗ Definitions from Principia Mathematica ∗9 ∗)
val PM9 =[
(∗ ∗9 .01 ∗) p¬ (∀x• φx ) ⇔ (∃x• ¬ φx )q,
(∗ ∗9 .02 ∗) p¬ (∃x• φx ) ⇔ (∀x• ¬ φx )q,
(∗ ∗9 .03 ∗) p(∀x• φx ∨ p) ⇔ (∀x• φx ) ∨ pq,
(∗ ∗9 .04 ∗) pp ∨ (∀x• φx ) ⇔ (∀x• p ∨ φx )q,
(∗ ∗9 .05 ∗) p(∃x• φx ∨ p) ⇔ (∃x• φx ) ∨ pq,
(∗ ∗9 .06 ∗) pp ∨ (∃x• φx ) ⇔ p ∨ (∃x• φx )q];
val PM9b =[
(∗ ∗9 .07 ∗) p(∀x• φx ) ∨ (∃y• ψy) ⇔ (∀x•∃y• φx ∨ ψy)q,
(∗ ∗9 .08 ∗) p(∃y• ψy) ∨ (∀x• φx ) ⇔ (∀x•∃y• ψy ∨ φx )q];

SML

(∗ Results from Principia Mathematica ∗10 ∗)
val PM10 =[
(∗ ∗10 .01 ∗) p(∃x• φx ) ⇔ ¬ (∀y• ¬ φy)q,
(∗ ∗10 .1 ∗) p(∀x• φx ) ⇒ φyq,
(∗ ∗10 .21 ∗) p(∀x• p ⇒ φx ) ⇔ p ⇒ (∀y• φy)q,
(∗ ∗10 .22 ∗) p(∀x• φx ∧ ψx ) ⇔ (∀y• φy) ∧ (∀z• ψz )q,
(∗ ∗10 .24 ∗) p(∀x• φx ⇒ p) ⇔ (∃y• φy) ⇒ pq,
(∗ ∗10 .27 ∗) p(∀x• φx ⇒ ψx ) ⇒ ((∀y• φy) ⇒ (∀z• ψz ))q,
(∗ ∗10 .271 ∗) p(∀x• φx ⇔ ψx ) ⇒ ((∀y• φy) ⇔ (∀z• ψz ))q,
(∗ ∗10 .28 ∗) p(∀x• φx ⇒ ψx ) ⇒ ((∃y• φy) ⇒ (∃z• ψz ))q,
(∗ ∗10 .281 ∗) p(∀x• φx ⇔ ψx ) ⇒ ((∃y• φy) ⇔ (∃z• ψz ))q,
(∗ ∗10 .35 ∗) p(∃x• p ∧ φx ) ⇔ p ∧ (∃y• φy)q,
(∗ ∗10 .42 ∗) p(∃x• φx ) ∨ (∃y• ψy) ⇔ (∃z• φz ∨ ψz )q,
(∗ ∗10 .5 ∗) p(∃x• φx ∧ ψx ) ⇒ (∃y• φy) ∧ (∃z• ψz )q,
(∗ ∗10 .51 ∗) p¬(∃x• φx ∧ ψx ) ⇒ (∀y• φy ⇒ ¬ ψy)q];

SML

(∗ Results from Principia Mathematica ∗11 ∗)
val PM11 =[
(∗ ∗11 .1 ∗) p(∀x y• φ(x ,y)) ⇒ φ(z ,w)q,
(∗ ∗11 .2 ∗) p(∀x y• φ(x ,y)) ⇔ ∀y x• φ(x ,y)q,
(∗ ∗11 .3 ∗) p(p ⇒ (∀x y• φ(x ,y)))

⇔ (∀x y• p ⇒ φ(x ,y))q,
(∗ ∗11 .32 ∗) p(∀x y• φ(x ,y) ⇒ ψ(x ,y))
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⇒ (∀x y• φ(x ,y)) ⇒ (∀x y• ψ(x ,y))q,
(∗ ∗11 .35 ∗) p(∀x y• φ(x ,y) ⇒ p) ⇔ (∃x y• φ(x ,y)) ⇒ pq,
(∗ ∗11 .45 ∗) p(∃x y• p ⇒ φ(x ,y))

⇔ (p ⇒ (∃x y• φ(x ,y)))q,
(∗ ∗11 .54 ∗) p(∃x y• φx ∧ ψy) ⇔ (∃x• φx ) ∧ (∃y• ψy)q,
(∗ ∗11 .55 ∗) p(∃x y• φx ∧ ψ(x ,y))

⇔ (∃x• φx ∧ (∃y• ψ(x ,y)))q,
(∗ ∗11 .6 ∗) p(∃x• (∃y• φ(x ,y) ∧ ψy) ∧ χx )

⇔ (∃y• (∃x• φ(x ,y) ∧ χx ) ∧ ψy)q,
(∗ ∗11 .62 ∗) p(∀x y• φx ∧ ψ(x ,y) ⇒ χ(x ,y))

⇔ (∀x• φx ⇒ (∀y• ψ(x ,y) ⇒ χ(x ,y)))q
];

SML

(∗ results from ZRM provable by stripping ∗)
val ZRM1 = [
pa ∪ a = a ∪ {}q,
pa ∪ {} = a ∩ aq,
pa ∩ a = a \ {}q,
pa \ {} = aq,
pa ∩ {} = a \ aq,
pa \ a = {} \ aq,
p{} \ a = {}q,
pa ∪ b = b ∪ aq,
pa ∩ b = b ∩ aq,
pa ∪ (b ∪ c) = (a ∪ b) ∪ cq,
pa ∩ (b ∩ c) = (a ∩ b) ∩ cq,
pa ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)q,
pa ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)q,
p(a ∩ b) ∪ (a \ b) = aq,
p(a \ b) ∩ b = {}q,
pa \ (b \ c) = (a \ b) ∪ (a ∩ c)q,
p(a \ b) \ c = (a \ (b ∪ c))q,
pa ∪ (b \ c) = (a ∪ b) \ (c \ a)q,
pa ∩ (b \ c) = (a ∩ b) \ cq,
p(a ∪ b) \ c = (a \ c) ∪ (b \ c)q];

SML

val ZRM2 = [
pa \ (b ∩ c) = (a \ b) ∪ (a \ c)q,
p¬ x ∈ {}q,
pa ⊆ aq,
p¬ a ⊂ aq,
p{} ⊆ aq,
p⋃ {} = {}q,
p⋂ {} = Universeq];
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SML

(∗ results from ZRM ∗)
val ZRM3 = [
pa ⊆ b ⇔ a ∈ P bq,
pa ⊆ b ∧ b ⊆ a ⇔ a = bq,
p¬ (a ⊂ b ∧ b ⊂ a)q,
pa ⊆ b ∧ b ⊆ c ⇒ a ⊆ cq,
pa ⊂ b ∧ b ⊂ c ⇒ a ⊂ cq,
p{} ⊂ a ⇔ ¬ a = {}q,
p⋃

(a ∪ b) = (
⋃

a) ∪ (
⋃

b)q,
p⋂

(a ∪ b) = (
⋂

a) ∩ (
⋂

b)q,
p a ⊆ b ⇒ ⋃

a ⊆ ⋃
b q,

p a ⊆ b ⇒ ⋂
b ⊆ ⋂

a q];

13.2 HOL Theory Explorations

• Find the names of all the theories:
SML

get theory names();

• Print selected theories, e.g.:
SML

open theory"sets";
print theory"sets";

• Get the terms from the definitions in a theory, e.g.:
SML

open theory "bin rel";
(map concl o map snd o get defns) "bin rel";

• Now select interesting terms and take them apart using, e.g.:
SML

dest simple term p∀ r s• r ⊕ s = (Dom s −C r) ∪ sq;

Hol Output

val it = App (p$∀q, pλ r• ∀ s• r ⊕ s = (Dom s −C r) ∪ sq) : DEST SIMPLE TERM

SML

dest simple term p{1 ;2 ;3}q;

Hol Output

val it = App (pInsert 1q, p{2 ; 3}q) : DEST SIMPLE TERM

SML

get spec pInsertq;

Hol Output

val it = ` ∀ x y a
• ¬ x ∈ {} ∧ x ∈ Universe ∧ (x ∈ Insert y a ⇔ x = y ∨ x ∈ a) : THM
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13.3 Specification

• Create a new theory, e.g. :
SML

open theory "usr013";
new theory "usr013X";

• Write a specification in HOL of a function to add the elements of a list of numbers.

HINT: if your specification goes in as a “Constspec” then the system could not prove it con-
sistent, and its probably either wrong or poorly structured. Try to make it clearly ‘primitive
recursive’.

• Use it to “evaluate” the term plist sum[1 ; 2 ; 3 ; 4 ; 5 ]q.

rewrite conv [get specplist sumq]
plist sum [1 ;2 ;3 ;4 ;5 ]q;

13.4 Forward Proof

1. Using ⇒ elim and asm rule prove:

(a) b⇒c, a⇒b, a`c
(b) a⇒b⇒c, a, b`c

2. Using ∀ elim with ¬ plus1 thm prove:

(a) `¬0 + 1 = 0

(b) `¬x ∗ x + 1 = 0

3. Using all ∀ elim with ≤ trans thm prove:

(a) `m≤i∧i≤n⇒m≤n

4. Using list ∀ elim prove:

(a) (with ¬ less thm)`¬0 < 1⇔1≤0

(b) (with ≤ trans thm)` ∀ n• 3 ≤ x * x ∧ x * x ≤ n ⇒ 3 ≤ n

5. Using all ∀ elim, strip ∧ rule, nth, all ∀ intro:

(a) (with ≤ clauses)` ∀ i m n• i + m ≤ i + n ⇔ m ≤ n

(b) (using list ∀ intro)` ∀ m i n• i + m ≤ i + n ⇔ m ≤ n

13.5 Rewriting with the Subgoal Package

1. set a goal from the examples on set theory, e.g.:
SML

set goal([],pa \ (b ∩ c) = (a \ b) ∪ (a \ c)q);
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2. rewrite the goal using the current proof context:

SML

a (rewrite tac[]);

3. step back using undo:

SML

undo 1 ;

4. now try rewriting without using the proof context:

a (pure rewrite tac[]);

(this should fail)

5. try rewriting one layer at a time:

SML

a (once rewrite tac[]);

repeat until it fails.

6. now try rewriting with specific theorems:

SML

set goal([],pa \ (b ∩ c) = (a \ b) ∪ (a \ c)q);
a (pure rewrite tac[sets ext clauses]);
a (pure rewrite tac[set dif def ]);
a (pure rewrite tac[∩ def , ∪ def ]);
a (pure rewrite tac[set dif def ]);

7. finish the proof by stripping:

SML

a (REPEAT strip tac);

8. extract the theorem
SML

top thm();

9. repeat the above then try repeating:

SML

pop thm();
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13.6 Combining Forward and Backward Proof

Prove the following results by rewriting using the goal package:

(for each example, try the methods which worked on the previous examples first to see how they fail
before following the hint)

Prove:

SML

set goal([],px + y = y + xq);

1.

SML

set goal([],px + y + z = (x + y) + zq);

2.

SML

set goal([],pz + y + x = y + z + xq);

3.

SML

set goal([],px + y + z = y + z + xq);

4.

SML

set goal([],px + y + z + v = y + v + z + xq);

5.

Hints:

1. try rewriting (with nothing but the default rewrites)

2. try using plus assoc thm

3. try using plus assoc thm1

4. try using ∀ elim with plus assoc thm1

5. try using ∀ elim with plus order thm
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13.7 Stripping

Use the examples from Principia Mathematica & ZRM given earlier, e.g.:
SML

set goal([],pp ∧ q ⇒ (p ⇔ q)q);

with
SML

a strip tac;

and/or
SML

a step strip tac;

Observe the steps taken and try to identify the reasons for discharge of subgoals.

Now select the weakest “proof context”:
SML

push pc "initial";

and retry the examples (or previous exercises).

When you have finished restore the original proof context by:
SML

pop pc();

13.8 Induction

Prove the following results using the subgoal package.

1. Appending the empty list has no effect
SML

set goal([], p∀l1 • l1 @ [] = l1q);

2. “Reverse” distributes over “@” (sort of)
SML

set goal([], p∀l1 l2 •
Rev (l1 @ l2 ) = (Rev l2 ) @ (Rev l1 )q);

3. “Map” distributes over “@”
SML

set goal([], p∀f l1 l2 •
Map f (l1 @ l2 ) = (Map f l1 ) @ (Map f l2 )q);

4. “Length” distributes over “@”
SML

set goal([], p∀l1 l2• Length (l1 @ l2 )
= Length l1 + Length l2q);

Hints: You will need the result proven in the tutorial text concerning associativity of append (append
assoc thm). The result of the first exercise is also required in the remaining problems.
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13.9 TACTICALs

1. Write a tactic which does strip tac three times.

test it on:
SML

set goal([],p(a ⇒ b ⇒ c) ⇒ a ⇒ b ⇒ cq);
set goal([],p(a ⇒ b) ⇒ a ⇒ cq);

2. Write a tactic which does strip tac up to 3 times.

Try it on the same examples.

3. Write a tactic which takes two arguments:

• a term which is a variable

• a list of theorems

and performs an inductive proof of a theorem concerning lists by:

• stripping the goal

• inducting on the variable

• rewriting with the assumptions and the list of theorems

Use it to shorten the earlier proofs about lists.

13.10 strip asm tac etc.

1. Use strip asm tac (with ∀ elim and N cases thm) or cases tac to prove

(a) ∀x•(if x = 0 then 1 else x ) > 0

(b) ∀x y•(if x < y + 1 then x else y) < y + 1

(c) ∀a b•a ≤ (if a ≤ b then b else a)

(d) ∀a•a = 0 ∨ 1 ≤ a

2. Using (i) swap asm concl tac and (ii) lemma tac give two different proofs of each of:

(a) (∀x y•x ≤ y ⇒ P(x , y)) ⇒ (∀x y•x = y ⇒ P(x , y))

(b) (∀x y•f x ≤ f y ⇒ x ≤ y) ⇒ (∀x y•f x = f y ⇒ x ≤ y)

13.11 Forward Chaining

1. Experiment with the various all and asm variants of fc tac to prove the following goals:

(a) (using ≤ trans thm)

∀a b c d•a ≤ b ∧ b ≤ c ∧ c ≤ d ⇒ a ≤ d
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(b) (no theorem required)

∀X Y Z•X ⊆ Y ∧ Y ⊆ Z ⇒ X ⊆ Z

In each case, what is the minimum number of applications of a forward chaining tactic required
and why?

2. Can you use forward chaining to simplify the proof of the following example from exercises 10:

(∀x y•f x ≤ f y ⇒ x ≤ y) ⇒ (∀x y•f x = f y ⇒ x ≤ y)

13.12 Proof Contexts

1. Using REPEAT strip tac and asm rewrite tac prove

(∀x y•f (x , y) = (y , x )) ⇒ ∀x y•f (f (x , y)) = (x , y)

Apply the tactics one at a time rather than using THEN . Now set the proof context to
“predicates” using set pc and prove it again. What differences do you observe?

Set the proof context back to “hol2” when you’ve finished.

2. Prove the following

(a) {(x , y) | ¬x = 0 ∧ y = 2∗x} ⊆ {(x , y) | x < y}
(b) {(x , y) | x ≥ 2 ∧ y = 2∗x} ⊆ {(x , y) | x + 1 < y}
(c) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

(d) ∀m•{i | m ≤ i ∧ i < m + 3} = {m; m+1 ; m+2}
(e) {i | 5∗i = 6∗i} = {0}

13.13 Case Study

First of all execute the new theory command and the 4 paragraphs of the vending machine specifi-
cation.

1. Execute the definition of run vm:
SML

val run vm = rewrite conv [get specpvmq, get specpMkVM Stateq];

Experiment with the model by using run vm to see what it does on various test data. What
does the vending machine do if the price is set to 0?

2. Prove that the model of the vending machine satisfies its critical requirements. I.e., prove:

vm∈vm ok

Hints:

(a) Try REPEAT strip tac

(b) Try rewriting with the definitions of any of MkVM State, vm, vm ok or worth which
appear in the goal.
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(c) let-expressions may be eliminated by rewriting with let def .

(d) Is there an if -term in the goal? Can you use N cases thm or less cases thm (together
with strip asm tac and ∀ elim or list ∀ elim) to perform the relevant case analysis?

(e) If you believe the goal is true by dint of arithmetic facts alone try:

PC T1 "lin arith" asm prove tac[]

(f) If none of the above hints apply, do you have an if -term which could be simplified us-
ing an “obvious” arithmetic consequence of your assumptions. If so set the “obvious”
consequence up as a lemma with lemma tac.

13.14 Advanced Techniques

1. Use contr tac, and spec asm tac and rewriting prove that there is no greatest natural number:
SML

set goal([], p∀m•∃n• m < nq);

(Hint: m < m + 1 ).

2. Rather than using contr tac, it is often more natural to prove goals with existentially quantified
conclusions directly. ∃ tac lets you do this by supplying a term to act as a “witness”. Use
∃ tac to give a more natural solution to the previous exercise:

SML

set goal([], p∀m•∃n• m < nq);

3. Prove that there is no onto function from the natural numbers to the set of all numeric functions
on the natural numbers:

SML

set goal([], p∀f : N → (N → N)•∃g•∀i•¬f i = gq);

(Hints: Note that for f of the above type, λj•(f j j )+1 cannot be in the range of f . Rewriting
with ext thm is useful for reasoning about equations between functions.)

4. It can happen that an equation is the wrong way round for use as a rewrite rule. The usual means
for dealing with this type of problem is the conversion eq sym conv . Like other conversions
this may be propagated over a term using the conversionals MAP C and ONCE MAP C .
Execute the following lines one at a time to see what happens:

eq sym conv p1 + 1 + 1 = 3q;
eq sym conv p∀x•x + x + x = 3∗xq;
ONCE MAP C eq sym conv p∀x•x + x + x = 3∗xq;

A conversion may be converted into a tactic using conv tac. Use this and the conversion and
conversional you have just experimented with together with the tactics swap asm concl tac
and the theorems ext thm and comb k def to prove the following:

SML

set goal([], p∀f :′a→′b→′a•(∀x y•x = f x y) ⇒ f = CombKq);

(Hint: take care to avoid looping rewrites by using the “once” rewriting tactics while you look
for the proof.)
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5. A common way of using a theorem is to to strip it into the assumptions. This is done with
strip asm tac. Very often one specialises the theorem with ∀ elim or list ∀ elim before strip-
ping it in and sometimes one may wish to use rewrite rule to rewrite it too. Use the theorem
div mod unique thm in this way to prove:

SML

set goal([], p∀i j•0 < i ⇒ (i ∗ j ) Div i = jq);

(Hints: rewrite the theorem with times comm thm suitably specialised to identify subterms of
the form i ∗ j and j ∗ i into the same form; use the technique of the previous exercise to avoid
a looping rewrite with the assumption added by strip asm tac).

6. Execute the following paragraph to define a function σ which maps i to the sum of the first i
positive integers:

HOL Constant

σ : N → N

σ 0 = 0
∧ ∀i• σ(i+1 ) = σ i + (i + 1 )

The consistency of this paragraph should be proved automatically. Check this by using get spec
to get the defining axiom for σ, which should have no assumptions. Prove the following theorem:

SML

set goal([], p∀i•σ i = (i∗(i + 1 )) Div 2q);

(Hint: use induction to prove a lemma that i ∗ (i + 1 ) = 2 ∗ σi and then use the result of the
previous exercise; the lemma may be proved by rewriting with assumptions and the definition
of σ and then using the proof context lin arith.)

7. Construct a paragraph defining a function φ such that for positive i , φi is the i th element of the
Fibonacci sequence, 1 , 1 , 2 , 3 , 5 , . . ., where each number is the sum of the previous two. Does
the system automatically prove the consistency of your definition?

8. If you did the previous exercise, delete the function φ you defined (using delete const). Enter the
following paragraphs which define φ using an auxiliary function γ:

HOL Constant

γ : N → (N × N)

γ 0 = (0 , 1 )
∧ ∀i•γ(i+1 ) = let (a, b) = γ i in (b, a + b)

HOL Constant

φ : N → N

∀i•φ i = Fst (γ i)
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These definitions are proved consistent automatically. Prove that φ does indeed compute the
Fibonacci numbers:

set goal([], p
φ 0 = 0

∧ φ 1 = 1
∧ ∀i•φ(i+2 ) = φ(i+1 ) + φ i
q);

(Hints: first rewrite with the definition of φ; then prove a lemma or lemmas showing how γ 1
and γ(i + 2 ) may be rewritten so that the definition of γ may be used to rewrite them.)

9. The approach of the previous exercise has the disadvantage that the specification was not as
abstract as one might like. A cleaner approach is to use the obvious definition of φ, and then
prove that it is consistent using a function γ which is only introduced as a variable during the
course of the proof. The tactic prove ∃ tac gives access to the mechanisms that the system
uses in its attempt to prove that paragraphs are consistent.

We demonstrate the above technique in this exercise.

First of all, delete the function γ that you defined in the previous exercise (using delete const ,
which will also cause φ to be deleted).

SML

delete constpγq;

Enter the following paragraph which gives the natural definition of φ:

HOL Constant

φ : N → N

φ 0 = 0
∧ φ 1 = 1
∧ ∀i•φ(i+2 ) = φ(i+1 ) + φ i

Examine the theorem that get spec returns for φ, it has a consistency caveat as an assumption.
Discharge this consistency caveat as follows:

First of all go into the subgoaling package using the following command:

push consistency goalpφq;

Now set as a lemma the existence of a γ as in the previous exercise; the lemma is proved
immediately by prove ∃ tac and you can then use ∃ tacpλi•Fst(γ i)q followed a proof almost
identical with the previous exercise (hint: rewrite tac will eliminate the β-redexes introduced
when you apply ∃ tac). Save the consistency theorem using the following command:

save consistency thm pφq (pop thm());

If you now examine the theorem that get spec returns for φ, you should see that it no longer
has an assumption.

(Note: the variable name ‘φ′’, created by decorating ‘φ’ is displayed by the pretty printer as
$ “φ′” since it violates the HOL lexical rules for identifiers. The parser will accept identifiers
violating the normal lexical rules if they are presented in this way.)
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13.15 Supplementary Exercises

13.15.1 Linear Arithmetic

Prove that any amount of money greater than seven cents can be made up from three and five cent
coins.

This example came to us from SRI.

Hint: Conduct the proof in proof context ‘hol2’, invoking ‘lin arith’ only when needed. Use proof by
induction. In the step case use a case split on whether there are any five cent coins in the solution
assumed for the induction variable piq and construct your witness for pi+1q accordingly.
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SOLUTIONS TO EXERCISES

No solutions are provided for those exercises whose nature is exploratory rather than problem solving.

Nevertheless, section headings are included for those exercises, so that the correspondence between
sections in this Chapter and Chapter 13 is maintained.

14.1 Easy Proofs

14.2 HOL Theory Explorations

14.3 Specification

14.4 Forward Proof

SML

(∗ 1 (a) ∗)
val ext1 thm1 = asm rule pa⇒bq;
val ext1 thm2 = asm rule pb⇒cq;
val ext1 thm3 = asm rule pa:BOOLq;
val ext1 thm4 = ⇒ elim ext1 thm1 ext1 thm3 ;
val ext1 thm5 = ⇒ elim ext1 thm2 ext1 thm4 ;
(∗ 1 (b) ∗)
val ext2 thm1 =
⇒ elim (asm rule pa⇒b⇒cq)(asm rule pa:BOOLq);

SML

(∗ 2 (a) ∗)
val ext3 thm1 = ∀ elim p0q ¬ plus1 thm;
(∗ 2 (b) ∗)
val ext4 thm1 = ∀ elim px∗xq ¬ plus1 thm;

SML

(∗ 3 (a) ∗)
val ext5 thm1 = all ∀ elim ≤ trans thm;

SML

(∗ 4 (a) ∗)
val ext6 thm1 = list ∀ elim [p0q,p1q] ¬ less thm;
(∗ 4 (b) ∗)
val ext7 thm1 = list ∀ elim [p3q,px∗xq] ≤ trans thm;
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SML

(∗ 5 (a) ∗)
val ext8 thm1 = strip ∧ rule (all ∀ elim ≤ clauses);
val ext8 thm2 = all ∀ intro (nth 3 ext8 thm1 );
(∗ 5 (b) ∗)
val ext8 thm2 = list ∀ intro [pmq,piq,pnq](nth 3 ext8 thm1 );

14.5 Rewriting with the Subgoal Package

14.6 Combining Forward and Backward Proof

1. :
SML

set goal([],px + y = y + xq);
a (rewrite tac[]);

2. :
SML

set goal([],px + y + z = (x + y) + zq);
a (rewrite tac[plus assoc thm]);

3. :
SML

set goal([],pz + y + x = y + z + xq);
a (rewrite tac[plus assoc thm1 ]);

4. :
SML

set goal([],px + y + z = y + z + xq);
a (rewrite tac[∀ elim pyq plus assoc thm1 ]);

5. :
SML

set goal([],px + y + z + v = y + v + z + xq);
a (rewrite tac[∀ elim pxq plus order thm]);

14.7 Stripping

14.8 Induction

SML

set goal([],p∀l1 • l1 @ [] = l1q); (∗ no. 1 ∗)
a strip tac;
a (list induction tac pl1q

THEN asm rewrite tac [append def ]);
val empty append thm = pop thm();
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SML

set goal([],p∀l1 l2 • Rev (l1 @ l2 ) =
(Rev l2 ) @ (Rev l1 )q); (∗ no. 2 ∗)

a (REPEAT strip tac);
a (list induction tac pl1q THEN asm rewrite tac

[append assoc thm, empty append thm,
append def , rev def ]);

val rev distrib thm = pop thm();

SML

set goal([],p∀f l1 l2 • Map f (l1 @ l2 ) =
(Map f l1 ) @ (Map f l2 )q); (∗ no. 3 ∗)

a (REPEAT strip tac);
a (list induction tac pl1q THEN asm rewrite tac

[map def , empty append thm, append def ]);
val map distrib thm = pop thm();

SML

set goal([],p∀l1 l2• Length (l1 @ l2 ) =
Length l1 + Length l2q); (∗ no. 4 ∗)

a (REPEAT strip tac);
a (list induction tac pl1q THEN asm rewrite tac

[append def , length def , plus assoc thm]);
val length distrib thm = pop thm();

14.9 TACTICALs

SML

(∗ no. 1 ∗)
val strip3 tac = TRY T strip tac THEN strip tac THEN strip tac;
set goal([],p(a ⇒ b ⇒ c) ⇒ a ⇒ b ⇒ cq);
a strip3 tac;

SML

(∗ no. 2 ∗)
val stripto3 tac = strip tac THEN TRY strip tac

THEN TRY strip tac;
set goal([],p(a ⇒ b) ⇒ a ⇒ cq);
a stripto3 tac;
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SML

(∗ no. 3 ∗)
fun list induct tac var thl =

REPEAT strip tac
THEN list induction tac var
THEN TRY asm rewrite tac thl ;

set goal([],p∀l1 l2 l3 •
(l1 @ l2 ) @ l3 = l1 @ (l2 @ l3 )q);

a (list induct tac pl1 :′a LISTq [append def ]);
val append assoc thm = pop thm ();

set goal([], p∀l1 :′a LIST • l1 @ [] = l1q);
a (list induct tac pl1 :′a LISTq [append def ]);
val empty append thm = pop thm();

14.10 strip asm tac etc.

SML

(∗ (a) ∗)
set goal([], p∀x•(if x = 0 then 1 else x ) > 0q);
a(REPEAT strip tac);
a(strip asm tac(∀ elimpxqN cases thm) THEN asm rewrite tac[]);
pop thm();

SML

(∗ (b) ∗)
set goal([], p∀x y•(if x < y + 1 then x else y) < y + 1q);
a(REPEAT strip tac);
a(CASES T px < y + 1q rewrite thm tac);
pop thm();

SML

(∗ (c) ∗)
set goal([], p∀a b•a ≤ (if a ≤ b then b else a)q);
a(REPEAT strip tac);
a(CASES T pa ≤ bq rewrite thm tac);
pop thm();

SML

(∗ (d) ∗)
set goal([], p∀a•a = 0 ∨ 1 ≤ aq);
a(strip tac);
a(strip asm tac(∀ elimpaqN cases thm) THEN asm rewrite tac[]);
pop thm();
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With swap asm concl tac:

SML

set goal([], (∗ (i)(a) ∗)
p(∀x y•x ≤ y ⇒ P(x , y)) ⇒ (∀x y•x = y ⇒ P(x , y))q);

a(REPEAT strip tac);
a(list spec nth asm tac 2 [pxq, pyq]);
a(swap asm concl tac p¬ x ≤ yq THEN asm rewrite tac[]);
pop thm();

SML

set goal([], (∗ (i)(b) ∗)
p(∀x y•f x ≤ f y ⇒ x ≤ y) ⇒ (∀x y•f x = f y ⇒ x ≤ y)q);

a(REPEAT strip tac);
a(list spec nth asm tac 2 [pxq, pyq]);
a(swap asm concl tac p¬ f x ≤ f yq THEN asm rewrite tac[]);
pop thm();

With lemma tac:
SML

set goal([], (∗ (ii)(a) ∗)
p(∀x y•x ≤ y ⇒ P(x , y)) ⇒ (∀x y•x = y ⇒ P(x , y))q);

a(REPEAT strip tac);
a(lemma tacpx ≤ yq THEN1 asm rewrite tac[]);
a(list spec nth asm tac 3 [pxq, pyq]);
pop thm();

SML

set goal([], (∗ (ii)(b) ∗)
p(∀x y•f x ≤ f y ⇒ x ≤ y) ⇒ (∀x y•f x = f y ⇒ x ≤ y)q);

a(REPEAT strip tac);
a(lemma tacpf x ≤ f yq THEN1 asm rewrite tac[]);
a(list spec nth asm tac 3 [pxq, pyq]);
pop thm();

14.11 Forward Chaining

SML

set goal([], p∀a b c d•a ≤ b ∧ b ≤ c ∧ c ≤ d ⇒ a ≤ dq);
(∗ 1 (a) ∗)

a(REPEAT strip tac);
a(all fc tac[≤ trans thm] THEN all fc tac[≤ trans thm]);
pop thm();
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SML

set goal([], p∀X Y Z•X ⊆ Y ∧ Y ⊆ Z ⇒ X ⊆ Zq); (∗ 1 (b) ∗)
a(REPEAT strip tac);
a(all asm fc tac[] THEN all asm fc tac[]);
pop thm();

In both cases, at least 2 applications of forward chaining are needed since a result from one forward
chaining pass must be added to the assumptions to “seed” the second pass.

SML

set goal([], (∗ 2 ∗)
p(∀x y•f x ≤ f y ⇒ x ≤ y) ⇒ (∀x y•f x = f y ⇒ x ≤ y)q);

a(REPEAT strip tac);
a(lemma tac pf x ≤ f yq THEN1 asm rewrite tac[]);
a(all asm fc tac[]);
pop thm();

14.12 Proof Contexts

SML

(∗ 1 ∗)
set goal([], p(∀x y•f (x , y) = (y , x )) ⇒ ∀x y•f (f (x , y)) = (x , y)q);
a(REPEAT strip tac);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(asm rewrite tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(asm rewrite tac[]);
pop thm();

SML

set pc"predicates";
set goal([], p(∀x y•f (x , y) = (y , x )) ⇒ ∀x y•f (f (x , y)) = (x , y)q);
a(REPEAT strip tac);
a(asm rewrite tac[]);
pop thm();
set pc"hol2";

The second proof is shorter because the proof context predicates does not cause equations between
pairs to be split into pairs of equations.
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SML

(∗ 2 ∗)
map (merge pcs rule1 ["hol2", "lin arith"] prove rule[]) [
(∗ (a) ∗) p{(x , y) | ¬x = 0 ∧ y = 2∗x} ⊆ {(x , y) | x < y}q,
(∗ (b) ∗) p{(x , y) | x ≥ 2 ∧ y = 2∗x} ⊆ {(x , y) | x + 1 < y}q,
(∗ (d) ∗) p∀m•{i | m ≤ i ∧ i < m + 3} = {m; m+1 ; m+2}q,
(∗ (e) ∗) p{i | 5∗i = 6∗i} = {0}q];
(∗ (c) ∗) pc rule1 "sets ext1" prove rule[]

pA ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )q;

(Alternatively, use the subgoal package and PC T1 .).

14.13 Case Study

The following test cases check out each branch of the if -terms in the definition of vm:

Branch 1: out of stock: the machine refunds any cash tendered.

SML

run vm pvm (MkVM State t 0 p ct)q;

Branch 2: in stock; cash tendered is less than the price: the machine waits for more cash to be
tendered:

SML

run vm pvm (MkVM State t 20 5 2 )q;

Branch 3: in stock; cash tendered is equal to the price: the machine dispenses a chocolate bar and
adds the cash tendered to its takings:

SML

run vm pvm (MkVM State t 20 5 5 )q;

Branch 4: in stock; cash tendered exceeds the price: the machine refunds the cash tendered:

SML

run vm pvm (MkVM State t 20 5 6 )q;

If the price is set to 0 , the machine first refunds any cash tendered and then gives away all the stock!

SML

run vm pvm (MkVM State t 4 0 6 )q;
run vm pvm (MkVM State t 4 0 0 )q;
run vm pvm (MkVM State t 3 0 0 )q;
run vm pvm (MkVM State t 2 0 0 )q;
run vm pvm (MkVM State t 1 0 0 )q;
run vm pvm (MkVM State t 0 0 0 )q;

Now we show a proof against the ‘critical requirements’.
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SML

set goal([], pvm ∈ vm okq);
(∗ Goal "": Expand definitions and let−terms: ∗)
a(rewrite tac [get spec pvm okq, get specpvmq,

get specpMkVM Stateq, let def ]);

(∗ Goal "": remove outer universal quantifiers ∗)
a(REPEAT strip tac);

(∗ Goal "": case split on the amount of stock :
s = 0 ∨ s = i + 1 for some i ∗)

a(strip asm tac(∀ elimpsq N cases thm) THEN asm rewrite tac[]);

(∗ Goal "1": s = 0 ∗)
a(asm rewrite tac[get specpvalueq, get specpMkVM Stateq]);

(∗ Goal "2": case split on ct < p: ct < p ∨ ct = p ∨ p < ct ∗)
a(strip asm tac(list ∀ elim[pctq, ppq] less cases thm));

(∗ Goal "2 .1": ct < p: ∗)
a(asm rewrite tac[get specpMkVM Stateq]);

(∗ Goal "2 .2": ct = p: ∗)
a(asm rewrite tac[get specpvalueq, get specpMkVM Stateq]);
a(PC T1 "lin arith" asm prove tac[]);

(∗ Goal "2 .3": ct > p: need ¬ct < p ∧ ¬ ct = p to evaluate if ∗)
a(lemma tac p¬ct < p ∧ ¬ ct = pq THEN1

PC T1 "lin arith" asm prove tac[]);
a(asm rewrite tac[get specpvalueq, get specpMkVM Stateq]);

val vm ok thm = pop thm();

14.14 Advanced Techniques

For running these solutions in batch we need to ask for the warning arising from deletion of constants
to be ignored:

SML

set flag("ignore warnings", true);
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SML

(∗ no. 1 ∗)
set goal([], p∀m•∃n• m < nq);
a(contr tac);
a(spec asm tacp∀ n• ¬ m < nqpm+1q);
val thm1 = pop thm();

SML

(∗ no. 2 ∗)
set goal([], p∀m•∃n• m < nq);
a(REPEAT strip tac);
a(∃ tacpm+1q);
a(rewrite tac[]);
val thm2 = pop thm();

SML

(∗ no. 3 ∗)
set goal([], p∀f : N → (N → N)•∃g•∀i•¬f i = gq);
a(REPEAT strip tac);
a(∃ tacpλj•(f j j ) + 1q);
a(rewrite tac[ext thm]);
a(REPEAT strip tac);
a(∃ tacpiq THEN REPEAT strip tac);
val thm3 = pop thm();

SML

(∗ no. 4 ∗)
set goal([], p∀f :′a→′b→′a•(∀x y•x = f x y) ⇒ f = CombKq);
a (REPEAT strip tac);
a (rewrite tac[ext thm, comb k def ]);
a (swap asm concl tacp∀ x y• x = f x yq);
a (conv tac(ONCE MAP C eq sym conv));
a (swap asm concl tacp¬ f x x ′ = xq THEN asm rewrite tac[]);
val thm4 = pop thm();

SML

(∗ no. 5 ∗)
set goal([], p∀i j•0 < i ⇒ (i ∗ j ) Div i = jq);
a (REPEAT strip tac);
a (strip asm tac(

rewrite rule[∀ elimpjqtimes comm thm]
(list ∀ elim[pi∗jq, piq, pjq, p0q] div mod unique thm)));

a (swap asm concl tacpj = (i ∗ j ) Div iq THEN
(conv tac(ONCE MAP C eq sym conv)));

a (strip tac);
val thm5 = pop thm();
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SML

(∗ no. 6 ∗)
set goal([], p∀i•σ i = (i∗(i + 1 )) Div 2q);
a (REPEAT strip tac);
a (lemma tacpi ∗ (i + 1 ) = 2 ∗ σ iq);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (induction tacpiq THEN asm rewrite tac[get specpσq]);
a(PC T1 "lin arith" asm prove tac[]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (asm rewrite tac[rewrite rule[](list ∀ elim[p2q, pσ iq]thm5 )]);
val thm6 = pop thm();

SML

(∗ no. 7 ∗)

The obvious way of defining the Fibonacci function is not automatically proved consistent:
SML

delete constpφq;

HOL Constant

φ : N → N

φ 0 = 0
∧ φ 1 = 1
∧ ∀i•φ(i+2 ) = φ(i+1 ) + φ i

SML

get specpφq;

SML

delete constpφq;
(∗ no. 8 ∗)

HOL Constant

γ : N → (N × N)

γ 0 = (0 , 1 )
∧ ∀i•γ(i+1 ) = let (a, b) = γ i in (b, a + b)

HOL Constant

φ : N → N

∀i•φ i = Fst (γ i)
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SML

set goal([], p
φ 0 = 0

∧ φ 1 = 1
∧ ∀i•φ(i+2 ) = φ(i+1 ) + φ i
q);
a (rewrite tac[get specpφq]);
a (lemma tacpγ 1 = γ(0 + 1 ) ∧ ∀i• γ(i + 2 ) = γ((i+1 )+1 )q);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (rewrite tac[plus assoc thm]);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (pure asm rewrite tac[get specpγq, let def ] THEN rewrite tac[]);
val thm8 = pop thm();

SML

(∗ no. 9 ∗)
delete constpγq;

HOL Constant

φ : N → N

φ 0 = 0
∧ φ 1 = 1
∧ ∀i•φ(i+2 ) = φ(i+1 ) + φ i

SML

get specpφq;
push consistency goalpφq;
a (lemma tacp∃γ•

γ 0 = (0 , 1 )
∧ ∀i•γ(i+1 ) = let (a, b) = γ i in (b, a + b)
q);
(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (prove ∃ tac);
(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (∃ tacpλi•Fst(γ i)q);
a (rewrite tac[]);
a (lemma tacpγ 1 = γ(0 + 1 ) ∧ ∀i• γ(i + 2 ) = γ((i+1 )+1 )q);
(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a (rewrite tac[plus assoc thm]);
(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)
a (pure asm rewrite tac[let def ] THEN asm rewrite tac[]);
save consistency thm pφq (pop thm());
get specpφq;
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14.15 Supplementary Exercises

14.15.1 Linear Arithmetic

SML

(open theory "usr013" handle => (open theory "hol"; new theory "usr013"));
new theory "Shankar−Rushby−International";

set pc "hol2";

set goal([], p∀ i :N• i>7 ⇒ ∃ three five:N• 3∗three + 5∗five = iq);

ProofPower output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) p∀ i• i > 7 ⇒ (∃ three five• 3 ∗ three + 5 ∗ five = i)q

First we do induction on piq rewriting the resulting conclusions with the assumptions. This solves
the induction base case and leaves two subgoals relating to the step case.

SML

a (strip tac THEN induction tac pi :Nq THEN asm rewrite tac[]);

ProofPower output

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p3 ∗ three + 5 ∗ five = iq

(∗ ?` ∗) p7 < i + 1 ⇒ (∃ three five• 3 ∗ three + 5 ∗ five = i + 1 )q

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 1 ∗) p¬ 7 < iq

(∗ ?` ∗) p7 < i + 1 ⇒ (∃ three five• 3 ∗ three + 5 ∗ five = i + 1 )q

Now we prove the lemma pZ i = 7q by linear arithmetic and rewrite with it.

SML

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a (strip tac THEN LEMMA T pi = 7q rewrite thm tac

THEN1 PC T1 "lin arith" asm prove tac[]);
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ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) p¬ 7 < iq
(∗ 1 ∗) p7 < i + 1q

(∗ ?` ∗) p∃ three five• 3 ∗ three + 5 ∗ five = 8q

Next we supply the obvious witness for this existential and prove the resulting subgoal automatically.

SML

a (MAP EVERY ∃ tac [p1q,p1q] THEN prove tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p3 ∗ three + 5 ∗ five = iq

(∗ ?` ∗) p7 < i + 1 ⇒ (∃ three five• 3 ∗ three + 5 ∗ five = i + 1 )q

We now eliminate the variable piq and strip down to the existential:

SML

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a (all var elim asm tac1 THEN strip tac);

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 1 ∗) p7 < (3 ∗ three + 5 ∗ five) + 1q

(∗ ?` ∗) p∃ three ′ five ′

• 3 ∗ three ′ + 5 ∗ five ′ = (3 ∗ three + 5 ∗ five) + 1q

Then we do a case split on whether five is zero:

SML

a (strip asm tac (∀ elim pfiveq N cases thm)
THEN asm rewrite tac[]);
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ProofPower output

Tactic produced 2 subgoals:

(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)

(∗ 2 ∗) p7 < (3 ∗ three + 5 ∗ five) + 1q
(∗ 1 ∗) pfive = i + 1q

(∗ ?` ∗) p∃ three ′ five ′

• 3 ∗ three ′ + 5 ∗ five ′ = (3 ∗ three + 5 ∗ (i + 1 )) + 1q

(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)

(∗ 2 ∗) p7 < (3 ∗ three + 5 ∗ five) + 1q
(∗ 1 ∗) pfive = 0q

(∗ ?` ∗) p∃ three ′ five ′• 3 ∗ three ′ + 5 ∗ five ′ = 3 ∗ three + 1q

In this case it is most convenient first to prove that pthree≥3q using linear arithmetic, and then
rewrite this result to give a witness 3 less than three:

SML

(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a (LEMMA T pthree ≥ 3q (strip asm tac o rewrite rule [≤ def ])
THEN1 PC T1 "lin arith" asm prove tac[]);

ProofPower output

Tactic produced 1 subgoal :

(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)

(∗ 3 ∗) p7 < (3 ∗ three + 5 ∗ five) + 1q
(∗ 2 ∗) pfive = 0q
(∗ 1 ∗) p3 + i = threeq

(∗ ?` ∗) p∃ three ′ five ′• 3 ∗ three ′ + 5 ∗ five ′ = 3 ∗ three + 1q

The witness piq is now used in the existence proof:

SML

a (MAP EVERY ∃ tac [piq, pfive +2q]
THEN PC T1 "lin arith" asm prove tac[]);
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ProofPower output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)

(∗ 2 ∗) p7 < (3 ∗ three + 5 ∗ five) + 1q
(∗ 1 ∗) pfive = i + 1q

(∗ ?` ∗) p∃ three ′ five ′

• 3 ∗ three ′ + 5 ∗ five ′ = (3 ∗ three + 5 ∗ (i + 1 )) + 1q

This subgoal is proved in a similar way but with different witnesses:

SML

(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)
a (MAP EVERY ∃ tac [pthree+2q, piq]
THEN PC T1 "lin arith" asm prove tac[]);

ProofPower output

Tactic produced 0 subgoals:
Current and main goal achieved

SML

save pop thm("cents thm");

ProofPower output

Now 0 goals on the main goal stack
val it = ` ∀ i• i > 7 ⇒ (∃ three five• 3 ∗ three + 5 ∗ five = i) : THM
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